Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process

Yıl 2018, Cilt: 21 Sayı: 1, 81 - 87, 01.01.2018
https://doi.org/10.18016/ksudobil.293209

Öz

The aim of this study was to investigate the effect of
varying limited ammonium concentrations on the
heterotrophic
denitrification process responsible for biological nitrogen removal. The system
performance was evaluated with gradually decreasing ammonium-nitrogen
concentrations from 20 mgNH4+-N L-1to
inexistent ammonium inlet at 100 mgNO3- L-1.
Results of this study indicated that the total nitrogen removal efficiency
reached maximum level at influent ammonium-nitrogen of 5 mg L-1due
to the absence of residual ammonium at the end of the reaction, although
varying ammonium concentrations did not noticeably affect the nitrate removal
efficiency. Additionally, nitrate consumption rate
had a tendency to increase with the limitation
of influent ammonia and
the nitrate consumption rate reached maximum
level at operational condition where ammonium was not present, corresponding to
85.4 mgNO3--N gMLSS-1h-1. The
maximum ammonium consumption rate have attained with influent ammonium-nitrogen
of 5 mg L-1, being 18.4 mgNH4+-N gMLSS-1h-1
.

Kaynakça

  • Burger, M., Jackson, L. E. (2003). Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry, 35(1), 29-36.
  • Burgin, A. J., Hamilton, S. K. (2007). Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 5(2), 89-96.
  • Cai, T.; Park, S.Y.; Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain Energy. Rev. 19, 360–369.
  • Chu, L.B., Wang, J.L., 2013. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source. Chemosphere 91 (9),1310–1316.
  • Dabkowski B. Applying oxidation reduction potential sensors in biological nutrient removal systems. ©Hach Company. 2008.
  • Ge, S., Peng, Y., Wang, S., Lu, C., Cao, X., Zhu, Y. (2012). Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3-N. Bioresource technology, 114, 137-143.
  • Ghafari, S., Hasan, M., Aroua, M.K., 2008. Bio-electrochemical removal of nitrate from water and wastewater - a review. Bioresour. Technol. 99 (10), 3965–3974.
  • Karanasios, K.A., Vasiliadou, I.A., Pavlou, S., Vayenas, D.V., 2010. Hydrogenotrophic denitrification of potable water: a review. J. Hazard. Mat. 180 (1–3), 20–37.
  • Liu, H., Jiang, W., Wan, D., & Qu, J. (2009). Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. Journal of Hazardous Materials, 169(1), 23-28.
  • Lv, J., Feng, J., Liu, Q., Xie, S. (2017). Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work. International Journal of Molecular Sciences, 18(1), 79.
  • Machado, V. C. (2011). Retrofitting analysis for improving benefits of A/O WWTPs considering process control aspects, Departament D’enginyeria Química Escola D’enginyeria, PhD Thesis, 149s.
  • Modin O, Fukushi K, Nakajima F, Yamamoto K. Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Research. 2010;44:85–96.
  • Modin O, Fukushi K, Yamamoto K. Denitrification with methane as external carbon source. Water Research. 2007;41:2726-2738.
  • Ovez, B., 2006. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochem. 41 (6), 1289–1295.
  • Panthi, S. R., Wareham, D. G. (2008). The effect of arsenite on denitrification using volatile fatty acids (VFAs) as a carbon source. Journal of Environmental Science and Health, Part A, 43(10), 1192-1197.
  • Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., Cameron, S.C., 2010. Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecol. Eng. 36 (11), 1532–1543.
  • Van Rijn, J., Tal, Y., Schreier, H.J., 2006. Denitrification in recirculating systems: theory and applications. Aquac. Eng. 34 (3), 364–376.
  • Wang, J., & Chu, L. (2016). Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnology advances, 34(6), 1103-1112.
  • Wang, J.L., Kang, J., 2005. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochem. 40 (5), 1973–1978.
  • Wang, J.L., Yang, N., 2004. Partial nitrification under limited dissolved oxygen conditions. Process Biochem. 39 (10), 1223–1229.
  • Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z., Sugiura, N. (2011). Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. Journal of hazardous materials, 192(3), 1033-1039.

Biyolojik Azot Giderim Prosesinde Sınırlı Amonyum Değişiminin Etkisi

Yıl 2018, Cilt: 21 Sayı: 1, 81 - 87, 01.01.2018
https://doi.org/10.18016/ksudobil.293209

Öz

Bu çalışmanın temel amacı, biyolojik azot gideriminden sorumlu
heterotrofik denitrifikasyon prosesinde değişen sınırlı amonyum
konsantrasyonlarının etkisini araştırmaktır. Sistem performansı 100 mg NO3-
L
-1 sabit giriş nitrat konsantrasyonunda 20 mgNH4
+
-N L-1'den kademeli olarak azalan amonyum azotu
konsantrasyonları ile değerlendirilmiştir. Bu çalışmanın sonuçları, amonyum
konsantrasyonlarındaki değişimin nitrat giderme etkinliğini belirgin bir
şekilde etkilememesine rağmen, reaksiyonun sonunda kalıntı amonyum bulunmaması
nedeniyle 5 mg L-1'lik giriş amonyum-azotu konsantrasyonunda toplam
azot giderim veriminin maksimum seviyeye ulaştığını göstermiştir. Buna ek
olarak, nitrat tüketim hızı giriş amonyum konsantrasyonun sınırlanması ile
artış eğiliminde iken, amonyum bulunmayan işletim koşulunda nitrat tüketim
hızı, 85,4 mg NO3--N gMLSS-1 sa-1olarak
maksimum seviyeye ulaşmıştır. Maksimum amonyum tüketim oranı, 5 mgL-1'lik
amonyum azotuyla, 18,4 mg NH4+-N gMLSS sa-1
olarak elde edilmiştir.

