Editöre Mektup
BibTex RIS Kaynak Göster

Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi

Yıl 2015, Cilt: 18 Sayı: 4, 26 - 39, 13.01.2016
https://doi.org/10.18016/ksujns.36064

Öz

Gıda kaynaklı mikrobiyal patojenler tüm dünyada hastalık, ölüm ve ciddi ekonomik kayıplara neden olan önemli bir sorundur. Olumsuz etkilere yol açan gıda kaynaklı hastalıkların önüne geçilebilmesi ve potansiyellerininbelirlenebilmesiiçin hastalığa neden olan mikrobiyal etkenin ve miktarının tanımlanması ve belirlenmesi gerekmektedir. Gıda kaynaklı hastalıklara neden olan gıda patojen mikroorganizmaların spesifik ve tekrarlanabilir bir metot ile tanımlanmaları önem arz etmektedir. Enfeksiyon dozu yaklaşık 10 bakteri hücresine kadar düşebilen mikrobiyal gıda patojenlerinintespitihassas, türe spesifik ve güvenilir bir metot gerektirmektedir. Kültürel, immünolojik ve konvansiyonel PCR metotlarıpatojenlerin tanısında yaygın olarak kullanılmaktaancak
uzun zaman alması ve miktar ile ilgili yeterli bilgi vermemesi gibi sınırlamaları bulunmaktadır. Real Time PCR teknolojisi hassasiyeti, düşük miktardaki mikroorganizmaları belirleyebilme limiti, spesifikliği ve hızı gibi özelliklerinden dolayı mikrobiyal tanımlamada güncel ve güvenilir bir yöntemdir. Bu derleme çalışmasında, Real Time PCR tekniği yaklaşımları ve gıda patojenlerinde ve diğer mikrobiyal çalışmalara uygulanma potansiyelleri detaylandırılmıştır. 

