Derleme
BibTex RIS Kaynak Göster

Alerjik Hastalıklarda Fare, Sıçan Modelleri

Yıl 2017, Cilt: 9 Sayı: 2, 186 - 193, 15.03.2017

Öz

Öz

Son yıllarda alerjik hastalıkların görülme sıklığının artması tanı ve tedavi sürecin-de arayışları da beraberinde getirmiştir. Alerjik hastalıkların hayvan modelleri, im-munolojik, fizyolojik ve histopatolojik düzeyde patogenezi anlayabilmek, korunmave tedavide mevcut bilgilere yenilerini ekleyebilmek adına ciddi katkılarda bulun-maktadır. Biyomedikal araştırmalar için kullanılacak olan laboratuvar hayvanı türü-ne ait anatomik, fizyolojik ve biyolojik özelliklerin bilinmesi, insandaki hastalık sü-recine benzeyen modellerin oluşturulmasında, güvenilir ve tekrarlanabilir sonuçlarelde edilmesinde önemli bir basamaktır.  Bu açıdan bakıldığında alerjik hastalıkla-rın laboratuvar hayvanı modelleri için çok çeşitli hayvan türleri kullanılabilir. An-cak bu derleme makalede; etik açıdan kabul edilebilir, üretim, yetiştirme ve barın-dırma ortamları daha kolay standardize edilebilir, ekonomik açıdan ulaşılabilir ol-ması nedeniyle fare ve sıçan modelleri üzerinde durulmuştur.

