Araştırma Makalesi
BibTex RIS Kaynak Göster

Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması

Yıl 2020, Cilt: 12 Sayı: 1, 97 - 111, 02.03.2020
https://doi.org/10.18521/ktd.598739

Öz

Amaç: İçindeki grayanotoksin
bileşiğinden dolayı insanlarda zehirlenmeye sebep olan deli bal (DB), özellikle
Türkiye’nin Karadeniz bölgesinde bazı rahatsızlıkların tedavisinde yaygın
olarak kullanılmaktadır. DB zehirlenmesindeki semptomların 1-2 gün içinde
normale döndüğü rapor edilmiş olmasına rağmen, iyileşme süresi hakkında
ayrıntılı bir çalışma mevcut değildir. Zehirlenme etkilerinin ne kadar süreli
olduğunun bilinmesi, hastalara doğru tedavi metodunun uygulanması ve zamanında
taburcu edilebilmeleri açısından önemlidir. Bu çalışmanın amacı, etken doz DB
ve içindeki aktif maddenin saf hali olan GTX’in karaciğer dokusu üzerindeki
toksik etkilerinin zamana bağlı olarak incelenmesidir.

Yöntem:
Mus musculus türü erkek farelere 75
mg/kg (etken doz) DB ve 0,01 mg/kg GTX-III uygulanmış, bu farelerin 24 ve 48
saat sonra karaciğerleri çıkartılmış ve Azaltılmış Toplam Yansıma-Fourier
Dönüşüm Kızılötesi (ATR-FTIR) spektroskopisi ile moleküler düzeyde
incelenmiştir.

Bulgular: 24 saatlik DB
ve GTX uygulaması, karaciğerde lipit peroksidasyonuna, glikojen miktarında
azalmaya, doymuş lipit miktarında artışa, membran düzeninde azalmaya, membran
akışkanlığında artışa, proteinlerin ve nükleik asitlerin yapı ve
konformasyonlarında değişikliklere sebep olmuştur. 48 saatlik süre sonunda glikojen
miktarındaki artış her iki grupta, doymuş lipit miktarındaki artış ise sadece
DB grubunda normale dönmüştür. Fakat, lipit peroksidasyonu, protein ve nükleik
asitlerin yapı ve konformasyonlarındaki, membran düzen ve akışkanlığındaki
değişiklikler için 48 saatlik süre yeterli olmamıştır. 







Sonuç: Sonuç olarak,
24 saatlik DB ve GTX uygulaması karaciğer dokusu üzerinde önemli toksik etkiler
oluşturmaktadır ve bu toksik etkilerin hepsinin normale dönmesi için 48 saatlik
süre yeterli değildir. Çalışmamızın sonuçları, DB’nin etki süresini ve DB
zehirlenmesi vakalarında hastaların tedavi ve taburcu sürelerini belirlemek
için faydalı olacaktır.

Destekleyen Kurum

Bu çalışma herhangi bir kurumdan destek almamıştır.