Kaynakça

  • KAYNAKLAR
  • Abravaya, K., Huff, J., Marshall, R., Merchant, B., Mullen, C., Schneider, G., Robinson, J. 2003. Molecular beacons as diagnostic tools: technology and applications. Clin Chem Lab Med., 41(4): 468-474.
  • Alarcon, B., Vicedo, B., Aznar, R., 2006. PCR-based procedures for detection and quantification of Staphylococcus aureus and their application in food. J. Appl. Microbiol., 100: 352-364.
  • Arya, M., Shergill, I. S., Williamson, M., Gommersall, L., Arya, N., Patel, H. R. 2005. Basic principles of real-time quantitative PCR. Expert Review of Molecular Diagnostics, 5(2): 209-219.
  • Aytac, S.A., Taban, B.M. 2014. Food-Borne Microbial Diseases and Control: Food-Borne Infections and Intoxications.( Food Processing: Strategies for Quality Assessment, Springer Publishers, New York: Ed. Malik, A., Erginkaya, Z., Ahmad, S., Erten, H.) 191-224.
  • Barbau-Piednoir, E., Botteldoorn, N., Yde, M., Mahillon, J., Roosens, N. H. 2012. Development and validation of qualitative SYBR® Green Real-Time PCR for detection and discrimination of Listeria spp. and Listeria monocytogenes. Applied Microbiology and Biotechnology, 97(9): 4021-4058.
  • Beneduce, L., Fiocco, D., Spano, G. 2007. Development of PCR-based molecular tools for the detection of emerging food-ad water-borne pathogenic bacteria. Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 2007.
  • Bhagwat, A.A. 2003. Simultaneous detection of Escherichia coli O157: H7, Listeria monocytogenes and Salmonella strains by real-time PCR. International Journal of Food Microbiology, 84(2): 217-224.
  • Bhunia, A.K. 2008. Foodborne Microbial Pathogens Mechanisms and Pathogenesis. Springer Publishers, New York, 276s.
  • Botteroa, M.T., Dalmassoa, A., Sogliab, D., Rosatib, S., Decastellic, L., Civera, T. 2004. Development of a multiplex PCR assay for the identification of pathogenic genes of Escherichia coli in milk and milk products. Molecular and Cellular Probes, 18: 283-288.
  • Buh Gasparic, M., Tengs, T., La Paz, J.L., Holst-Jensen, A., Pla, M., Esteve, T., Zel, J., Gruden, K. 2010. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem., 396(6): 2023-2029.
  • Cawthorn, D. M., Botha, S., Witthuhn, R. C. 2008. Evaluation of different methods for the detection and identification of Enterobacter sakazakii isolated from South African infant formula milks and the processing environment. International Journal of Food Microbiology, 127(1): 129-138.
  • Chen, Y., Song, K. Y., Brown, E. W., Lampel, K. A. 2010. Development of an improved protocol for the isolation and detection of Enterobacter sakazakii (Cronobacter) from powdered infant formula. Journal of Food Protection, 73(6): 1016-1022.
  • Cheng, C. Y., Huang, M. J., Chiu, H. C., Liou, S. M., Chou, C. C., Huang, C. C. 2012. Simultaneous Detection of Food Pathogens, Staphylococcus aureus, Salmonella enterica, Bacillus cereus and Vibrio parahaemolyticus by Multiplex Real-Time Polymerase Chain Reaction. Journal of Food and Drug Analysis, 20(1): 66-73.
  • Cheng, C. Y., Huang, M. J., Chiu, H. C., Liou, S. M., Chou, C. C., Huang, C. C. 2012. Simultaneous Detection of Food Pathogens, Staphylococcus aureus, Salmonella enterica, Bacillus cereus and Vibrio parahaemolyticus by Multiplex Real-Time Polymerase Chain Reaction. Journal of Food and Drug Analysis, 20(1): 66-73.
  • Chiang, Y.C., Fan, C.M., Liao, W.W., Lin, C.K., Tsen, H.Y., 2007. Real-time PCR detection of Staphylococcus aureus in milk and meat using new primers designed from the heat shock protein gene htrA sequence. J. Food Prot., 70: 2855-2859.
  • Chon, J.W., Park, J.S., Hyeon, J.Y., Park, C., Song, K.Y., Hong, K.W., Hwang, I.G., Kwak, H.S., Seo, K.H. 2012. Development of real-time PCR for the detection of Clostridium perfringens in meats and vegetables. J Microbiol Biotechnol., 22(4): 530-534.
  • De Medici, D., Croci, L., Delibato, E., Di Pasquale, S., Filetici, E., Toti, L. 2003. Evaluation of DNA Extraction Methods for Use in Combination with SYBR Green I Real-Time PCR To Detect Salmonella enterica Serotype enteritidis in Poultry. Applied and Environmental Microbiology, 69(6): 3456–3461.
  • Delibato, E., Fiore, A., Anniballi, F., Auricchio, B., Filetici, E., Orefice, L., Losio, M.N., De Medici, D. 2011. Comparison between two standardized cultural methods and 24 hour Duplex SYBR Green Real-Time PCR assay for Salmonella detection in meat samples. Newmicrobiologica, 34(3): 299-306.
  • Dzieciol, M., Frickerb, M., Wagner M., Heina, I., Ehling-Schulzb, M. 2013. A novel diagnostic real-time PCR assay for quantification and differentiation of emetic and non-emetic Bacillus cereus. Food Control, 32(1): 176-185.
  • Eischeid, A. C. 2011. SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Research Notes, 4: 263.
  • Elizaquivel, P., Aznar, R., 2008. A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus on fresh, minimally processed vegetables. Food Microbiol., 25: 705-713.
  • Elizaquivel, P., Sanchez, G., Aznaret, R. 2012. Quantitative detection of viable foodborne E. coli O157:H7, Listeria monocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control, 25(2): 704-708.
  • Espy, M.J., Uhl, J.R., Sloan, L.M., Buckwalter, S.P., Jones, M.F., Vetter, E.A., Yao, J.D.C., Wengenack, N.L., Rosenblatt, J.E., Cockerill, F.R., Smith, T.F. 2006. Real-time PCR in clinical microbiology: applications for
  • routine laboratory testing. Clinical Microbiology Reviews, 19(1):165-256.
  • Fratamico, P. M., Kawasaki, S. 2008. Applications of the polymerase chain reaction for detection, identification, and typing of foodborne microorganisms. (Microbial Food Contamination, CRC Press Publishers, New York: Ed. Wilson, C. L.) 213-254.
  • Fukushima, H., Kawase, J., Etoh, Y., Sugama, K., Yashiro, S., Lida, N., Yamaguchi, K. 2010. Simultaneous screening of 24 target genes of foodborne pathogens in 35 foodborne outbreaks using multiplex Real-Time SYBR Green PCR analysis. International Journal of Microbiology, 2010(2010): 18s.
  • Garrido, A., Chapela, M., Román, B., Fajardo, P., Lago, J., Vieites, J.M., Cabado, A.G. 2013. A new multiplex real-time PCR developed method for Salmonella spp. and Listeria monocytogenes detection in food and environmental samples. Food Control, 30: 76-85.
  • Garrido, A., Chapela, M.J., Román, B., Ferreira, M., Lago, J., Vieites, J.M.,Cabado, A.G. 2012. Development of a multiplex real-time PCR method for simultaneous detection of Salmonella enterica, Shigella xexneri and Listeria monocytogenes in processed food samples. Eur Food Res Technol., 234:571–580.