Kaynakça

  • Kaynaklar 1.Wahn U. What drives the allergic march. Allergy. 2000;55(7): 591-9. 2.Wang X. A new vision of definition, commentary, and unders-tanding in clinical and translational medicine. Clin Transl Med.2012; 1: 5. DOI: 10.1186/2001-1326-1-5 3.Hau J. Animal Models. In handbook of laboratory animalscience. Hau J, Van Hoosier GL Eds. Vol 2. CRS Press, Den-ver, 2003 4.Tanaka H, Masuda T, Tokuoka S et al. The effect of allergen-induced airway inflammation on airway remodeling in a mu-rine model of allergic asthma. Inflamm Res. 2001; 50: 616–24. 5.Elias J. The relationship between asthma and COPD: lessonsfrom transgenic mice. Chest. 2004; 126: 111–6. 6.Preface. The Welfare of Laboratory Animals, Kaliste E, ed..Springer: The Netherlands; 2007, IX-X. 7.Özdemir C, Akdis M, Akdis CA. T cell response to allergens.Chem Immunol Allergy. 2010; 95: 22-44. 8.Karaman M. Alerjik Hastalıklarda Laboratuvar Hayvanı Mo-delleri. Turkiye Klinikleri J Pediatr Sci. 2014; 10(2): 123-30. 9.Epstein MM. Are mouse models of allergic asthma useful for tes-ting novel therapeutics? Exp Toxicol Pathol. 2006; 57: 41-4. 10.Leigh R, Ellis R, Wattie J, Southam DS, De Hoogh M, Gaul-die J et al. Dysfunction and remodeling of the mouse airwaypersist after resolution of acute allergen-induced airway in-flammation. Am J Respir Cell Mol Biol. 2002; 27:526–35. 11.Mims JW. Asthma: definitions and pathophysiology. Int Fo-rum Allergy Rhinol. 2015;5(1):2-6. 12.Holt PG, Macaubas C, Stumbles PA, Sly PD. The role of allergyin the development of asthma. Nature. 1999; 402(6760): 12-7. 13.Kips JC, Anderson GP, Fredberg JJ, Herz U, Inman MD, Jor-dana M, et al. Murine models of asthma. Eur Respir J. 2003;22(2): 374-82. 14.Temelkovski J, Hogan SP, Shepherd DP, Foster PS, KumarRK. An improved murine model of asthma: selective airwayinflammation, epithelial lesions and increased methacholineresponsiveness following chronic exposure to aerosolised al-lergen. Thorax. 1998; 53: 849-56. 15.Holmes AM, Solari R, Holgate ST. Animal models of asthma:value, limitations and opportunities for alternative approac-hes. Drug Discovery Today. 2011;16(15-16): 659-70. 16.Zosky GR, Sly PD. Animal models of asthma. Clinical and Ex-perimental Allergy, 2007; 37, 973–988. 17.Schneider T, van Velzen D, Moqbel R, Issekutz AC. Kineticsand quantitation of eosinophil and neutrophil recruitment toallergic lung inflammation in a brown Norway rat model. AmJ Respir Cell Mol Biol. 1997; 17: 702–12. 18.Shin YS, Takeda K, Gelfand EW Understanding asthma usinganimal models. Allergy Asthma Immunol Res. 2009; 1(1): 10–8. 19.Nials AT, Uddin S. Mouse models of allergic asthma: acuteand chronic allergen challenge. Disease Models & Mecha-nisms. 2008; 1: 213-20. 20.Fuchs B, Braun A. Improved mouse models of allergy and al-lergic asthma—chances beyond ovalbumin. Curr Drug Tar-gets. 2008; 9(6): 495-502. 21.Blyth DI, Pedrick MS, Savage TJ, Hessel EM, Fattah D. Lunginflammation and epithelial changes in a murine model of ato-pic asthma. Am J Respir Cell Mol Biol. 1996; 14(5): 425-38. 22.Kumar RK, Herbert C, Foster PS. The “classical” ovalbuminchallenge model of asthma in mice. Curr Drug Targets. 2008;9(6): 485-94. 23.Karaman M, Fırıncı F, Kiray M, Tuncel T, Bağrıyanık H, Yıl-maz O, Uzuner N, Karaman Ö. Beneficial effects of erythro-poietin on airway histology in a murine model of chronic asth-ma. Allergol Immunopathol. 2012; 40(2): 75-80. 24.Siegle JS, Hansbro N, Herbert C, Yang M, Foster PS, KumarRK. Airway hyperreactivity in exacerbation of chronic asth-ma is independent of eosinophilic inflammation. Am J RespirCell Mol Biol. 2006; 35: 565–70. 25.Uzuner N, Kavukcu S, Yilmaz O, Ozkal S, Işlekel H, KaramanO, et al. The role of L-carnitine in treatment of a murine mo-del of asthma. Acta Med Okayama 2002; 56(6): 295-301. 26.Kumar RK, Herbert C, Foster PS. Mouse models of acute exa-cerbations of allergic asthma. Respirology. 2016; 21(5): 842-9. 27.Hoymann HG. Invasive and noninvasive lung function mea-surements in rodents. J Pharmacol Toxicol Methods. 2007;55(1): 16-26. 28.Hoymann HG. New developments in lung function measure-ments in rodents. Exp Toxicol Pathol. 2006; 57(2): 5–11. 29.Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ,Togias A, et al. Allergic rhinitis and its impact on asthma(ARIA) 2008 update (in collaboration with the World HealthOrganization, GA(2)LEN and AllerGen). Allergy 2008;63(86): 8-160. 30.Günel C, Demirci B, Eryılmaz A, Yılmaz M, Meteoğlu İ, Ömür-lü İK et al. Inhibitory Effect of Pycnogenol® on Airway In-flammation in Ovalbumin-Induced Allergic Rhinitis. BalkanMed J. 2016; 33(6): 620-626. 31.Ouyang Y, Miyata M, Hatsushika K, Ohnuma Y, Katoh R, Oga-wa H, et al. TGF-beta signaling may play a role in the deve-lopment of goblet cell hyperplasia in a mouse model of aller-gic rhinitis. Allergol Int. 2010; 59(3): 313-9. 32.Işık S, Karaman M, Adan A, Kıray M, Bağrıyanık HA, SözmenŞÇ et al. Intraperitoneal mesenchymal stem cell administra-tion ameliorates allergic rhinitis in the murine model. Eur ArchOtorhinolaryngol. 2016 Jul 5. [Epub ahead of print] 33.Wen WD, Yuan F, Wang JL, Hou YP. Botulinum toxin therapyin the ovalbuminsensitized rat. Neuroimmunomodulation. 2007;14: 78–83. 34.Brozmanova M, Calkovsky V, Plevkova J, Bartos V, Plank L,Tatar M. Early and late allergic phase related cough respon-se in sensitized guinea pigs with experimental allergic rhini-tis. Physiol Res. 2006; 55: 577–584. 35.Salib RJ, Howarth PH. Remodelling of the upper airways inallergic rhinitis: is it a feature of the disease? Clin Exp Al-lergy. 2003; 33(12): 1629-33. 36.Shimizu T, Shimizu S, Hattori R, Majima Y. A mechanism of an-tigen-induced goblet cell degranulation in the nasal epithelium ofsensitized rats. J Allergy Clin Immunol. 2003; 112(1): 119-25. 37.Williams CM, Rahman S, Hubeau C, Ma HL. Cytokine path-ways in allergic disease. Toxicol Pathol. 2012; 40(2): 205-15. 38.Machura E, Rusek-Zychma M, Jachimowicz M, Wrzask M, Ma-zur B, Kasperska-Zajac A. Serum TARC and CTACK concen-trations in children with atopic dermatitis, allergic asthma,and urticaria. Pediatr Allergy Immunol. 2012; 23(3): 278-84. 39.Jin H, He R, Oyoshi M, Raif S. Geha RS. Animal Models ofAtopic Dermatitis. J Invest Dermatol. 2009; 129: 31-41. 40.Matsuda H, Watanabe N, Geba GP, Sperl J, Tsudzuki M, HiroiJ et al. Development of atopic dermatitis-like skin lesion with IgEhyperproduction in NC/Nga mice. Int Immunol. 1997; 9: 461–6. 41.Watanabe O, Natori K, Tamari M, Shiomoto Y, Kubo S, Na-kamura Y. Significantly elevated expression of PF4 (plateletfactor 4) and eotaxin in the NOA mouse, a model for atopicdermatitis. J Hum Genet. 1999; 44(3): 173-6. 42.Haraguchi M, Hino M, Tanaka H, Maru M. Naturally occur-ring dermatitis associated with Staphylococcus aureus in DS-Nh mice. Exp Anim. 1997; 46: 225–9. 43.O'Regan GM, Irvine AD. The role of filaggrin in the atopicdiathesis. Clin Exp Allergy. 2010; 40(7): 965-72. 44.Moniaga CS, Kabashima K. Filaggrin in atopic dermatitis:flaky tail mice as a novel model for developing drug targetsin atopic dermatitis. Inflamm Allergy Drug Targets. 2011;10(6): 477-85 45.Spergel J, Mizoguchi E, Brewer J, Martin T, Bhan A, GehaR. Epicutaneous sensitization with protein antigen induces lo-calized allergic dermatitis and hyperresponsiveness to metac-holine after single exposure to aerosolized antigen in mice.J Clin Invest. 1998; 101: 1614–22. 46.Man MQ, Hatano Y, Lee SH, Man M, Chang S, Feingold KR,et al. Characterization of a Hapten-Induced, Murine Modelwith Multiple Features of Atopic Dermatitis: Structural, Im-munologic, and Biochemical Changes following Single Ver-sus Multiple Oxazolone Challenges. J Invest Dermatol.2008; 128(1): 79-86. 47.Laouini D, Kawamoto S, Yalcindag A, Bryce P, Mizoguchi E,Oettgen H, et al. Epicutaneous sensitization with superanti-gen induces allergic skin inflammation. J Allergy Clin Immu-nol 2003; 112: 981–987. 48.Zhang Z, Hener P, Frossard N, Kato S, Metzger D, Li M,Chambon P: Thymic stromal lymphopoietin overproduced bykeratinocytes in mouse skin aggravates experimental asthma.Proc Natl Acad Sci USA 2009, 106(5): 1536-41. 49.Sozmen SC, Karaman M, Micili SC, Isik S, Ayyildiz ZA, Bag-riyanik A, Uzuner N, Karaman O. Resveratrol ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like lesionsthrough effects on the epithelium. PeerJ. 2016; DOI10.7717/peerj.1889 50.Hanifin JM, Thurston M, Omoto M, Cherill R, Tofte SJ, Grae-ber M. The eczema area and severity index (EASI): assessmentof reliability in atopic dermatitis. EASI evaluatorgroup. ExpDermatol 2001; 10: 11–18.

