Araştırma Makalesi
BibTex RIS Kaynak Göster

R134a’lı Bir Otomobil İklimlendirme Sisteminde Genleşme Elemanı Tipinin Performansa Etkisinin Deneysel Analizi

Yıl 2020, Cilt: 3 Sayı: 2, 214 - 222, 31.12.2020

Öz

Bu çalışmada, R134a soğutucu akışkanı kullanılan bir otomobil iklimlendirme sistemi, laboratuvar ortamında kurulmuştur. Sistem, genleşme elemanı olarak termostatik genleşme valfi (TGV) ve orifis tüp (OT) ile donatılmış olup her iki tip genleşme elemanıyla testler yapılarak sistemin çeşitli performans parametreleri belirlenmiştir. Testler esnasında kompresör devri, gerçek kullanıma benzeyecek şekilde 1000 d/d ile 2600 d/d arasında 400 d/d artışlarla değiştirilmiştir. Hava akımlarının yoğuşturucu ve buharlaştırıcı giriş sıcaklıkları ise aynı anda 30°C, 35°C ve 40°C değerlerinde tutulmuştur. Sistemin performansını belirlemek amacıyla soğutucu akışkan debisi ve soğutma devresinin çeşitli noktalarından soğutucu akışkan basınç ve sıcaklık ölçümleri yapılmıştır. Ölçüm sonuçlarına bağlı olarak sistem bileşenlerinin enerji analizleri gerçekleştirilmiştir. Bunların sonucunda soğutma kapasitesi, kompresör gücü, yoğuşturucuda atılan ısı ve soğutma tesir katsayısı (STK) gibi performans parametreleri kompresör devrinin ve hava akımı giriş sıcaklıklarının fonksiyonu olarak belirlenmiş ve iki farklı genleşme elemanı tipi için karşılaştırmalı olarak sunulmuştur. Her iki genleşme elemanı kullanım durumu için kompresör devri ve hava akımı giriş sıcaklıkları arttıkça soğutma kapasitesinin de arttığı, ancak STK’nın düştüğü belirlenmiştir. Bütün testlerin ortalaması olarak TGV kullanan sistemin OT kullanan sisteme göre %12.7 daha büyük soğutma kapasitesi ve %2.4 daha düşük STK değerleri verdiği tespit edilmiştir.

