Çelik Lifli Kendiliğinden Yerleşen Betonun Mekanik Özellikleri ve Dayanıklılığı
Yıl 2023,
, 57 - 67, 31.07.2023
Serkan Biçici
,
Yusuf Tola
Öz
Bu çalışma çelik fiber takviyeli kendiliğinden yerleşen betonun (SFRSCC) özelliklerini nasıl etkilediğini araştırmaktadır. Bu amaçla mekanik özelliklerini karakterize etmek ve dayanıklılık göstergelerini değerlendirmek için SFRSCC ve kendiliğinden yerleşen beton (SCC) numuneleri ile yapılan deneysel çalışmalar incelenip değerlendirilmiştir. Mekanik özellikler, basınç, yarmada çekme, elastisite modülü ve eğilme dayanımları için test analiz edilmektedir.
Çelik fiber takviyeli kendiliğinden yerleşen betonun (SFRSCC) dayanıklılığına ilişkin araştırmalar hala çok azdır. Bu yüzden çelik fiberlerin korozyonunun çatlamaya ve ardından parçalanmaya yol açıp açmayacağı henüz net bir şekilde ortaya koyulmamıştır.
Sonuçlar, çelik liflerin SCC'ye eklenmesinin, çatlama sonrası eğilme direncini ve enerji absorbsiyonunu arttırma açısından çok etkili olduğunu ve SCC'nin kendi kendine yerleşen gereksinimleri ve dayanıklılık göstergelerini önemli ölçüde etkilemediğini göstermiştir. Ayrıca araştırmalardan elde edilen bulgulara göre liflerin karışım özelliklerinin ve hacim oranının bu ana özellikleri önemli ölçüde etkileyebileceğini göstermiştir.
Bu çalışma, birçok araştırmacı tarafından rapor edilen çok çeşitli uluslararası kaynaklardan toplanan veri tabanları ve deneysel olarak elde edilen veriler kullanılarak kapsamlı karşılaştırmalar sunmaktadır. Sunulan uygulama örnekleri ile ilgili bir derleme makale çalışması yapmıştır.
Kaynakça
- [1] Okamura H., Ouchi M., 2003. Self-Compacting Concrete. Journal of Advanced Concrete Technology, 1(1), 5-15.
- [2] Persson B., 1999. Tunnel through water-distributing sediments without injection in advance. Bygg & Teknik, 28-29.
- [3] Louis Granju J., Balouch S., 2005. Corrosion of steel fibre reinforced concrete from the cracks. Cement and Concrete Research, 35(3), 572-577.
- [4] Wang K., Jansen D., Shah S., Karr A., 1997. Permeability Study of Cracked Concrete. Cement and Concrete Research, 27(3), 381-393.
- [5] Anomin., 1994. Çelik Liflerle Güçlendirilmiş Beton. Ankara: T.C Bayındırlık ve İskan Bakanlığı Devlet Su İşleri Genel Müdürlüğü Teknik Araştırma ve Kalite Kontrol Dairesi Başkanlığı.
- [6] Iqbal S., Ali A., Holschemacher K., Bier T., 2015. Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC). Construction and Building Materials, 98, 325-333.
- [7] Bentur A., Mindess S., 1990. Fibre Reinforced. London: Modern Concrete Technology Series.
- [8] Abu-Lebdeh T., Fini E., Lumpkin M., 2012. Flexural and Tensile Characteristics of Micro Fiber-Reinforced Very High Strength Concrete Thin Panels. American Journal of Engineering and Applied Sciences, 5(2), 184-197.
- [9] Nevile A., 2011. Properties of Concrete. Harlow: The Royal Academy of Engineering.
- [10] Öztekin E., 2019. Karma Çelik Lif İçeren Kendiliğinden Yerleşen Betonun Kesme Davranışının İncelenmesi. İnönü Üniversitesi, Fen Bilimleri Enstitüsü, 40.
- [11] Pająk M., Ponikiewski T., 2013. Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Construction and Building Materials, 47(10), 397-408.
- [12] Mazaheripour H., Ghanbarpour S., Mirmoradi S., Hosseinpour I., 2011. The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Construction and Building Materials, 25(1), 351-358.