In Allergic Diseases Mouse, Rat Models

Yıl 2017, Cilt: 9 Sayı: 2, 186 - 193, 15.03.2017

Öz

Abstract

During the past few years, the increasing prevalence of allergies has brought about a search for new techniques of diagnosis and treatment. Animal models of allergies play a major role in understanding the pathogenesis at immunological, physiological and histopatological levels as well as elaborating on the existing treatmentmethods. It is indispensable to know the anatomic, physiological and biological characteristics of the laboratory animals used in biomedical research in order to obtainrepeatable and reliable outcomes in the animal models imitating the situation in humans. From this aspect, a variety of animals can be utilized to model allergic illnes-ses. Yet, in this compiled article, mouse and rat models were emphasized for theyare ethical, their production and growing environments are easily standardizable andthey are more feasible economically.

Kaynakça

  • Kaynaklar 1.Wahn U. What drives the allergic march. Allergy. 2000;55(7): 591-9. 2.Wang X. A new vision of definition, commentary, and unders-tanding in clinical and translational medicine. Clin Transl Med.2012; 1: 5. DOI: 10.1186/2001-1326-1-5 3.Hau J. Animal Models. In handbook of laboratory animalscience. Hau J, Van Hoosier GL Eds. Vol 2. CRS Press, Den-ver, 2003 4.Tanaka H, Masuda T, Tokuoka S et al. The effect of allergen-induced airway inflammation on airway remodeling in a mu-rine model of allergic asthma. Inflamm Res. 2001; 50: 616–24. 5.Elias J. The relationship between asthma and COPD: lessonsfrom transgenic mice. Chest. 2004; 126: 111–6. 6.Preface. The Welfare of Laboratory Animals, Kaliste E, ed..Springer: The Netherlands; 2007, IX-X. 7.Özdemir C, Akdis M, Akdis CA. T cell response to allergens.Chem Immunol Allergy. 2010; 95: 22-44. 8.Karaman M. Alerjik Hastalıklarda Laboratuvar Hayvanı Mo-delleri. Turkiye Klinikleri J Pediatr Sci. 2014; 10(2): 123-30. 9.Epstein MM. Are mouse models of allergic asthma useful for tes-ting novel therapeutics? Exp Toxicol Pathol. 2006; 57: 41-4. 10.Leigh R, Ellis R, Wattie J, Southam DS, De Hoogh M, Gaul-die J et al. Dysfunction and remodeling of the mouse airwaypersist after resolution of acute allergen-induced airway in-flammation. Am J Respir Cell Mol Biol. 2002; 27:526–35. 11.Mims JW. Asthma: definitions and pathophysiology. Int Fo-rum Allergy Rhinol. 2015;5(1):2-6. 12.Holt PG, Macaubas C, Stumbles PA, Sly PD. The role of allergyin the development of asthma. Nature. 1999; 402(6760): 12-7. 13.Kips JC, Anderson GP, Fredberg JJ, Herz U, Inman MD, Jor-dana M, et al. Murine models of asthma. Eur Respir J. 2003;22(2): 374-82. 14.Temelkovski J, Hogan SP, Shepherd DP, Foster PS, KumarRK. An improved murine model of asthma: selective airwayinflammation, epithelial lesions and increased methacholineresponsiveness following chronic exposure to aerosolised al-lergen. Thorax. 1998; 53: 849-56. 15.Holmes AM, Solari R, Holgate ST. Animal models of asthma:value, limitations and opportunities for alternative approac-hes. Drug Discovery Today. 2011;16(15-16): 659-70. 16.Zosky GR, Sly PD. Animal models of asthma. Clinical and Ex-perimental Allergy, 2007; 37, 973–988. 17.Schneider T, van Velzen D, Moqbel R, Issekutz AC. Kineticsand quantitation of eosinophil and neutrophil recruitment toallergic lung inflammation in a brown Norway rat model. AmJ Respir Cell Mol Biol. 1997; 17: 702–12. 18.Shin YS, Takeda K, Gelfand EW Understanding asthma usinganimal models. Allergy Asthma Immunol Res. 2009; 1(1): 10–8. 19.Nials AT, Uddin S. Mouse models of allergic asthma: acuteand chronic allergen challenge. Disease Models & Mecha-nisms. 2008; 1: 213-20. 