Kaynakça

  • [1] Bhatti M.S., 1999. Evaluation of automotive air conditioning, riding in comfort: Part II. ASHRAE Journal, 41, 44–50.
  • [2] UNEP, 1987. Montreal Protocol on substances that deplete the ozone layer, final act. United Nations Environment Programme. https://www.unenvironment.org/resources/report/montreal-protocol-substances-deplete-ozone-layer-final-act.
  • [3] Kuijpers L., 1994. Retrofitting with non–CFC substitutes. United Nations Environment Programme Report.
  • [4] EU, 2014. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006. Official Journal of European Union, L 150/195.
  • [5] Zilio C., Brown J.S., Schiochet G., Cavallini A., 2011. The refrigerant R1234yf in air conditioning systems. Energy, 36, 6110–6120.
  • [6] Alkan A., Hoşöz M., 2009. Orifis tüp kullanan bir otomobil klimasının sabit ve değişken kapasiteli kompresörler için deneysel performansı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25, 415–421.
  • [7] Lee G.H., Yoo J.Y., 2000. Performance analysis and simulation of automobile air conditioning system, International Journal of Refrigeration, 23, 243–254.
  • [8] Esen D.O., Hoşöz M., 2005. R12 ve R134a soğutucu akışkanlarının ve kompresör devrinin otomobil klimalarının performansına etkisinin deneysel analizi. Tesisat Mühendisliği Dergisi, 90, 62–68.
  • [9] Brown J.S., Yana-Motta S.F., Domanski P.A., 2002. Comparative analysis of an automotive air conditioning systems operating with CO2 and R134a. International Journal of Refrigeration, 25, 19–32.
  • [10] Kaynaklı Ö., Horuz I., 2003. An experimental analysis of automotive air conditioning system. International Communications in Heat and Mass Transfer, 30, 273–284.
  • [11] Ratts E.B., Brown J.S., 2000. An experimental analysis of the effect of refrigerant charge level on an automotive refrigeration system. International Journal of Thermal Science, 39, 592–604.
  • [12] Alkan A., Hosoz M., 2010. Comparative performance of an automotive air conditioning system using fixed and variable capacity compressors. International Journal of Refrigeration, 33, 487–495.
  • [13] Alkan A., Hosoz M., 2010. Experimental performance of an automobile air conditioning system using a variable capacity compressor for two different types of expansion devices, International Journal of Vehicle Design, 52, 160–176.
  • [14] Preissner M., Cutler B., Radermacher R., Zhang C. A., 2000. Suction line heat exchanger for Rl34a automotive air-conditioning system. International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, IN, USA, 25-28 Temmuz, 289–294.
  • [15] Li X., Chen J., Chen Z., Liu W., Hu W., Liu X., 2004. A new method for controlling refrigerant flow in automobile air conditioning. Applied Thermal Engineering, 24, 1073–1085.
  • [16] Kocatürk M., Salman M.S., 2006. Otomobil klima sisteminde fan devri ve giriş havası sıcaklığının performansa etkisinin deneysel olarak incelenmesi, Politeknik Dergisi, 9, 7–12.
  • [17] Lee Y., Jung D., 2011. A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Applied Thermal Engineering, 35, 240–242.
  • [18] Daviran S., Kasaeian A., Golzari S., Mahian O., Nasirivatan S., Wongwises S., 2016. A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems. Applied Thermal Engineering, 110, 1091–1100.
  • [19] Direk M., Kelesoglu, Akin A., 2017. Drop-in performance analysis and effect of IHX for an automotive air conditioning system with R1234yf as a replacement of R134a. Journal of Mechanical Engineering, 63, 314–319.
  • [20] Sieres J., Santos J. M., 2018. Experimental analysis of R1234yf as a drop-in replacement for R134a in a small power refrigerating system. International Journal of Refrigeration, 91, 230–238.
  • [21] Meng Z., Zhang H., Lei M., Qin Y., Qiu J., 2018. Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems. International Journal of Heat and Mass Transfer, 116, 362–370.
  • [22] Aral M.C., Suhermanto M., Hosoz M., 2020. Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a. Science and Technology for the Built Environment, 0, 1–17.
  • [23] Devecioğlu A.G., Oruç V., 2018. Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a. Energy, 155, 105–116.
  • [24] Andrizal A., Saputra H.D., Setiawan D., Setiawan M.Y., 2020. Design and manufacture of orifice tube car air conditioning system simulator with R134a cooling fluid. Journal of Mechanical, Electrical and Industrial Engineering, 2, 21–30.
  • [25] Rajendran P., Narayanaswamy G.R., Dhasan M.L., 2019. Tuning thermostatic expansion valve for implementing suction line heat exchanger in mobile air conditioning system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 1–15.
  • [26] Lemmon E.W., Huber M.L., McLinden M. O., 2013. Reference fluid thermodynamic and transport properties (REFPROP), Version 9.1, in NIST standard reference database 23. Gaithersburg: National Institute of Standards and Technology.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makaleler
Yazarlar

Umut Güngör 0000-0002-9844-7681

Murat Hoşöz 0000-0002-3136-9586

Yayımlanma Tarihi 31 Aralık 2020
Kabul Tarihi 2 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA Güngör, U., & Hoşöz, M. (2020). R134a’lı Bir Otomobil İklimlendirme Sisteminde Genleşme Elemanı Tipinin Performansa Etkisinin Deneysel Analizi. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 3(2), 214-222.