Kaynakça

  • 1. Koca I, Koca AF. Poisoning by mad honey: A brief review. Food Chem Toxicol. 2007;45:1315-1318.
  • 2. Yilmaz O, Eser M Sahiner A, et al. Hypotension , bradycardia and syncope caused by honey poisoning ଝ. Resuscitation. 2006;405–8.
  • 3. Ullah S, Ullah Khan S, A.Saleh T, et al. Mad honey: uses, intoxicating/poisoning effects, diagnosis, and treatment. RSC Adv [Internet]. 2018;8(33):18635–46. Available from: http://xlink.rsc.org/?DOI=C8RA01924J
  • 4. Çetin N, Marçıl E, Kıldıran M, ve ark. Deli Bal ile Hepatotoksisite. Türkiye Acil Tıp Derg. 2009;(June 2009):84–6.
  • 5. Gunduz A, Turedı S, M.Russell R, et al. Clinical review of grayanotoxin/mad honey poisoning past and present. Clin Toxicol. 2008;46(5):437–42.
  • 6. Pişkin Ö, Arslan Y.D, Aydin B.G, ve ark. Clinical features and laboratory findings in mad honey intoxication: a retrospective study. SiSli Etfal Hastan Tip Bul / Med Bull Sisli Hosp. 2017;(2):125–32.
  • 7. Gunduz A, Turedı S, Uzun H, et al. Mad honey poisoning. Am J Emerg Med. 2006;24(5):595–8.
  • 8. Sahin H, Yildiz O, Kolaylı S. Effects of Mad Honey on Some Biochemical Parameters in Rats. J Evidence-Based Complement Altern Med. 2016;21(4):255–9.
  • 9. Yuki T, Yamaoka K, Yakehiro M, et al. State-dependent action of grayanotoxin I on Na+ channels in frog ventricular myocytes. J Physiol. 2001;534(3):777–90.
  • 10. Maejima H, Kinoshitas E, Seyema I, et al. Distinct sites regulating grayanotoxin binding and unbinding to D4S6 of Na V 1.4 sodium channel as revealed by improved estimation of toxin sensitivity. J Biol Chem. 2003;278(11):9464–71.
  • 11. Kafa B, Kıral F. Streptozotocin ile Deneysel Diyabet Oluşturulan Ratlarda Karaciğer Enzimleri ve Serum Proteinlerindeki Elektroforetik Değişiklikler. 2006-001 12. Sari Dogan F, Ozaydin V, Incealtin O, et al. A case of acute hepatitis following mad honey ingestion. Turkish J Emerg Med [Internet]. 2015;15(4):185–6. Available from: http://dx.doi.org/10.1016/j.tjem.2014.09.003
  • 13. Aşçıoğlu M, Özesmi Ç, Dogan P, et al. Effects of acute Grayanotoxin-I administration on hepatic and renal functions in rats. Turkish J Med Sci. 2000;30(1):23–7. 14. Silici S, Yonar M.E, Sahin H, et al. Analysis of grayanatoxin in Rhododendron honey and effect on antioxidant parameters in rats. J Ethnopharmacol. 2014;156:155–61.
  • 15. Kukner A, Ilter G, Rasgele P, et al. The Effect of Rhododendron Honey on Mice Liver Tissue. Int J Morphol. 2016;34(3):842–7.
  • 16. Cakmak G, Zorlu F, Severcan M, et al. Structural and Functional Variations in Rat Liver Microsomal. Anal Chem. 2011;2438–44.
  • 17. Garip S, Gozen A.C, Severcan F. Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chem [Internet]. 2009;113(4):1301–7. Available from: http://dx.doi.org/10.1016/j.foodchem.2008.08.063
  • 18. Cakmak G, Severcan M, Zorlu F, et al. Structural and functional damages of whole body ionizing radiation on rat brain homogenate membranes and protective effect of amifostine. Int J Radiat Biol. 2016;92(12):837–48.
  • 19. Garip S, Yapici E, Ozek N, et al. Evaluation and discrimination of simvastatin-induced structural alterations in proteins of different rat tissues by FTIR spectroscopy and neural network analysis. Analyst. 2010;135(12):3233–41.
  • 20. P. Viccellio. Systemic poisonous plant intoxication. In: Handbook of Medical Toxicology Washington. 1993. p. 718.
  • 21. Ozhan H, Akdemir R, Yazıcı M, et al. Cardiac emergencies caused by honey ingestion: A single centre experience. Emerg Med J. 2004;21(6):742–4. 22. Jansen S, Kleerekooper I, Hofman Z, et al. Grayanotoxin poisoning: “Mad honey disease” and beyond. Cardiovasc Toxicol. 2012;12(3):208–15.
  • 23. Yaylaci S, Ayyıldız O, Aydın E, et al. Is there a difference in mad honey poisoning between geriatric and non-geriatric patient groups? Eur Rev Med Pharmacol Sci. 2015;19(23):4647–53.
  • 24. Binnetoglu E, Dindar S, Şengül E, ve ark. Mad honey poisoning; how much observe? Abant Med J. 2012;1(1):32–4.
  • 25. Haksoy H, Çakmak Arslan G, Göç Rasgele P, ve ark. Deli Balın Karaciğer Dokusu Üzerindeki Etkilerinin Moleküler Düzeyde İncelenmesi. VI Uluslararası Fen, Mühendislik ve Mimarlık Bilimlerinde Akademik Çalışmalar Sempozyumu. 2019; p 16.https://drive.google.com/file/d/1zR9Y8547GGJrldCaGA2Y1uQiGxJHTvL3/view (erişim tarihi: 30.07.2019).
  • 26. Silici S, Doğan Z, Sahin H, et al. Acute effects of grayanotoxin in rhododendron honey on kidney functions in rats. Environ Sci Pollut Res. 2016;23(4):3300–9.
  • 27. Diem M, Boydston-White S. Infrared spectroscopy of cells and tissues: shining light onto a novel subject. Appl Spectrosc. 1999;53(4).
  • 28. Cakmak G, Togan I, Uğuz C, et al. FT-IR spectroscopic analysis of rainbow trout liver exposed to nonylphenol. Appl Spectrosc. 2003;57(7):835–41.
  • 29. Elibol-Can B, J.Dogru E, Severcan M, et al. The effects of short-term chronic ethanol intoxication and ethanol withdrawal on the molecular composition of the rat hippocampus by FT-IR spectroscopy. Alcohol Clin Exp Res. 2011;35(11):2050–62.
  • 30. Severcan F, Sahin I, Kazancı N. Melatonin strongly interacts with zwitterionic model membranes-evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochim Biophys Acta - Biomembr. 2005;1668(2):215–22.
  • 31. Cakmak G, Togan I, Severcan F. 17β-Estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: A comparative study with nonylphenol. Aquat Toxicol. 2006; 77:53-63
  • 32. Demir P, B.Akkas S, Severcan M, et al. Ionizing radiation induces structural and functional damage on the molecules of rat brain homogenate membranes: a Fourier transform infrared (FT-IR) spectroscopic study. Appl Spectrosc. 2015;69(1):154–64.
  • 33. Cakmak G, M.Miller L, Zorlu F, et al. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study. Arch Biochem Biophys [Internet]. 2012;520(2):67–73. Available from: http://dx.doi.org/10.1016/j.abb.2012.02.012
  • 34. Turker S, Severcan M, Ilbay G, et al. Epileptic seizures induce structural and functional alterations on brain tissue membranes. Biochim Biophys Acta - Biomembr [Internet]. 2014;1838(12):3088–96. Available from: http://dx.doi.org/10.1016/j.bbamem.2014.08.025
  • 35. Eraslan G, Kanbur M, Karabacak M, et al. Effect on oxidative stress, hepatic chemical metabolizing parameters, and genotoxic damage of mad honey intake in rats. Hum Exp Toxicol. 2018;37(9):991–1004.
  • 36. De Zwart L.L, N.Meerman J.H, M.Commandeur J, et al. Biomarkers of free radical damage - markers for atherosclerosis. Free Radic Biol Med. 1999;26(1–2):202–26.
  • 37. Moore D.J, Sills H.R, Mendelsohn R. Peroxidation of erythrocytes: FTIR spectroscopy studies of extracted lipids, isolated membranes, and intact cells. Biospectroscopy. 1995;1(2):133–40. 38. Gu J, Zhang Y, Xu D, et al. Ethanol-induced hepatic steatosis is modulated by glycogen level in the liver. J Lipid Res. 2015;56(7):1329–39. 39. Peng C, Chiappini F, Kascakova S, et al. Vibrational signatures to discriminate liver steatosis grades. Analyst. 2015;140:1107–18.
  • 40. Gurbanov R, Bilgin M, Severcan F. Restoring effect of selenium on the molecular content, structure and fluidity of diabetic rat kidney brush border cell membrane. Biochim Biophys Acta - Biomembr. 2016;1858(4):845–54.
  • 41. Davies K.J Protein Damage and Degradation by Oxygen Radicals. J Biol Chem [Internet]. 1987;262(20):9895–901. Available from: http://www.jbc.org/content/262/20/9895.full.pdf
  • 42. Ozek S, Tuna S, Erson-Benson A, et al. Characterization of microRNA-125b expression in MCF7 breast cancer cells by ATR-FTIR spectroscopy. Analyst. 2010;135(12):3094–102.
  • 43. Silici S, Sagdıc O, Ekici L. Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chem [Internet]. 2010;121(1):238–43. Available from: http://dx.doi.org/10.1016/j.foodchem.2009.11.078