- [13] Ponikiewski T., Golaszewski J., 2013. Properties of steel fiber reinforced self-compacting concrete for optimal rheological and mechanical properties in precast beams. Concrete and Concrete Structures Conference, 65, 290-295.
- [14] Frazao C., Camões A., Barros J., Gonçalves D., (2015). Durability of steel fiber reinforced self-compacting concrete. Construction and Building Materials, 155-166.
- [15] Chao S., Lin W., 2013. Effects of silica fume and steel fiber on chloride ion penetration and corrosion behavior of cement-based composites. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 28, 279-284.
- [16] Papadakis V., 2000. Effect of supplementary cementing materials on concrete resistance. Cement and Concrete Research , 30(2), 291-299.
- [17] Khaloo A., Raisi E., Hosseini P., Tahsiri H., 2014. Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and Building Materials, 51, 179-186.
- [18] Altun F., Aktaş B., 2013. Investigation of reinforced concrete beams behavior of steel fiber added lightweight concrete. Construction and Building Materials, 38, 575-581.
- [19] Birincioğlu M., Ulusoy S., Arslan G., 2015. Influence of steel fibers on the shear strength of RC beams without stirrups. International Conference on Civil and Environmental Engineering ICOCEE–Cappadocıa. Nevşehir, Türkiye, 20 May: 185-192.
- [20] Naik T., Kumar R., Ramme B., Canpolat F., 2012. Development of high-strength, economical self-consolidating concrete. Construction and Building Materials, 463-469.
- [21] Yan W., Cui W., Qi L., 2020. Effect of aggregate gradation and mortar rheology on static segregation of self-compacting concrete. Construction and Building Materials, 119816.
- [22] Lu H., Sun X., Ma H., 2022. Anti-washout Concrete: An overview. Construction and Building Materials, 128151.
- [23] Guler S., Akbulut Z., Siad H., Lachemi, M., 2021. Effect of macro polypropylene, polyamide and steel fibers on the residual properties of SCC at ambient and elevated temperatures. Construction and Building Materials.
- [24] Ferdosian I., Camões A., 2021. Mechanical performance and post-cracking behavior of self-compacting steel-fiber reinforced eco-efficient ultra-high performance concrete. Cement and Concrete Composites.
- [25] Idir R., Cyr M., Pavoine A., 2020. Investigations on the durability of alkali-activated recycled glass. Construction and Building Materials.
- [26] Alsaif A., Koutas L., Bernal S., Guadagnini M., Pilakoutas K., 2018. Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Construction and Building Materials, 533-543.
- [27] Ahmad H., Hashim M., Bakar A., Rahman F., 2019. Flexural performance of full and partially steel fibre reinforced self-compacting concrete (SCFRC) ribbed slab. IOP Conference Series: Materials Science and Engineering.
- [28] Ahmad J., Lezcano R., Majdi A., El-Shorbagy M., Kahla N., Deifalla A., 2022. Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis. Materials, 1-15.
- [29] Chen M., Si H., Fan X., Xuan Y., Zhang M., 2022. Dynamic compressive behaviour of recycled tyre steel fibre reinforced concrete. Construction and Building Materials.
- [30] Li D., Jin L., Fu J., Lu A., 2016. Size effect tests of normal-strength and high-strength RC columns subjected to axial compressive loading. Engineering Structures.
- [31] Gao J., Sha A., Wang Z., Hu L., Yun D., Liu Z., Huang, Y., 2018. Characterization of carbon fiber distribution in cement-based composites by Computed Tomography. Construction and Building Materials, 134-147.
- [32] Wang D., Ju Y., Shen H., Xu L., 2019. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Construction and Building Meterials, 464-473.
- [33] Safiuddin M., Amrul Kaish A., Woo C.O., Raman S., 2018. Early-Age Cracking in Concrete: Causes, Consequences, Remedial Measures, and Recommendations. Applied Sciences, 8-10.
- [34] Sapieta M., Dekýš V., Štalmach O., Sapietová A., Svoboda M., 2021. Detection of Elastic Deformation in Metal Materials in Infrared Spectral Range. Meterials.
- [35] Du C., Liu T., Zou D., Teng J., 2015. Time dependent strain development of early age concrete under step-by-step load history. Construction and Building Materials.