  • Giglio, S., Monis, P.T., Saint, C.P. 2003. Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic Acids Res., 31(22): e136.
  • Griffin, M.J., Goodwin, A.E., Merry, G.E., Liles, M.R., Williams, M.A., Ware, C., Waldbieser, G.C. 2013. Rapid quantitative detection of Aeromonas hydrophila strains associated with disease outbreaks in catfish aquaculture. Journal of Veterinary Diagnostic Investigation, 25(4): 473–481.
  • Hadjinicolaou, A.V., Demetriou, V.L., Emmanuel, M.A., Kakoyiannis, C.K., Kostrikis, L.G. 2009. Molecular beacon-based real-time PCR detection of primary isolates of Salmonella Typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiology, 9(1): 97.
  • Hanna, S.E., Connor, C.J., Wang, H.H. 2005. Real time Polymerase Chain Reaction for the Food Microbiologist: Technologies, Applications, and Limitations. Journal of Food Science, 70(3): 49-53.
  • He, Y., Chen, C. 2010. Quantitative analysis of viable, stressed and dead cells of Campylobacter jejuni strain 81-176. Food Microbiology, 27(4): 439-446.
  • Hein, I., Jørgensen, H.J., Loncarevic, S., Wagner, M. 2005. Quantification of Staphylococcus aureus in unpasteurised bovine and caprine milk by real-time PCR. Research in Microbiology, 156: 554-563.
  • Higuchi, R., Dollinger, G., Walsh, P.S., Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology, 10(4): 413-417.
  • Hill, W.E., Wachsmuth, K. 1996. The polymerase chain reaction: applications for the detection of foodborne pathogens. Critical Reviews in Food Science and Nutrition, 36(1-2). 123-173.
  • Holland, P.M., Abramson, R.D., Watson, R., Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci., 88:7276-80.
  • Hong, J., Jung, W.K., Kim, J.M., Kim, S.H., Koo, H.C., Ser, J., Park, Y.H. 2007. Quantification and differentiation of Campylobacter jejuni and Campylobacter coli in raw chicken meats using a real-time PCR method. J. Food Prot., 70: 2015-2022.
  • Huang, Q., Hu, Q., Li, Q. 2007. Identification of 8 Foodborne Pathogens by Multicolor Combinational Probe Coding Technology in a Single Real-Time PCR. Clin Chem., 53(10):1741-1748.
  • Huggett, J., Dheda, K., Bustin, S.A. 2007. Normalization in Real-time PCR. (Real-time PCR Taylor and Francis Group Publishers, New York: Ed. Dorak, M.T.) 83-91.
  • Hyeon, J., Park ,C., Choi, I., Holt, P.S., Seo, K. 2010. Development of multiplex real-time PCR with Internal amplification control for simultaneous detection of Salmonella and Cronobacter in powdered infant formula. International Journal of Food Microbiology, 144(2010): 177-181.
  • Jasson, V., Jacxsens, L., Luning, P., Rajkovic, A., Uyttendaele, M. 2010. Alternative microbial methods: an overview and selection criteria. Food Microbiology, 27(6): 710-730.
  • Jin, D., Luo, Y.,L., Zhang, Z., Fang, W., Ye, J., Wu, F., Ding, G. 2012. Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis. FEMS Microbiology Letters, 330(1): 72-80.
  • Kagkli, D., Weber, T.P., Bulcke, M., Folloni, S., Tozzoli, R., Morabito, S., Ermolli, M., Gribaldo, L., Van den Eede, G. 2011. Application of the Modular Approach to an In-House Validation Study of Real-Time PCR Methods for the Detection and Serogroup Determination of Verocytotoxigenic Escherichia coli. Appl Environ Microbiol., 77(19): 6954–6963.
  • Kaltenboeck, B., Wang, C. 2005. Advances in real‐time PCR: Application to clinical laboratory diagnostics. Advances in Clinical Chemistry, 40: 219-259.
  • Köppel, R., Kuslyte, A.R., Tolido, I., Schmid, J., Marti, G. 2013. Nonaplex real-time PCR detection of Listeria monocytogenes, Campylobacter, Salmonella and enteropathogene E. coli after universal enrichment in food samples. Eur Food Res Technol., 237:315-322.
  • Lambertz, S.T, Nilsson, C., Hallanvuo, S., Lindblad, M. 2008. Real-Time PCR Method for Detection of Pathogenic Yersinia enterocolitica in Food. Applied And Environmental Microbiology, 74: 6060–6067.
  • Leblanc-Maridor, M., Garénaux, A., Beaudeau, F., Chidaine, B., Seegers, H., Denis, M., Belloc, C. 2011. Quantification of Campylobacter spp. in pig feces by direct real-time PCR with an internal control of extraction and amplification. J Microbiol Methods, 85(1): 53-61.
  • Lindqvist, R. 1999. Detection of Shigella spp. in food with a nested PCR method–sensitivity and performance compared with a conventional culture method. Journal of Applied Microbiology, 86(6): 971-978.
  • Liu, B., Zhou, X., Zhang, L., Liu, W., Dan, X., Shi, C., Shi, X. 2012. Development of a novel multiplex PCR assay for the identification of Salmonella enterica Typhimurium and Enteritidis. Food Control, 27: 87-93.
  • Liu, Y., , Cai, X., , Zhang, X., Gao, Q., Yang, X., Zhenga, Z., Luo, M., Huang, X. 2006. Real time PCR using TaqMan and SYBR Green for detection of Enterobacter sakazakii in infant formula. Journal of Microbiological Methods, 65: 21-31.
  • Liu, Y., Mustapha, A. 2014. Detection of viable Escherichia coli O157:H7 in ground beef by propidium monoazide real-time PCR. Int J Food Microbiol., 170: 48-54.
  • Malorny, B., Paccassoni, E., Fach, P., Bunge, C., Martin, A., Helmuth, R., 2004. Diagnostic real-time PCR for detection of Salmonella in food. Applied and Environmental Microbiology, 70(12): 7046-7052.
  • Malorny, B., Tassios, P. T., Radström, P., Cook, N., Wagner, M., Hoorfar, J. 2003. Standardization of diagnostic PCR for the detection of foodborne pathogens. International Journal of Food Microbiology, 83(1): 39-48.
  • Mckillip, J. L., Drake, M. 2004. Real-time nucleic acid-based detection methods for pathogenic bacteria in food. Journal of Food Protection, 67(4): 823-832.
  • Minami, J., Soejima, T., Yaeshima, T., Iwatsuki, K. 2012. Direct Real-Time PCR with Ethidium Monoazide: A Method for the Rapid Detection of Viable Cronobacter sakazakii in Powdered Infant Formula. J Food Prot., 75(9): 1572-1579.
  • Muska, A., Peck, E., Palmer, S. 2007. Standards and Controls: Concepts for Preparation and Use in Real-time PCR Applications. ( Real-Time PCR in Microbiology From Diagnosis to Characterization, Caister Academic Press Norfolk, UK: Ed. Mackay, I.M.) 101-132.
  • Nam, H.M., Srinivasan, V., Gillespie, B.E., Murinda, S.E., Oliver, S.P. 2005. Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. International Journal of Food Microbiology, 102(2):161-171.
  • Navarro, E., Serrano-Heras, G., Castañoa, M.J., Solera, J. 2015. Real-time PCR detection chemistry. Clinica Chimica Acta, 439: 231-250.