Time-dependent Investigation of Mad Honey and Grayanotoxin on Liver Tissue

Yıl 2020, Cilt: 12 Sayı: 1, 97 - 111, 02.03.2020
https://doi.org/10.18521/ktd.598739

Öz

OBJECTIVE:
Mad Honey (MH), which causes poisoning in people because of grayanotoxin (GTX)
in it, is widely used in the treatment of some disorders, especially in the
Black Sea Region of Turkey. Although it has been reported that symptoms of MH
poisoning return to normal within 1-2 days, there is no detailed study about
the recovery time. It is important to know how long the effects of poisoning
last in order to apply the correct treatment method and to be discharged from
hospital on time. The aim of this study is to investigate the toxic effects of
effective dose of MH and GTX, which is the pure form of the active agent of MH,
on liver tissue at molecular level depending on the time.

METHODS:
Mus musculus male mice were treated
with 75 mg/kg DB (effective dose) and 0.01 mg/kg GTX-III, liver tissues of
these mice were removed after 24 and 48 hours and examined by Attenuated Total
Reflection-Fourier Transformation Infrared (ATR-FTIR) Spectroscopy at molecular
level.

RESULTS:
24 h MH and GTX administration caused lipid peroxidation, a decrease in
glycogen amount, an increase in saturated lipid amount, a decrease in membrane
order, an increase in membrane fluidity, changes in the structure and
conformations of proteins and nucleic acids. After 48 h the decrease in
glycogen amount returned to normal values in both groups, the increase in the
saturated lipids returned to normal values only in the MH group. However, the
48 h-period were not sufficient to return to normal values for the lipid
peroxidation, changes in the structure and conformation of proteins and nucleic
acids and membrane order and fluidity.







CONCLUSION:
In conclusion, 24 hour MH and GTX treatment induces toxic effects on liver
tissue and the 48 h-period is not sufficient for normalization of all these
toxic effects. The results of this study will be useful to determine the
duration of treatment and discharge from hospital for patients with MH
poisoning.