Kaynakça

  • Burger, M., Jackson, L. E. (2003). Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry, 35(1), 29-36.
  • Burgin, A. J., Hamilton, S. K. (2007). Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 5(2), 89-96.
  • Cai, T.; Park, S.Y.; Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain Energy. Rev. 19, 360–369.
  • Chu, L.B., Wang, J.L., 2013. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source. Chemosphere 91 (9),1310–1316.
  • Dabkowski B. Applying oxidation reduction potential sensors in biological nutrient removal systems. ©Hach Company. 2008.
  • Ge, S., Peng, Y., Wang, S., Lu, C., Cao, X., Zhu, Y. (2012). Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3-N. Bioresource technology, 114, 137-143.
  • Ghafari, S., Hasan, M., Aroua, M.K., 2008. Bio-electrochemical removal of nitrate from water and wastewater - a review. Bioresour. Technol. 99 (10), 3965–3974.
  • Karanasios, K.A., Vasiliadou, I.A., Pavlou, S., Vayenas, D.V., 2010. Hydrogenotrophic denitrification of potable water: a review. J. Hazard. Mat. 180 (1–3), 20–37.
  • Liu, H., Jiang, W., Wan, D., & Qu, J. (2009). Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. Journal of Hazardous Materials, 169(1), 23-28.
  • Lv, J., Feng, J., Liu, Q., Xie, S. (2017). Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work. International Journal of Molecular Sciences, 18(1), 79.
  • Machado, V. C. (2011). Retrofitting analysis for improving benefits of A/O WWTPs considering process control aspects, Departament D’enginyeria Química Escola D’enginyeria, PhD Thesis, 149s.
  • Modin O, Fukushi K, Nakajima F, Yamamoto K. Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Research. 2010;44:85–96.
  • Modin O, Fukushi K, Yamamoto K. Denitrification with methane as external carbon source. Water Research. 2007;41:2726-2738.
  • Ovez, B., 2006. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochem. 41 (6), 1289–1295.
  • Panthi, S. R., Wareham, D. G. (2008). The effect of arsenite on denitrification using volatile fatty acids (VFAs) as a carbon source. Journal of Environmental Science and Health, Part A, 43(10), 1192-1197.
  • Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., Cameron, S.C., 2010. Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecol. Eng. 36 (11), 1532–1543.
  • Van Rijn, J., Tal, Y., Schreier, H.J., 2006. Denitrification in recirculating systems: theory and applications. Aquac. Eng. 34 (3), 364–376.
  • Wang, J., & Chu, L. (2016). Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnology advances, 34(6), 1103-1112.
  • Wang, J.L., Kang, J., 2005. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochem. 40 (5), 1973–1978.
  • Wang, J.L., Yang, N., 2004. Partial nitrification under limited dissolved oxygen conditions. Process Biochem. 39 (10), 1223–1229.
  • Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z., Sugiura, N. (2011). Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. Journal of hazardous materials, 192(3), 1033-1039.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm ARAŞTIRMA MAKALESİ - RESEARCH ARTICLE
Yazarlar

Serdar Göçer Bu kişi benim

Dilek Akman Bu kişi benim

Kevser Cırık

Yayımlanma Tarihi 1 Ocak 2018
Kabul Tarihi 15 Mart 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 21 Sayı: 1

Kaynak Göster

APA Göçer, S., Akman, D., & Cırık, K. (2018). The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process. KSÜ Doğa Bilimleri Dergisi, 21(1), 81-87. https://doi.org/10.18016/ksudobil.293209
AMA Göçer S, Akman D, Cırık K. The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process. KSÜ Doğa Bilimleri Dergisi. Ocak 2018;21(1):81-87. doi:10.18016/ksudobil.293209
Chicago Göçer, Serdar, Dilek Akman, ve Kevser Cırık. “The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process”. KSÜ Doğa Bilimleri Dergisi 21, sy. 1 (Ocak 2018): 81-87. https://doi.org/10.18016/ksudobil.293209.
EndNote Göçer S, Akman D, Cırık K (01 Ocak 2018) The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process. KSÜ Doğa Bilimleri Dergisi 21 1 81–87.
IEEE S. Göçer, D. Akman, ve K. Cırık, “The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process”, KSÜ Doğa Bilimleri Dergisi, c. 21, sy. 1, ss. 81–87, 2018, doi: 10.18016/ksudobil.293209.
ISNAD Göçer, Serdar vd. “The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process”. KSÜ Doğa Bilimleri Dergisi 21/1 (Ocak 2018), 81-87. https://doi.org/10.18016/ksudobil.293209.
JAMA Göçer S, Akman D, Cırık K. The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process. KSÜ Doğa Bilimleri Dergisi. 2018;21:81–87.
MLA Göçer, Serdar vd. “The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process”. KSÜ Doğa Bilimleri Dergisi, c. 21, sy. 1, 2018, ss. 81-87, doi:10.18016/ksudobil.293209.
Vancouver Göçer S, Akman D, Cırık K. The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process. KSÜ Doğa Bilimleri Dergisi. 2018;21(1):81-7.