  • O' Grady, J., Sedano-Balbás, S., Maher, M., Smith, T., Barry, T. 2008. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol., 25(1):75-84.
  • Oliveira, M.A., Ribeiro, E.G.A., Bergamini, A.M.M., Martinis, E.C.P. 2010. Quantification of Listeria monocytogenes in minimally processed leafy vegetables using a combined method based on enrichment and 16S rRNA real-time PCR. Food Microbiology, 27(1): 19-23.
  • -
  • Omiccioli, E., Amagliani, G., Brandi, G., Magnani, M. 2009. A new platform for real-time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk. Food Microbiol., 26(6):615-622.
  • Pfaffl, M.W. 2007. Relative quantification. ( Real-time PCR, Taylor and Francis Group Publishers, New York: Ed. Dorak, M.T.) 63-82.
  • Pfaffl, M.W., Hageleit, M. 2001. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnology Letters, 23: 275-282.
  • Pinto, B., Chenoll, E., Aznar, R. 2005. Identification and typing of food-borne Staphylococcus aureus by PCR-based techniques. Systematic and Applied Microbiology, 28(4): 340-352.
  • Rasmussen, R. 2001. Quantification on the lightCycier. (Rapid Cycle Real-Time PCR Methods and Applications, Springer Publishers, Berlin: Ed. Meuer, S., Wittwer, C., Nakagawara, K.) 21-34.
  • Rijpens, N.P., Herman, L.M.F. 2002. Molecular Methods for Identification and Detection of Bacterial Food Pathogens. Journal Of AOAC International, 85(4): 984-995.
  • Ripabelli, G., McLauchlin, J., Mithani, V., Threlfall, E.J. 2000. Epidemiological typing of Bacillus cereus by amplified fragment length polymorphism. Letters in Applied Microbiology, 30(5): 358-363.
  • Rodriguez-Palacios, A., Stämpfli, H.R., Duffield, T., Peregrine, A. S., Trotz-Williams, A., Arroyo, L.G., Brazier, J.S., Weese, J.S. 2006. Clostridium difficile PCR ribotypes in calves, Canada. Emerging Infectious Diseases, 12(11): 1730-1736.
  • Schmittgen, T.D., Livak, K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6): 1101-1108.
  • Selvey, S., Thompson, E.W., Matthaei, K., Lea, R.A., Irving, M.G., Griffiths, L.R. 2001. β-Actin—an unsuitable internal control for RT-PCR. Molecular and Cellular Probes, 15: 307-311.
  • Seo, K.H., Brackett, R.E. 2005. Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR assay. Journal of Food Protection, 68(1): 59-63.
  • Shannon, K., Lee, D.Y., Trevors, J., Beaudette, L. 2007. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Science of The Total Environment, 382(1): 121-129.
  • Sharma, V.K., Carlson, S.A. 2000. Simultaneous Detection of Salmonella Strains and Escherichia coli O157:H7 with Fluorogenic PCR and Single-Enrichment-Broth Culture. Applied and Environmental Microbiology, 5472–5476.
  • Shi, H., Xu, W., Trinha, Q., Luoa, Y., Liang, Z., Li, Y., Huanga, K. 2012. Establishment of a viable cell detection system for microorganisms in wine based on ethidium monoazide and quantitative PCR. Food Control, 27(1): 81–86.
  • Shipley, G.L. 2007. An introduction to real-time PCR. ( Real-time PCR, Taylor and Francis Group Publishers, New York: Ed. Dorak, M.T.) 1-37.
  • Singh, J., Batish, V.K., Grover, S., 2009. A scorpion probe-based real-time PCR assay for detection of E. coli O157:H7 in dairy products. Foodborne Pathog. Dis., 6: 395-400.
  • Sun, F., Wu, D., Qiu, Z., Jin, M., Wang, X., Li, J. 2010. Development of real-time PCR systems based on SYBR Green for the specific detection and quantification of Klebsiella pneumoniae in infant formula. Food Control. 21: 487–491.
  • Takahashi, H., Kimura, B., Tanaka, Y., Shinozaki, J., Suda, T., Fujii, T. 2009. Real-time PCR and enrichment culture for sensitive detection and enumeration of Escherichia coli. J Microbiol Methods, 79(1):124-127.
  • Toplak, N., Kovac, M., Piskernik, S., Mozina, S.S., Jersek B. 2011. Detection and quantification of Campylobacter jejuni and Campylobacter coli using real-time multiplex PCR. Journal of Applied Microbiology112: 752-764.
  • Trakhna, F., Harf-Monteil, C., AbdelNour, A., Maaroufi, A., Gadonna-Widehem, P. 2008. Rapid Aeromonas hydrophila identification by TaqMan PCR assay: comparison with a phenotypic method. Letters in Applied Microbiology, 49: 186-190.
  • Trakhna, F., Maaroufi, A., Gadonna-Widehem, P. 2013. Using a real-time quantitative polymerase chain reaction (PCR) method for reliable enumeration of Aeromonas hydrophila in water samples. African Journal of Microbiology Research, 7(19): 2119-2126.
  • Tyagi, S., Kramer, F. R. 2012. Molecular Beacons in Diagnostics. F1000 Medicine Reports, 4(10): 1-6.
  • Ueda, S., Yamaguchi, M., Iwase, M., Kuwabara, Y. 2013. Detection of Emetic Bacillus cereus by Real-Time PCR in Foods. Biocontrol Science, 18(4): 227-232.
  • Valasek, M.A., Repa, J.J. 2005. The power of real-time PCR. Adv Physiol Educ., 29(3): 151-9.
  • Velusamy, V., Arshak, K., Korostynka, O., Vaseashta, A., Adley, C. 2012. Real Time Detection of Foodborne Pathogens - For Food Quality Monitoring & Biosecurity . (Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, Springer Publishers, USA: Ed. Vaseashta, A.T., Braman, E., Susmann, P.) 149-158.
  • Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. 2010. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnology Advances, 28(2): 232-254.
  • Wang, W., Chen, K., Xu, C. 2006. DNA quantification using EvaGreen and a real-time PCR instrument. Anal Biochem., 356(2): 303-305.
  • Wang, X., Zhu, C. Q., Xu, X., Zhou, G. 2012. Real-time PCR with internal amplification control for the detection of Cronobacter spp. (Enterobacter sakazakii) in food samples. Food Control, 25(1): 144-149.
  • Whitcombe, D., Theaker, J., Guy, S.P., Brown, T., Little, S. 1999. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol., 17: 804-7.
  • Wiedmann, M., Czajka, J., Barany, F., Batt, C. A. 1992. Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction. Applied and Environmental Microbiology, 58(11): 3443-3447.
  • Wilhelm, J., Pingoud, A. 2003. Real-Time Polymerase Chain Reaction.
  • Chem BioChem., 4: 1120-1128.
  • Wolffs, P.F.G., Glencross, K., Norling, B., Griffiths, M.W., 2007. Simultaneous quantification of pathogenic Campylobacter and Salmonella in chicken rinse fluid by a flotation and real-time multiplex PCR procedure. Int. J. Food Microbiol., 117: 50-54.
  • Wong, M.L., Medrano, J.F. 2005. Real-time PCR for mRNA quantitation. Biotechniques, 39(1): 75-85.
  • Yaron, S., Matthews, K.R. 2002. A reverse transcriptase‐polymerase chain reaction assay for detection of viable Escherichia coli O157: H7: investigation of specific target genes. Journal of Applied Microbiology, 92(4): 633-640.