Kaynakça

  • 1. Koca I, Koca AF. Poisoning by mad honey: A brief review. Food Chem Toxicol. 2007;45:1315-1318.
  • 2. Yilmaz O, Eser M Sahiner A, et al. Hypotension , bradycardia and syncope caused by honey poisoning ଝ. Resuscitation. 2006;405–8.
  • 3. Ullah S, Ullah Khan S, A.Saleh T, et al. Mad honey: uses, intoxicating/poisoning effects, diagnosis, and treatment. RSC Adv [Internet]. 2018;8(33):18635–46. Available from: http://xlink.rsc.org/?DOI=C8RA01924J
  • 4. Çetin N, Marçıl E, Kıldıran M, ve ark. Deli Bal ile Hepatotoksisite. Türkiye Acil Tıp Derg. 2009;(June 2009):84–6.
  • 5. Gunduz A, Turedı S, M.Russell R, et al. Clinical review of grayanotoxin/mad honey poisoning past and present. Clin Toxicol. 2008;46(5):437–42.
  • 6. Pişkin Ö, Arslan Y.D, Aydin B.G, ve ark. Clinical features and laboratory findings in mad honey intoxication: a retrospective study. SiSli Etfal Hastan Tip Bul / Med Bull Sisli Hosp. 2017;(2):125–32.
  • 7. Gunduz A, Turedı S, Uzun H, et al. Mad honey poisoning. Am J Emerg Med. 2006;24(5):595–8.
  • 8. Sahin H, Yildiz O, Kolaylı S. Effects of Mad Honey on Some Biochemical Parameters in Rats. J Evidence-Based Complement Altern Med. 2016;21(4):255–9.
  • 9. Yuki T, Yamaoka K, Yakehiro M, et al. State-dependent action of grayanotoxin I on Na+ channels in frog ventricular myocytes. J Physiol. 2001;534(3):777–90.
  • 10. Maejima H, Kinoshitas E, Seyema I, et al. Distinct sites regulating grayanotoxin binding and unbinding to D4S6 of Na V 1.4 sodium channel as revealed by improved estimation of toxin sensitivity. J Biol Chem. 2003;278(11):9464–71.
  • 11. Kafa B, Kıral F. Streptozotocin ile Deneysel Diyabet Oluşturulan Ratlarda Karaciğer Enzimleri ve Serum Proteinlerindeki Elektroforetik Değişiklikler. 2006-001 12. Sari Dogan F, Ozaydin V, Incealtin O, et al. A case of acute hepatitis following mad honey ingestion. Turkish J Emerg Med [Internet]. 2015;15(4):185–6. Available from: http://dx.doi.org/10.1016/j.tjem.2014.09.003
  • 13. Aşçıoğlu M, Özesmi Ç, Dogan P, et al. Effects of acute Grayanotoxin-I administration on hepatic and renal functions in rats. Turkish J Med Sci. 2000;30(1):23–7. 14. Silici S, Yonar M.E, Sahin H, et al. Analysis of grayanatoxin in Rhododendron honey and effect on antioxidant parameters in rats. J Ethnopharmacol. 2014;156:155–61.
  • 15. Kukner A, Ilter G, Rasgele P, et al. The Effect of Rhododendron Honey on Mice Liver Tissue. Int J Morphol. 2016;34(3):842–7.
  • 16. Cakmak G, Zorlu F, Severcan M, et al. Structural and Functional Variations in Rat Liver Microsomal. Anal Chem. 2011;2438–44.
  • 17. Garip S, Gozen A.C, Severcan F. Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chem [Internet]. 2009;113(4):1301–7. Available from: http://dx.doi.org/10.1016/j.foodchem.2008.08.063
  • 18. Cakmak G, Severcan M, Zorlu F, et al. Structural and functional damages of whole body ionizing radiation on rat brain homogenate membranes and protective effect of amifostine. Int J Radiat Biol. 2016;92(12):837–48.
  • 19. Garip S, Yapici E, Ozek N, et al. Evaluation and discrimination of simvastatin-induced structural alterations in proteins of different rat tissues by FTIR spectroscopy and neural network analysis. Analyst. 2010;135(12):3233–41.
  • 20. P. Viccellio. Systemic poisonous plant intoxication. In: Handbook of Medical Toxicology Washington. 1993. p. 718.
  • 21. Ozhan H, Akdemir R, Yazıcı M, et al. Cardiac emergencies caused by honey ingestion: A single centre experience. Emerg Med J. 2004;21(6):742–4. 22. Jansen S, Kleerekooper I, Hofman Z, et al. Grayanotoxin poisoning: “Mad honey disease” and beyond. Cardiovasc Toxicol. 2012;12(3):208–15.
  • 23. Yaylaci S, Ayyıldız O, Aydın E, et al. Is there a difference in mad honey poisoning between geriatric and non-geriatric patient groups? Eur Rev Med Pharmacol Sci. 2015;19(23):4647–53.
  • 24. Binnetoglu E, Dindar S, Şengül E, ve ark. Mad honey poisoning; how much observe? Abant Med J. 2012;1(1):32–4.