- [36] Shi X., Park P., Rew Y., Huang K., Sim C., 2020. Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension. Construction and Building Materials.
- [37] Gordo J., Guedes Soares C., 2014. Experimental analysis of the effect of frame spacing variation on the ultimate bending moment of box girders. Marine Structures, 111-134.
- [38] Wang Y., Wang W., Wang D., Liu Y., Liu J., 2021. Study on the influence of sample size and test conditions on the capillary water absorption coefficient of porous building materials. Journal of Building Engineering.
- [39] Van Belleghem B., Montoya R., Dewanckele J., Van den Steen N., De Graeve I., Deconinck J., De Belie N., 2016. Capillary water absorption in cracked and uncracked mortar – A comparison between experimental study and finite element analysis. Construction and Building Materials, 154-162.
- [40] Zhang P., Wittmann F., Vogel M., Müller H., Zhao T. 2017. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete. Cement and Concrete Research, 60-67.
- [41] Çelik M., Kaçmaz A., 2016. The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions. Environmental Earth Sciences.
- [42] Liu B., Jiang J., Shen S., Zhou F., Shi J., He Z., 2020. Effects of curing methods of concrete after steam curing on mechanical strength and permeability. Construction and Building Materials.
- [43] Liu R., Xiao H., Liu J., Guo S., Pei Y., 2019. Improving the microstructure of ITZ and reducing the permeability of concrete with various water/cement ratios using nano-silica. Journal of Materials Science, 444-456.
- [44] Aslam F., Zaid O., Althoey F., Alyami S., Qaidi S., Prado Gil J., García R., 2022. Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete. Structural Concrete .
- [45] Gong F., Maekawa K., 2019. Proposal of poro-mechanical coupling among ASR, corrosion and frost action for damage assessment of structural concrete with water. Engineering Structures, 418-429.
- [46] Oliveira L., Nepomuceno M., Gomes J., Vila M., 2014. Permeability properties of self-compacting concrete with coarse recycled aggregates. Construction and Building Materials, 113-120.
- [47] Yang K., Basheer P., Bai Y., Magee B., Long A., (2014). Development of a new in situ test method to measure the air permeability of high performance concretes. NDT & E International, 30-40.
- [48] Ghosh P., Tran Q., 2014. Correlation Between Bulk and Surface Resistivity of Concrete. International Journal of Concrete Structures and Materials, 119-132.
- [49] Robles K., Jae Yee J., Hoon Kee S., 2022. Electrical Resistivity Measurements for Nondestructive Evaluation of Chloride-Induced Deterioration of Reinforced Concrete—A Review. Materials.
- [50] Belli A., Mobili A., Bellezze T., Tittarelli F., 2020. Commercial and recycled carbon/steel fibers for fiber-reinforced cement mortars with high electrical conductivity. Cement and Concrete Composites.
- [51] Ganta J., Seshagiri Rao M., Mousavi S., Srinivasa Reddy V., Bhojaraju C., 2020. Hybrid steel/glass fiber-reinforced self-consolidating concrete considering packing factor: Mechanical and durability characteristics. Structures, 956-972.
- [52] Melchers R., 2019. Modelling durability of reinforced concrete structures. Corrosion Engineering, Science and Technology, 171-181.
- [53] Wang X., Fan F., Lai J., Xie Y., 2021. Steel fiber reinforced concrete: A review of its material properties and usage in tunnel lining. Structures.
- [54] Chen Z., Koleva D., 2017. Effect of Stray Current on Corrosion Behavior of Reinforcing Steel: Importance of Cell Geometry and Orientation with Respect to the Electrical Field. International Journal of Structural and Civil Engineering.
- [55] Beglarigale A., Yazıcı H., 2015. Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar. Construction and Building Materials.
- [56] Jajcinovic M., Fischer W., Mautner A., Bauer W., Hirn U., 2018. Influence of relative humidity on the strength of hardwood and softwood pulp fibres and fibre to fibre joints. Cellulose.
- [57] Alsaif A., Bernal S., Guadagnini M., Pilakoutas, K., 2018. Durability of steel fibre reinforced rubberised concrete exposed to chlorides. Construction and Building Materials.