Real time PCR Technology in Characterzitaion of Foodborne Microbial Pathogens

Yıl 2015, Cilt: 18 Sayı: 4, 26 - 39, 13.01.2016
https://doi.org/10.18016/ksujns.36064

Öz

Foodborne microbial pathogens are major issue that gives rise to illness, death and serious economic losses all over the world. It is necessary that microbial factors and its amount cause to disease should be well defined to prevent foodborne diseases causing negative impact and determine its potential causes. Foodborne microbial pathogens that cause the foodborne diseases must be identified by a specific and reproducible method. Identification method of foodborne microbial pathogens that have infection doses as low as about 10 bacterial cells should be sensitive, specific species and reliable. Although cultural, immunologic and conventional PCR methods widely used in identification of microbial pathogens, they have some limitations including insufficient quantitative information of the tested micro-organisms and longtime requirement. Real time PCR technology is an up-to-date and reliable method in microbial identification due to its accuracy, specificity, low detection limit and rapidity. In this review, real time PCR approaches and application potentials in foodborne microbial pathogens and other microbial researches are emphasized.

Kaynakça

  • KAYNAKLAR
  • Abravaya, K., Huff, J., Marshall, R., Merchant, B., Mullen, C., Schneider, G., Robinson, J. 2003. Molecular beacons as diagnostic tools: technology and applications. Clin Chem Lab Med., 41(4): 468-474.
  • Alarcon, B., Vicedo, B., Aznar, R., 2006. PCR-based procedures for detection and quantification of Staphylococcus aureus and their application in food. J. Appl. Microbiol., 100: 352-364.
  • Arya, M., Shergill, I. S., Williamson, M., Gommersall, L., Arya, N., Patel, H. R. 2005. Basic principles of real-time quantitative PCR. Expert Review of Molecular Diagnostics, 5(2): 209-219.
  • Aytac, S.A., Taban, B.M. 2014. Food-Borne Microbial Diseases and Control: Food-Borne Infections and Intoxications.( Food Processing: Strategies for Quality Assessment, Springer Publishers, New York: Ed. Malik, A., Erginkaya, Z., Ahmad, S., Erten, H.) 191-224.
  • Barbau-Piednoir, E., Botteldoorn, N., Yde, M., Mahillon, J., Roosens, N. H. 2012. Development and validation of qualitative SYBR® Green Real-Time PCR for detection and discrimination of Listeria spp. and Listeria monocytogenes. Applied Microbiology and Biotechnology, 97(9): 4021-4058.
  • Beneduce, L., Fiocco, D., Spano, G. 2007. Development of PCR-based molecular tools for the detection of emerging food-ad water-borne pathogenic bacteria. Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 2007.
  • Bhagwat, A.A. 2003. Simultaneous detection of Escherichia coli O157: H7, Listeria monocytogenes and Salmonella strains by real-time PCR. International Journal of Food Microbiology, 84(2): 217-224.
  • Bhunia, A.K. 2008. Foodborne Microbial Pathogens Mechanisms and Pathogenesis. Springer Publishers, New York, 276s.
  • Botteroa, M.T., Dalmassoa, A., Sogliab, D., Rosatib, S., Decastellic, L., Civera, T. 2004. Development of a multiplex PCR assay for the identification of pathogenic genes of Escherichia coli in milk and milk products. Molecular and Cellular Probes, 18: 283-288.
  • Buh Gasparic, M., Tengs, T., La Paz, J.L., Holst-Jensen, A., Pla, M., Esteve, T., Zel, J., Gruden, K. 2010. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem., 396(6): 2023-2029.
  • Cawthorn, D. M., Botha, S., Witthuhn, R. C. 2008. Evaluation of different methods for the detection and identification of Enterobacter sakazakii isolated from South African infant formula milks and the processing environment. International Journal of Food Microbiology, 127(1): 129-138.
  • Chen, Y., Song, K. Y., Brown, E. W., Lampel, K. A. 2010. Development of an improved protocol for the isolation and detection of Enterobacter sakazakii (Cronobacter) from powdered infant formula. Journal of Food Protection, 73(6): 1016-1022.
  • Cheng, C. Y., Huang, M. J., Chiu, H. C., Liou, S. M., Chou, C. C., Huang, C. C. 2012. Simultaneous Detection of Food Pathogens, Staphylococcus aureus, Salmonella enterica, Bacillus cereus and Vibrio parahaemolyticus by Multiplex Real-Time Polymerase Chain Reaction. Journal of Food and Drug Analysis, 20(1): 66-73.
  • Cheng, C. Y., Huang, M. J., Chiu, H. C., Liou, S. M., Chou, C. C., Huang, C. C. 2012. Simultaneous Detection of Food Pathogens, Staphylococcus aureus, Salmonella enterica, Bacillus cereus and Vibrio parahaemolyticus by Multiplex Real-Time Polymerase Chain Reaction. Journal of Food and Drug Analysis, 20(1): 66-73.
  • Chiang, Y.C., Fan, C.M., Liao, W.W., Lin, C.K., Tsen, H.Y., 2007. Real-time PCR detection of Staphylococcus aureus in milk and meat using new primers designed from the heat shock protein gene htrA sequence. J. Food Prot., 70: 2855-2859.
  • Chon, J.W., Park, J.S., Hyeon, J.Y., Park, C., Song, K.Y., Hong, K.W., Hwang, I.G., Kwak, H.S., Seo, K.H. 2012. Development of real-time PCR for the detection of Clostridium perfringens in meats and vegetables. J Microbiol Biotechnol., 22(4): 530-534.
  • De Medici, D., Croci, L., Delibato, E., Di Pasquale, S., Filetici, E., Toti, L. 2003. Evaluation of DNA Extraction Methods for Use in Combination with SYBR Green I Real-Time PCR To Detect Salmonella enterica Serotype enteritidis in Poultry. Applied and Environmental Microbiology, 69(6): 3456–3461.
  • Delibato, E., Fiore, A., Anniballi, F., Auricchio, B., Filetici, E., Orefice, L., Losio, M.N., De Medici, D. 2011. Comparison between two standardized cultural methods and 24 hour Duplex SYBR Green Real-Time PCR assay for Salmonella detection in meat samples. Newmicrobiologica, 34(3): 299-306.
  • Dzieciol, M., Frickerb, M., Wagner M., Heina, I., Ehling-Schulzb, M. 2013. A novel diagnostic real-time PCR assay for quantification and differentiation of emetic and non-emetic Bacillus cereus. Food Control, 32(1): 176-185.
  • Eischeid, A. C. 2011. SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Research Notes, 4: 263.
  • Elizaquivel, P., Aznar, R., 2008. A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus on fresh, minimally processed vegetables. Food Microbiol., 25: 705-713.
  • Elizaquivel, P., Sanchez, G., Aznaret, R. 2012. Quantitative detection of viable foodborne E. coli O157:H7, Listeria monocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control, 25(2): 704-708.
  • Espy, M.J., Uhl, J.R., Sloan, L.M., Buckwalter, S.P., Jones, M.F., Vetter, E.A., Yao, J.D.C., Wengenack, N.L., Rosenblatt, J.E., Cockerill, F.R., Smith, T.F. 2006. Real-time PCR in clinical microbiology: applications for
  • routine laboratory testing. Clinical Microbiology Reviews, 19(1):165-256.
  • Fratamico, P. M., Kawasaki, S. 2008. Applications of the polymerase chain reaction for detection, identification, and typing of foodborne microorganisms. (Microbial Food Contamination, CRC Press Publishers, New York: Ed. Wilson, C. L.) 213-254.