  • 25. Haksoy H, Çakmak Arslan G, Göç Rasgele P, ve ark. Deli Balın Karaciğer Dokusu Üzerindeki Etkilerinin Moleküler Düzeyde İncelenmesi. VI Uluslararası Fen, Mühendislik ve Mimarlık Bilimlerinde Akademik Çalışmalar Sempozyumu. 2019; p 16.https://drive.google.com/file/d/1zR9Y8547GGJrldCaGA2Y1uQiGxJHTvL3/view (erişim tarihi: 30.07.2019).
  • 26. Silici S, Doğan Z, Sahin H, et al. Acute effects of grayanotoxin in rhododendron honey on kidney functions in rats. Environ Sci Pollut Res. 2016;23(4):3300–9.
  • 27. Diem M, Boydston-White S. Infrared spectroscopy of cells and tissues: shining light onto a novel subject. Appl Spectrosc. 1999;53(4).
  • 28. Cakmak G, Togan I, Uğuz C, et al. FT-IR spectroscopic analysis of rainbow trout liver exposed to nonylphenol. Appl Spectrosc. 2003;57(7):835–41.
  • 29. Elibol-Can B, J.Dogru E, Severcan M, et al. The effects of short-term chronic ethanol intoxication and ethanol withdrawal on the molecular composition of the rat hippocampus by FT-IR spectroscopy. Alcohol Clin Exp Res. 2011;35(11):2050–62.
  • 30. Severcan F, Sahin I, Kazancı N. Melatonin strongly interacts with zwitterionic model membranes-evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochim Biophys Acta - Biomembr. 2005;1668(2):215–22.
  • 31. Cakmak G, Togan I, Severcan F. 17β-Estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: A comparative study with nonylphenol. Aquat Toxicol. 2006; 77:53-63
  • 32. Demir P, B.Akkas S, Severcan M, et al. Ionizing radiation induces structural and functional damage on the molecules of rat brain homogenate membranes: a Fourier transform infrared (FT-IR) spectroscopic study. Appl Spectrosc. 2015;69(1):154–64.
  • 33. Cakmak G, M.Miller L, Zorlu F, et al. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study. Arch Biochem Biophys [Internet]. 2012;520(2):67–73. Available from: http://dx.doi.org/10.1016/j.abb.2012.02.012
  • 34. Turker S, Severcan M, Ilbay G, et al. Epileptic seizures induce structural and functional alterations on brain tissue membranes. Biochim Biophys Acta - Biomembr [Internet]. 2014;1838(12):3088–96. Available from: http://dx.doi.org/10.1016/j.bbamem.2014.08.025
  • 35. Eraslan G, Kanbur M, Karabacak M, et al. Effect on oxidative stress, hepatic chemical metabolizing parameters, and genotoxic damage of mad honey intake in rats. Hum Exp Toxicol. 2018;37(9):991–1004.
  • 36. De Zwart L.L, N.Meerman J.H, M.Commandeur J, et al. Biomarkers of free radical damage - markers for atherosclerosis. Free Radic Biol Med. 1999;26(1–2):202–26.
  • 37. Moore D.J, Sills H.R, Mendelsohn R. Peroxidation of erythrocytes: FTIR spectroscopy studies of extracted lipids, isolated membranes, and intact cells. Biospectroscopy. 1995;1(2):133–40. 38. Gu J, Zhang Y, Xu D, et al. Ethanol-induced hepatic steatosis is modulated by glycogen level in the liver. J Lipid Res. 2015;56(7):1329–39. 39. Peng C, Chiappini F, Kascakova S, et al. Vibrational signatures to discriminate liver steatosis grades. Analyst. 2015;140:1107–18.
  • 40. Gurbanov R, Bilgin M, Severcan F. Restoring effect of selenium on the molecular content, structure and fluidity of diabetic rat kidney brush border cell membrane. Biochim Biophys Acta - Biomembr. 2016;1858(4):845–54.
  • 41. Davies K.J Protein Damage and Degradation by Oxygen Radicals. J Biol Chem [Internet]. 1987;262(20):9895–901. Available from: http://www.jbc.org/content/262/20/9895.full.pdf
  • 42. Ozek S, Tuna S, Erson-Benson A, et al. Characterization of microRNA-125b expression in MCF7 breast cancer cells by ATR-FTIR spectroscopy. Analyst. 2010;135(12):3094–102.
  • 43. Silici S, Sagdıc O, Ekici L. Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chem [Internet]. 2010;121(1):238–43. Available from: http://dx.doi.org/10.1016/j.foodchem.2009.11.078
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Hümeyra Haksoy Bu kişi benim 0000-0002-3618-3852

