Research Article
BibTex RIS Cite
Year 2019, , 119 - 125, 25.03.2019
https://doi.org/10.18521/ktd.510808

Abstract

References

  • 1) Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofacial Orthop 2014;146:620-32.
  • 2) Miresmaeili A, Mollaei N, Azar R, et al. Effect of dietary vitamin C on orthodontic tooth movement in rats. J Dent (Tehran) 2015;12:409-13.
  • 3) Qamruddin I, Alam MK, Khamis MF, et al. Minimally invasive techniques to accelerate the orthodontic tooth movement: a systemic review of animal studies. Biomed Res Int 2015; 608530.
  • 4) Gulec A¸ Bakkalbası BC, Cumbul A, et al. Effects of local platelet-rich plasma injection on the rate of orthodontic tooth movement in a rat model: A histomorphometric study. Am J Orthod Dentofac Orthop 2017;151:92-104.
  • 5) Haugen S, Aasarød KM, Stunes AK, et al. Adiponectin prevents orthodontic tooth movement in rats. Arch Oral Biol 2017;83:304-11.
  • 6) Brunet MD, Araujo CM, Johann AC, et al. Effects of zoledronic acid on orthodontic tooth movement in rats. Braz Dent J 2016;27:515-23.
  • 7) Aghili H, Yassaei S, Zahir ST, et al. Effect of methylphenidate on tooth movement and histological features in rats. J Clin Diagn Res 2017;11:ZF01-05.
  • 8) Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movements in rats. J Bone Miner Metab 2004;22:541-6.
  • 9) Soma S, Iwamoto M, Higuchi Y, et al. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res 1999;14:546-54.
  • 10) Yamasaki K, Shibata Y, Fukuhara T. The effect of prostaglandins on experimental tooth movement in monkeys (Macacafuscata). J Dent Res 1982;61:1444-6.
  • 11) Kobayashi Y, Takagi H, Sakai H, et al. Effects of local administration of osteocalcin on experimental tooth movement. Angle Orthod 1998;68: 259-66.
  • 12) Chen Y, Wang XX, Zhao BJ, et al. Effects of icariin on orthodontic tooth movement in rats. Int J Clin Exp Med 2015;15:8608-16.
  • 13) Tsuka Y, Fujita T, Shirakura M, et al. Effects of neodymium-dopedyttrium aluminium garnet (Nd:YAG) laser irradiation on bone metabolism during tooth movement. J Lasers Med 2016;7:40-4.
  • 14) Milligan M, Arudchelvan Y, Gong SG. Effects of two wattages of low-level laser therapy on orthodontic tooth movement. Arch Oral Biol 2017;80:62-8.
  • 15) Altan BA, Sokucu O, Ozkut MM, et al. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci 2012;27:131-40.
  • 16) Feres MFN, Kucharski C, Diar-Bakirly S, et al. Effect of low-intensity pulsed ultrasound on the activity of osteoclasts: an in vitro study. Arch Oral Biol 2016;70:73-8.
  • 17) Dahhas FY, El-Bialy T, Afify AR, et al. Effects of low-intensity pulsed ultrasound on orthodontic tooth movement and orthodontically induced inflammatory root resorption in ovariectomized osteoporotic rats. Ultrasound Med Biol 2016;42:808-14.
  • 18) Xue H, Zheng J, Cui Z, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway. Plos One 2013;8:e68926.
  • 19) El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans. Am J Orthod Dentofac Orthop 2004;126:186-93.
  • 20) El-Bialy T, Janadas A, Albaghdadi T. Nonsurgical treatment of hemifacial microsomia by therapeutic ultrasound and hybrid functional appliance. Open Access J Clin Trials 2010;2,29-36.
  • 21) Toy E, Oztürk F, Altindiş S, et al. Effects of low-intensity pulsed ultrasound on bone formation after the expansion of the inter-premaxillary suture in rats: a histologic and immunohistochemical study. Aust Orthod J 2014;30:176-183.
  • 22) Watson T. Ultrasound in contemporary physiotherapy practice. Ultrasonics 2008;48:321-29.
  • 23) Khanna A, Nelmes RT, Gougoulias N, et al. The effects of LIPUS on soft-tissue healing: a review of literature. Br Med Bull 2009;89:169-82.
  • 24) terHaar G. Therapeutic ultrasound. Eur J Ultrasound 1999; 9:3-9.
  • 25) Robertson VJ, Baker KG. A review of therapeutic ultrasound: effectiveness studies. Phys Ther. 2001;81:1339-50.
  • 26) Gerdhem P, Ivaska KK, Alatalo SL, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 2004;19:386-93.
  • 27) Reher P, Elbeshier EI, Harvey W,et al. The stimulation of bone formation in vitro by therapeutic ultrasound. Ultrasound Med Biol 1997;23:1251-8.
  • 28) Reher P, Harris M, Whiteman M, et al. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblast. Bone 2002;3:236-41.
  • 29) Suzuki A, Takayama T, Suzuki N, et al. Daily low-intensity pulsed ultrasound mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin (Shanghai) 2009;41:108-15.
  • 30) Kantarci A, Will L, Yen S (eds). Tooth Movement. Front Oral Biol 2016, Basel, Karger, 9-16.
  • 31) Borsje MA, Ren Y, de Haan-Visser HW, et al. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. Angle Orthod 2010;80:498-503.
  • 32) Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low- and high-intensity ultrasound. Arch Oral Biol 2008;53,318-23.

Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement

Year 2019, , 119 - 125, 25.03.2019
https://doi.org/10.18521/ktd.510808

Abstract

Objective: The aim of this study is to investigate the
effects of low intensity pulsed ultrasound on orthodontic tooth movement in
rats.



Methods:
For this study,
40 12-week-old adult male Wistar albino rats from the Animal Laboratory at
Adnan Menderes University, Faculty of Medicine, were used.
Rats were divided into four groups of ten. Group 1 was
the untreated control group. In group 2, an orthodontic spring was used to move
teeth. In groups 3 and 4, orthodontic treatment was combined with low intensity pulsed ultrasound at 16
J/cm2 or 48 J/cm2, respectively, for 14 days. Tooth
movement was measured on day 14. Serum bone alkaline phosphatase (BALP) and
C-telopeptide of type I collagen (CTX-I) levels were analyzed biochemically.
The number of osteoclasts, osteoblasts and inflammatory cells, capillary
density and new bone formation was determined histologically. Receptor activator
of nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG), vascular
endothelial growth factor (VGEF) and transforming growth factor-β (TGF-β) were
assessed using immunohistochemical staining.



Results:
BALP and CTX-I levels in group 4 were significantly higher than for group 1.
Tooth movement and the number of osteoclasts, inflammatory cells, and capillary
density in group 4 were significantly greater than for group 2. The intensity
levels of RANKL and OPG in group 4 were significantly greater than for group 2.



Conclusion: Ultrasound is noninvasive application and a
promising therapy for accelerating bone remodeling during orthodontic tooth
movement.

References

  • 1) Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofacial Orthop 2014;146:620-32.
  • 2) Miresmaeili A, Mollaei N, Azar R, et al. Effect of dietary vitamin C on orthodontic tooth movement in rats. J Dent (Tehran) 2015;12:409-13.
  • 3) Qamruddin I, Alam MK, Khamis MF, et al. Minimally invasive techniques to accelerate the orthodontic tooth movement: a systemic review of animal studies. Biomed Res Int 2015; 608530.
  • 4) Gulec A¸ Bakkalbası BC, Cumbul A, et al. Effects of local platelet-rich plasma injection on the rate of orthodontic tooth movement in a rat model: A histomorphometric study. Am J Orthod Dentofac Orthop 2017;151:92-104.
  • 5) Haugen S, Aasarød KM, Stunes AK, et al. Adiponectin prevents orthodontic tooth movement in rats. Arch Oral Biol 2017;83:304-11.
  • 6) Brunet MD, Araujo CM, Johann AC, et al. Effects of zoledronic acid on orthodontic tooth movement in rats. Braz Dent J 2016;27:515-23.
  • 7) Aghili H, Yassaei S, Zahir ST, et al. Effect of methylphenidate on tooth movement and histological features in rats. J Clin Diagn Res 2017;11:ZF01-05.
  • 8) Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movements in rats. J Bone Miner Metab 2004;22:541-6.
  • 9) Soma S, Iwamoto M, Higuchi Y, et al. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res 1999;14:546-54.
  • 10) Yamasaki K, Shibata Y, Fukuhara T. The effect of prostaglandins on experimental tooth movement in monkeys (Macacafuscata). J Dent Res 1982;61:1444-6.
  • 11) Kobayashi Y, Takagi H, Sakai H, et al. Effects of local administration of osteocalcin on experimental tooth movement. Angle Orthod 1998;68: 259-66.
  • 12) Chen Y, Wang XX, Zhao BJ, et al. Effects of icariin on orthodontic tooth movement in rats. Int J Clin Exp Med 2015;15:8608-16.
  • 13) Tsuka Y, Fujita T, Shirakura M, et al. Effects of neodymium-dopedyttrium aluminium garnet (Nd:YAG) laser irradiation on bone metabolism during tooth movement. J Lasers Med 2016;7:40-4.
  • 14) Milligan M, Arudchelvan Y, Gong SG. Effects of two wattages of low-level laser therapy on orthodontic tooth movement. Arch Oral Biol 2017;80:62-8.
  • 15) Altan BA, Sokucu O, Ozkut MM, et al. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci 2012;27:131-40.
  • 16) Feres MFN, Kucharski C, Diar-Bakirly S, et al. Effect of low-intensity pulsed ultrasound on the activity of osteoclasts: an in vitro study. Arch Oral Biol 2016;70:73-8.
  • 17) Dahhas FY, El-Bialy T, Afify AR, et al. Effects of low-intensity pulsed ultrasound on orthodontic tooth movement and orthodontically induced inflammatory root resorption in ovariectomized osteoporotic rats. Ultrasound Med Biol 2016;42:808-14.
  • 18) Xue H, Zheng J, Cui Z, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway. Plos One 2013;8:e68926.
  • 19) El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans. Am J Orthod Dentofac Orthop 2004;126:186-93.
  • 20) El-Bialy T, Janadas A, Albaghdadi T. Nonsurgical treatment of hemifacial microsomia by therapeutic ultrasound and hybrid functional appliance. Open Access J Clin Trials 2010;2,29-36.
  • 21) Toy E, Oztürk F, Altindiş S, et al. Effects of low-intensity pulsed ultrasound on bone formation after the expansion of the inter-premaxillary suture in rats: a histologic and immunohistochemical study. Aust Orthod J 2014;30:176-183.
  • 22) Watson T. Ultrasound in contemporary physiotherapy practice. Ultrasonics 2008;48:321-29.
  • 23) Khanna A, Nelmes RT, Gougoulias N, et al. The effects of LIPUS on soft-tissue healing: a review of literature. Br Med Bull 2009;89:169-82.
  • 24) terHaar G. Therapeutic ultrasound. Eur J Ultrasound 1999; 9:3-9.
  • 25) Robertson VJ, Baker KG. A review of therapeutic ultrasound: effectiveness studies. Phys Ther. 2001;81:1339-50.
  • 26) Gerdhem P, Ivaska KK, Alatalo SL, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 2004;19:386-93.
  • 27) Reher P, Elbeshier EI, Harvey W,et al. The stimulation of bone formation in vitro by therapeutic ultrasound. Ultrasound Med Biol 1997;23:1251-8.
  • 28) Reher P, Harris M, Whiteman M, et al. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblast. Bone 2002;3:236-41.
  • 29) Suzuki A, Takayama T, Suzuki N, et al. Daily low-intensity pulsed ultrasound mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin (Shanghai) 2009;41:108-15.
  • 30) Kantarci A, Will L, Yen S (eds). Tooth Movement. Front Oral Biol 2016, Basel, Karger, 9-16.
  • 31) Borsje MA, Ren Y, de Haan-Visser HW, et al. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. Angle Orthod 2010;80:498-503.
  • 32) Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low- and high-intensity ultrasound. Arch Oral Biol 2008;53,318-23.
There are 32 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Mine Geçgelen Cesur