- [58] Wang Y., Ueda T., Gong F., Zhang D., 2019. Meso-scale mechanical deterioration of mortar due to sodium chloride attack. Cement and Concrete Composites.
- [59] Samimi K., Bernard S., Maghsoudi A., Maghsoudi M., Siad H., 2017. Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes. Construction and Building Materials.
- [60] Yehia S., Douba A., Abdullahi O., Farrag S., 2016. Mechanical and durability evaluation of fiber-reinforced self-compacting concrete. Construction and Building Materials.
- [61] Grünewald S., Walraven J., 2020. Properties of fibre reinforced SCC. Self-Compacting Concrete: Materials, Properties and Applications.
- [62] Ameeri A., Rafiq M., Tsioulou O., 2021. Combined impact of carbonation and crack width on the Chloride Penetration and Corrosion Resistance of Concrete Structures. Cement and Concrete Composites.
- [63] Otieno M., Ikotun J., Ballim Y., 2020. Experimental investigations on the effect of concrete quality, exposure conditions and duration of initial moist curing on carbonation rate in concretes exposed to urban, inland environment. Construction and Building Materials.
- [64] Paul S., Panda B., Huang Y., Garg A., Peng X., 2018. An empirical model design for evaluation and estimation of carbonation depth in concrete. Measurement.
- [65] AL-Ameeri A., 2013. The effect of steel fiber on some mechanical properties of self compacting concrete. Am. J. Civ. Eng., 102-110.
- [66] Aslani F., Nejadi S., 2013. Self-compacting concrete incorporating steel and polypropylene fibers: compressive and tensile strengths, moduli of elasticity and rupture, compressive stress–strain curve, and energy dissipated under compression. Compos. B, 121-133.
- [67] Atis C., O K., 2009. Properties of steel fiber reinforced fly ash concrete. Constr. Build. Mater., 392-399.
- [68] Gencel O., Brostow W., Datashvili T., Thedford M., 2011. Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash. Compos. Interfaces, 169-184.
- [69] Neves R., Almeida J., 2005. Compressive behaviour of steel fibre reinforced concrete. Struct. Concr., 1-8.
- [70] El-Dieb A., Taha M., 2012. Flow characteristics and acceptance criteria of fiber-reinforced self-compacted concrete (FR-SCC). Constr. Build. Mater., 585-596.
- [71] Sahmaran M., Yurtseven A., Yaman I., 2015. Workability of hybrid fiber reinforced self-compacting concrete. Build. Environ., 1672-1677.
- [72] Thomas J., Ramaswamy A., 2007. Mechanical properties of steel fiber-reinforced concrete. J. Mater. Civ. Eng. ASCE, 385-392.
- [73] Musmar M., 2013. Tensile strength of steel fiber reinforced concrete. Contemp. Eng. Sci., 225-237.
- [74] Sahin Y., Köksal F., 2009. The influences of matrix and steel fibre tensile strengths on the fracture energy of high-strength concrete. Constr. Build. Mater., 1801-1806.
- [75] Carmona S., Aguado A., Molins C., 2013. Characterization of the properties of steel fiber reinforced concrete by means of the generalized Barcelona test. Constr. Build. Mater., 592-600.
- [76] Güneyisi E., Gesoglu M., Akoi A., Mermerdas K., 2014. Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete. Composites Part B, 83-91.
- [77] Miao B., Chern J., Yang C., 2003. Influences of fiber content on properties of self-compacting steel fiber reinforced concrete. J. Chin. Inst. Eng., 523-530.
- [78] Alyousif A., 2010. Design and Testing of Fiber Reinforced Self Compacting Concrete. M.Sc. Thesis. Eastern Mediterranean University.
- [79] Yazıcı S., Inan G., Tabak V., 2007. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater., 1250-1253.
- [80] Boulekbache B., Hamrat M., Chemrouk M., Amziane S., 2010. Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr. Build. Mater.
- [81] Haddadou N., Chaid R., Ghernouti Y., Adjou N., 2014. The effect of hybrid steel fiber on the properties of fresh and hardened self-compacting concrete. J. Build. Mater. Struct., 65-76.