Gülgün Çakmak-arslan

Pınar Göç-rasgele 0000-0002-7558-3138

Meral Kekeçoğlu 0000-0002-2564-8343

Yayımlanma Tarihi 2 Mart 2020
Kabul Tarihi 9 Aralık 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 12 Sayı: 1

Kaynak Göster

APA Haksoy, H., Çakmak-arslan, G., Göç-rasgele, P., Kekeçoğlu, M. (2020). Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması. Konuralp Medical Journal, 12(1), 97-111. https://doi.org/10.18521/ktd.598739
AMA Haksoy H, Çakmak-arslan G, Göç-rasgele P, Kekeçoğlu M. Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması. Konuralp Medical Journal. Mart 2020;12(1):97-111. doi:10.18521/ktd.598739
Chicago Haksoy, Hümeyra, Gülgün Çakmak-arslan, Pınar Göç-rasgele, ve Meral Kekeçoğlu. “Deli Bal Ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması”. Konuralp Medical Journal 12, sy. 1 (Mart 2020): 97-111. https://doi.org/10.18521/ktd.598739.
EndNote Haksoy H, Çakmak-arslan G, Göç-rasgele P, Kekeçoğlu M (01 Mart 2020) Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması. Konuralp Medical Journal 12 1 97–111.
IEEE H. Haksoy, G. Çakmak-arslan, P. Göç-rasgele, ve M. Kekeçoğlu, “Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması”, Konuralp Medical Journal, c. 12, sy. 1, ss. 97–111, 2020, doi: 10.18521/ktd.598739.
ISNAD Haksoy, Hümeyra vd. “Deli Bal Ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması”. Konuralp Medical Journal 12/1 (Mart 2020), 97-111. https://doi.org/10.18521/ktd.598739.
JAMA Haksoy H, Çakmak-arslan G, Göç-rasgele P, Kekeçoğlu M. Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması. Konuralp Medical Journal. 2020;12:97–111.
MLA Haksoy, Hümeyra vd. “Deli Bal Ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması”. Konuralp Medical Journal, c. 12, sy. 1, 2020, ss. 97-111, doi:10.18521/ktd.598739.
Vancouver Haksoy H, Çakmak-arslan G, Göç-rasgele P, Kekeçoğlu M. Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması. Konuralp Medical Journal. 2020;12(1):97-111.