Tuna Onal This is me

Mehmet Dincer Bilgin This is me

Fevziye Burcu Sirin This is me

Sevinc Inan

Ergun Cem Koken

Afra Alkan

Gokhan Cesur

Publication Date March 25, 2019
Acceptance Date March 11, 2019
Published in Issue Year 2019

Cite

APA Geçgelen Cesur, M., Onal, T., Bilgin, M. D., Sirin, F. B., et al. (2019). Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement. Konuralp Medical Journal, 11(1), 119-125. https://doi.org/10.18521/ktd.510808
AMA Geçgelen Cesur M, Onal T, Bilgin MD, Sirin FB, Inan S, Koken EC, Alkan A, Cesur G. Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement. Konuralp Medical Journal. March 2019;11(1):119-125. doi:10.18521/ktd.510808
Chicago Geçgelen Cesur, Mine, Tuna Onal, Mehmet Dincer Bilgin, Fevziye Burcu Sirin, Sevinc Inan, Ergun Cem Koken, Afra Alkan, and Gokhan Cesur. “Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement”. Konuralp Medical Journal 11, no. 1 (March 2019): 119-25. https://doi.org/10.18521/ktd.510808.
EndNote Geçgelen Cesur M, Onal T, Bilgin MD, Sirin FB, Inan S, Koken EC, Alkan A, Cesur G (March 1, 2019) Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement. Konuralp Medical Journal 11 1 119–125.
IEEE M. Geçgelen Cesur, T. Onal, M. D. Bilgin, F. B. Sirin, S. Inan, E. C. Koken, A. Alkan, and G. Cesur, “Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement”, Konuralp Medical Journal, vol. 11, no. 1, pp. 119–125, 2019, doi: 10.18521/ktd.510808.
ISNAD Geçgelen Cesur, Mine et al. “Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement”. Konuralp Medical Journal 11/1 (March 2019), 119-125. https://doi.org/10.18521/ktd.510808.
JAMA Geçgelen Cesur M, Onal T, Bilgin MD, Sirin FB, Inan S, Koken EC, Alkan A, Cesur G. Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement. Konuralp Medical Journal. 2019;11:119–125.
MLA Geçgelen Cesur, Mine et al. “Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement”. Konuralp Medical Journal, vol. 11, no. 1, 2019, pp. 119-25, doi:10.18521/ktd.510808.
Vancouver Geçgelen Cesur M, Onal T, Bilgin MD, Sirin FB, Inan S, Koken EC, Alkan A, Cesur G. Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement. Konuralp Medical Journal. 2019;11(1):119-25.