  • Fukushima, H., Kawase, J., Etoh, Y., Sugama, K., Yashiro, S., Lida, N., Yamaguchi, K. 2010. Simultaneous screening of 24 target genes of foodborne pathogens in 35 foodborne outbreaks using multiplex Real-Time SYBR Green PCR analysis. International Journal of Microbiology, 2010(2010): 18s.
  • Garrido, A., Chapela, M., Román, B., Fajardo, P., Lago, J., Vieites, J.M., Cabado, A.G. 2013. A new multiplex real-time PCR developed method for Salmonella spp. and Listeria monocytogenes detection in food and environmental samples. Food Control, 30: 76-85.
  • Garrido, A., Chapela, M.J., Román, B., Ferreira, M., Lago, J., Vieites, J.M.,Cabado, A.G. 2012. Development of a multiplex real-time PCR method for simultaneous detection of Salmonella enterica, Shigella xexneri and Listeria monocytogenes in processed food samples. Eur Food Res Technol., 234:571–580.
  • Giglio, S., Monis, P.T., Saint, C.P. 2003. Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic Acids Res., 31(22): e136.
  • Griffin, M.J., Goodwin, A.E., Merry, G.E., Liles, M.R., Williams, M.A., Ware, C., Waldbieser, G.C. 2013. Rapid quantitative detection of Aeromonas hydrophila strains associated with disease outbreaks in catfish aquaculture. Journal of Veterinary Diagnostic Investigation, 25(4): 473–481.
  • Hadjinicolaou, A.V., Demetriou, V.L., Emmanuel, M.A., Kakoyiannis, C.K., Kostrikis, L.G. 2009. Molecular beacon-based real-time PCR detection of primary isolates of Salmonella Typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiology, 9(1): 97.
  • Hanna, S.E., Connor, C.J., Wang, H.H. 2005. Real time Polymerase Chain Reaction for the Food Microbiologist: Technologies, Applications, and Limitations. Journal of Food Science, 70(3): 49-53.
  • He, Y., Chen, C. 2010. Quantitative analysis of viable, stressed and dead cells of Campylobacter jejuni strain 81-176. Food Microbiology, 27(4): 439-446.
  • Hein, I., Jørgensen, H.J., Loncarevic, S., Wagner, M. 2005. Quantification of Staphylococcus aureus in unpasteurised bovine and caprine milk by real-time PCR. Research in Microbiology, 156: 554-563.
  • Higuchi, R., Dollinger, G., Walsh, P.S., Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology, 10(4): 413-417.
  • Hill, W.E., Wachsmuth, K. 1996. The polymerase chain reaction: applications for the detection of foodborne pathogens. Critical Reviews in Food Science and Nutrition, 36(1-2). 123-173.
  • Holland, P.M., Abramson, R.D., Watson, R., Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci., 88:7276-80.
  • Hong, J., Jung, W.K., Kim, J.M., Kim, S.H., Koo, H.C., Ser, J., Park, Y.H. 2007. Quantification and differentiation of Campylobacter jejuni and Campylobacter coli in raw chicken meats using a real-time PCR method. J. Food Prot., 70: 2015-2022.
  • Huang, Q., Hu, Q., Li, Q. 2007. Identification of 8 Foodborne Pathogens by Multicolor Combinational Probe Coding Technology in a Single Real-Time PCR. Clin Chem., 53(10):1741-1748.
  • Huggett, J., Dheda, K., Bustin, S.A. 2007. Normalization in Real-time PCR. (Real-time PCR Taylor and Francis Group Publishers, New York: Ed. Dorak, M.T.) 83-91.
  • Hyeon, J., Park ,C., Choi, I., Holt, P.S., Seo, K. 2010. Development of multiplex real-time PCR with Internal amplification control for simultaneous detection of Salmonella and Cronobacter in powdered infant formula. International Journal of Food Microbiology, 144(2010): 177-181.
  • Jasson, V., Jacxsens, L., Luning, P., Rajkovic, A., Uyttendaele, M. 2010. Alternative microbial methods: an overview and selection criteria. Food Microbiology, 27(6): 710-730.
  • Jin, D., Luo, Y.,L., Zhang, Z., Fang, W., Ye, J., Wu, F., Ding, G. 2012. Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis. FEMS Microbiology Letters, 330(1): 72-80.
  • Kagkli, D., Weber, T.P., Bulcke, M., Folloni, S., Tozzoli, R., Morabito, S., Ermolli, M., Gribaldo, L., Van den Eede, G. 2011. Application of the Modular Approach to an In-House Validation Study of Real-Time PCR Methods for the Detection and Serogroup Determination of Verocytotoxigenic Escherichia coli. Appl Environ Microbiol., 77(19): 6954–6963.
  • Kaltenboeck, B., Wang, C. 2005. Advances in real‐time PCR: Application to clinical laboratory diagnostics. Advances in Clinical Chemistry, 40: 219-259.
  • Köppel, R., Kuslyte, A.R., Tolido, I., Schmid, J., Marti, G. 2013. Nonaplex real-time PCR detection of Listeria monocytogenes, Campylobacter, Salmonella and enteropathogene E. coli after universal enrichment in food samples. Eur Food Res Technol., 237:315-322.
  • Lambertz, S.T, Nilsson, C., Hallanvuo, S., Lindblad, M. 2008. Real-Time PCR Method for Detection of Pathogenic Yersinia enterocolitica in Food. Applied And Environmental Microbiology, 74: 6060–6067.
  • Leblanc-Maridor, M., Garénaux, A., Beaudeau, F., Chidaine, B., Seegers, H., Denis, M., Belloc, C. 2011. Quantification of Campylobacter spp. in pig feces by direct real-time PCR with an internal control of extraction and amplification. J Microbiol Methods, 85(1): 53-61.
  • Lindqvist, R. 1999. Detection of Shigella spp. in food with a nested PCR method–sensitivity and performance compared with a conventional culture method. Journal of Applied Microbiology, 86(6): 971-978.
  • Liu, B., Zhou, X., Zhang, L., Liu, W., Dan, X., Shi, C., Shi, X. 2012. Development of a novel multiplex PCR assay for the identification of Salmonella enterica Typhimurium and Enteritidis. Food Control, 27: 87-93.
  • Liu, Y., , Cai, X., , Zhang, X., Gao, Q., Yang, X., Zhenga, Z., Luo, M., Huang, X. 2006. Real time PCR using TaqMan and SYBR Green for detection of Enterobacter sakazakii in infant formula. Journal of Microbiological Methods, 65: 21-31.
  • Liu, Y., Mustapha, A. 2014. Detection of viable Escherichia coli O157:H7 in ground beef by propidium monoazide real-time PCR. Int J Food Microbiol., 170: 48-54.
  • Malorny, B., Paccassoni, E., Fach, P., Bunge, C., Martin, A., Helmuth, R., 2004. Diagnostic real-time PCR for detection of Salmonella in food. Applied and Environmental Microbiology, 70(12): 7046-7052.
  • Malorny, B., Tassios, P. T., Radström, P., Cook, N., Wagner, M., Hoorfar, J. 2003. Standardization of diagnostic PCR for the detection of foodborne pathogens. International Journal of Food Microbiology, 83(1): 39-48.
  • Mckillip, J. L., Drake, M. 2004. Real-time nucleic acid-based detection methods for pathogenic bacteria in food. Journal of Food Protection, 67(4): 823-832.
  • Minami, J., Soejima, T., Yaeshima, T., Iwatsuki, K. 2012. Direct Real-Time PCR with Ethidium Monoazide: A Method for the Rapid Detection of Viable Cronobacter sakazakii in Powdered Infant Formula. J Food Prot., 75(9): 1572-1579.
  • Muska, A., Peck, E., Palmer, S. 2007. Standards and Controls: Concepts for Preparation and Use in Real-time PCR Applications. ( Real-Time PCR in Microbiology From Diagnosis to Characterization, Caister Academic Press Norfolk, UK: Ed. Mackay, I.M.) 101-132.
  • Nam, H.M., Srinivasan, V., Gillespie, B.E., Murinda, S.E., Oliver, S.P. 2005. Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. International Journal of Food Microbiology, 102(2):161-171.
  • Navarro, E., Serrano-Heras, G., Castañoa, M.J., Solera, J. 2015. Real-time PCR detection chemistry. Clinica Chimica Acta, 439: 231-250.
  • O' Grady, J., Sedano-Balbás, S., Maher, M., Smith, T., Barry, T. 2008. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol., 25(1):75-84.
  • Oliveira, M.A., Ribeiro, E.G.A., Bergamini, A.M.M., Martinis, E.C.P. 2010. Quantification of Listeria monocytogenes in minimally processed leafy vegetables using a combined method based on enrichment and 16S rRNA real-time PCR. Food Microbiology, 27(1): 19-23.
  • -
  • Omiccioli, E., Amagliani, G., Brandi, G., Magnani, M. 2009. A new platform for real-time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk. Food Microbiol., 26(6):615-622.
  • Pfaffl, M.W. 2007. Relative quantification. ( Real-time PCR, Taylor and Francis Group Publishers, New York: Ed. Dorak, M.T.) 63-82.
  • Pfaffl, M.W., Hageleit, M. 2001. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnology Letters, 23: 275-282.
  • Pinto, B., Chenoll, E., Aznar, R. 2005. Identification and typing of food-borne Staphylococcus aureus by PCR-based techniques. Systematic and Applied Microbiology, 28(4): 340-352.
  • Rasmussen, R. 2001. Quantification on the lightCycier. (Rapid Cycle Real-Time PCR Methods and Applications, Springer Publishers, Berlin: Ed. Meuer, S., Wittwer, C., Nakagawara, K.) 21-34.
  • Rijpens, N.P., Herman, L.M.F. 2002. Molecular Methods for Identification and Detection of Bacterial Food Pathogens. Journal Of AOAC International, 85(4): 984-995.
  • Ripabelli, G., McLauchlin, J., Mithani, V., Threlfall, E.J. 2000. Epidemiological typing of Bacillus cereus by amplified fragment length polymorphism. Letters in Applied Microbiology, 30(5): 358-363.
  • Rodriguez-Palacios, A., Stämpfli, H.R., Duffield, T., Peregrine, A. S., Trotz-Williams, A., Arroyo, L.G., Brazier, J.S., Weese, J.S. 2006. Clostridium difficile PCR ribotypes in calves, Canada. Emerging Infectious Diseases, 12(11): 1730-1736.
  • Schmittgen, T.D., Livak, K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6): 1101-1108.
  • Selvey, S., Thompson, E.W., Matthaei, K., Lea, R.A., Irving, M.G., Griffiths, L.R. 2001. β-Actin—an unsuitable internal control for RT-PCR. Molecular and Cellular Probes, 15: 307-311.
  • Seo, K.H., Brackett, R.E. 2005. Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR assay. Journal of Food Protection, 68(1): 59-63.
  • Shannon, K., Lee, D.Y., Trevors, J., Beaudette, L. 2007. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Science of The Total Environment, 382(1): 121-129.
  • Sharma, V.K., Carlson, S.A. 2000. Simultaneous Detection of Salmonella Strains and Escherichia coli O157:H7 with Fluorogenic PCR and Single-Enrichment-Broth Culture. Applied and Environmental Microbiology, 5472–5476.
  • Shi, H., Xu, W., Trinha, Q., Luoa, Y., Liang, Z., Li, Y., Huanga, K. 2012. Establishment of a viable cell detection system for microorganisms in wine based on ethidium monoazide and quantitative PCR. Food Control, 27(1): 81–86.
  • Shipley, G.L. 2007. An introduction to real-time PCR. ( Real-time PCR, Taylor and Francis Group Publishers, New York: Ed. Dorak, M.T.) 1-37.
  • Singh, J., Batish, V.K., Grover, S., 2009. A scorpion probe-based real-time PCR assay for detection of E. coli O157:H7 in dairy products. Foodborne Pathog. Dis., 6: 395-400.
  • Sun, F., Wu, D., Qiu, Z., Jin, M., Wang, X., Li, J. 2010. Development of real-time PCR systems based on SYBR Green for the specific detection and quantification of Klebsiella pneumoniae in infant formula. Food Control. 21: 487–491.
  • Takahashi, H., Kimura, B., Tanaka, Y., Shinozaki, J., Suda, T., Fujii, T. 2009. Real-time PCR and enrichment culture for sensitive detection and enumeration of Escherichia coli. J Microbiol Methods, 79(1):124-127.
  • Toplak, N., Kovac, M., Piskernik, S., Mozina, S.S., Jersek B. 2011. Detection and quantification of Campylobacter jejuni and Campylobacter coli using real-time multiplex PCR. Journal of Applied Microbiology112: 752-764.
  • Trakhna, F., Harf-Monteil, C., AbdelNour, A., Maaroufi, A., Gadonna-Widehem, P. 2008. Rapid Aeromonas hydrophila identification by TaqMan PCR assay: comparison with a phenotypic method. Letters in Applied Microbiology, 49: 186-190.
  • Trakhna, F., Maaroufi, A., Gadonna-Widehem, P. 2013. Using a real-time quantitative polymerase chain reaction (PCR) method for reliable enumeration of Aeromonas hydrophila in water samples. African Journal of Microbiology Research, 7(19): 2119-2126.
  • Tyagi, S., Kramer, F. R. 2012. Molecular Beacons in Diagnostics. F1000 Medicine Reports, 4(10): 1-6.
  • Ueda, S., Yamaguchi, M., Iwase, M., Kuwabara, Y. 2013. Detection of Emetic Bacillus cereus by Real-Time PCR in Foods. Biocontrol Science, 18(4): 227-232.
  • Valasek, M.A., Repa, J.J. 2005. The power of real-time PCR. Adv Physiol Educ., 29(3): 151-9.
  • Velusamy, V., Arshak, K., Korostynka, O., Vaseashta, A., Adley, C. 2012. Real Time Detection of Foodborne Pathogens - For Food Quality Monitoring & Biosecurity . (Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, Springer Publishers, USA: Ed. Vaseashta, A.T., Braman, E., Susmann, P.) 149-158.
  • Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. 2010. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnology Advances, 28(2): 232-254.
  • Wang, W., Chen, K., Xu, C. 2006. DNA quantification using EvaGreen and a real-time PCR instrument. Anal Biochem., 356(2): 303-305.
  • Wang, X., Zhu, C. Q., Xu, X., Zhou, G. 2012. Real-time PCR with internal amplification control for the detection of Cronobacter spp. (Enterobacter sakazakii) in food samples. Food Control, 25(1): 144-149.
  • Whitcombe, D., Theaker, J., Guy, S.P., Brown, T., Little, S. 1999. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol., 17: 804-7.
  • Wiedmann, M., Czajka, J., Barany, F., Batt, C. A. 1992. Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction. Applied and Environmental Microbiology, 58(11): 3443-3447.
  • Wilhelm, J., Pingoud, A. 2003. Real-Time Polymerase Chain Reaction.
  • Chem BioChem., 4: 1120-1128.
  • Wolffs, P.F.G., Glencross, K., Norling, B., Griffiths, M.W., 2007. Simultaneous quantification of pathogenic Campylobacter and Salmonella in chicken rinse fluid by a flotation and real-time multiplex PCR procedure. Int. J. Food Microbiol., 117: 50-54.
  • Wong, M.L., Medrano, J.F. 2005. Real-time PCR for mRNA quantitation. Biotechniques, 39(1): 75-85.
  • Yaron, S., Matthews, K.R. 2002. A reverse transcriptase‐polymerase chain reaction assay for detection of viable Escherichia coli O157: H7: investigation of specific target genes. Journal of Applied Microbiology, 92(4): 633-640.
Toplam 98 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm GIDA BİLİMİ (Food Science)
Yazarlar

Esen Tutar

Elif Köksalan Bu kişi benim

İsmail Akyol

Yayımlanma Tarihi 13 Ocak 2016
Yayımlandığı Sayı Yıl 2015 Cilt: 18 Sayı: 4

Kaynak Göster

APA Tutar, E., Köksalan, E., & Akyol, İ. (2016). Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi. KSÜ Doğa Bilimleri Dergisi, 18(4), 26-39. https://doi.org/10.18016/ksujns.36064
AMA Tutar E, Köksalan E, Akyol İ. Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi. KSÜ Doğa Bilimleri Dergisi. Ocak 2016;18(4):26-39. doi:10.18016/ksujns.36064
Chicago Tutar, Esen, Elif Köksalan, ve İsmail Akyol. “Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi”. KSÜ Doğa Bilimleri Dergisi 18, sy. 4 (Ocak 2016): 26-39. https://doi.org/10.18016/ksujns.36064.
EndNote Tutar E, Köksalan E, Akyol İ (01 Ocak 2016) Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi. KSÜ Doğa Bilimleri Dergisi 18 4 26–39.
IEEE E. Tutar, E. Köksalan, ve İ. Akyol, “Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi”, KSÜ Doğa Bilimleri Dergisi, c. 18, sy. 4, ss. 26–39, 2016, doi: 10.18016/ksujns.36064.
ISNAD Tutar, Esen vd. “Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi”. KSÜ Doğa Bilimleri Dergisi 18/4 (Ocak 2016), 26-39. https://doi.org/10.18016/ksujns.36064.
JAMA Tutar E, Köksalan E, Akyol İ. Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi. KSÜ Doğa Bilimleri Dergisi. 2016;18:26–39.
MLA Tutar, Esen vd. “Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi”. KSÜ Doğa Bilimleri Dergisi, c. 18, sy. 4, 2016, ss. 26-39, doi:10.18016/ksujns.36064.
Vancouver Tutar E, Köksalan E, Akyol İ. Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi. KSÜ Doğa Bilimleri Dergisi. 2016;18(4):26-39.