20.Fuchs B, Braun A. Improved mouse models of allergy and al-lergic asthma—chances beyond ovalbumin. Curr Drug Tar-gets. 2008; 9(6): 495-502. 21.Blyth DI, Pedrick MS, Savage TJ, Hessel EM, Fattah D. Lunginflammation and epithelial changes in a murine model of ato-pic asthma. Am J Respir Cell Mol Biol. 1996; 14(5): 425-38. 22.Kumar RK, Herbert C, Foster PS. The “classical” ovalbuminchallenge model of asthma in mice. Curr Drug Targets. 2008;9(6): 485-94. 23.Karaman M, Fırıncı F, Kiray M, Tuncel T, Bağrıyanık H, Yıl-maz O, Uzuner N, Karaman Ö. Beneficial effects of erythro-poietin on airway histology in a murine model of chronic asth-ma. Allergol Immunopathol. 2012; 40(2): 75-80. 24.Siegle JS, Hansbro N, Herbert C, Yang M, Foster PS, KumarRK. Airway hyperreactivity in exacerbation of chronic asth-ma is independent of eosinophilic inflammation. Am J RespirCell Mol Biol. 2006; 35: 565–70. 25.Uzuner N, Kavukcu S, Yilmaz O, Ozkal S, Işlekel H, KaramanO, et al. The role of L-carnitine in treatment of a murine mo-del of asthma. Acta Med Okayama 2002; 56(6): 295-301. 26.Kumar RK, Herbert C, Foster PS. Mouse models of acute exa-cerbations of allergic asthma. Respirology. 2016; 21(5): 842-9. 27.Hoymann HG. Invasive and noninvasive lung function mea-surements in rodents. J Pharmacol Toxicol Methods. 2007;55(1): 16-26. 28.Hoymann HG. New developments in lung function measure-ments in rodents. Exp Toxicol Pathol. 2006; 57(2): 5–11. 29.Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ,Togias A, et al. Allergic rhinitis and its impact on asthma(ARIA) 2008 update (in collaboration with the World HealthOrganization, GA(2)LEN and AllerGen). Allergy 2008;63(86): 8-160. 30.Günel C, Demirci B, Eryılmaz A, Yılmaz M, Meteoğlu İ, Ömür-lü İK et al. Inhibitory Effect of Pycnogenol® on Airway In-flammation in Ovalbumin-Induced Allergic Rhinitis. BalkanMed J. 2016; 33(6): 620-626. 31.Ouyang Y, Miyata M, Hatsushika K, Ohnuma Y, Katoh R, Oga-wa H, et al. TGF-beta signaling may play a role in the deve-lopment of goblet cell hyperplasia in a mouse model of aller-gic rhinitis. Allergol Int. 2010; 59(3): 313-9. 32.Işık S, Karaman M, Adan A, Kıray M, Bağrıyanık HA, SözmenŞÇ et al. Intraperitoneal mesenchymal stem cell administra-tion ameliorates allergic rhinitis in the murine model. Eur ArchOtorhinolaryngol. 2016 Jul 5. [Epub ahead of print] 33.Wen WD, Yuan F, Wang JL, Hou YP. Botulinum toxin therapyin the ovalbuminsensitized rat. Neuroimmunomodulation. 2007;14: 78–83. 34.Brozmanova M, Calkovsky V, Plevkova J, Bartos V, Plank L,Tatar M. Early and late allergic phase related cough respon-se in sensitized guinea pigs with experimental allergic rhini-tis. Physiol Res. 2006; 55: 577–584. 35.Salib RJ, Howarth PH. Remodelling of the upper airways inallergic rhinitis: is it a feature of the disease? Clin Exp Al-lergy. 2003; 33(12): 1629-33. 36.Shimizu T, Shimizu S, Hattori R, Majima Y. A mechanism of an-tigen-induced goblet cell degranulation in the nasal epithelium ofsensitized rats. J Allergy Clin Immunol. 2003; 112(1): 119-25. 37.Williams CM, Rahman S, Hubeau C, Ma HL. Cytokine path-ways in allergic disease. Toxicol Pathol. 2012; 40(2): 205-15. 38.Machura E, Rusek-Zychma M, Jachimowicz M, Wrzask M, Ma-zur B, Kasperska-Zajac A. Serum TARC and CTACK concen-trations in children with atopic dermatitis, allergic asthma,and urticaria. Pediatr Allergy Immunol. 2012; 23(3): 278-84. 39.Jin H, He R, Oyoshi M, Raif S. Geha RS. Animal Models ofAtopic Dermatitis. J Invest Dermatol. 2009; 129: 31-41. 40.Matsuda H, Watanabe N, Geba GP, Sperl J, Tsudzuki M, HiroiJ et al. Development of atopic dermatitis-like skin lesion with IgEhyperproduction in NC/Nga mice. Int Immunol. 1997; 9: 461–6. 41.Watanabe O, Natori K, Tamari M, Shiomoto Y, Kubo S, Na-kamura Y. Significantly elevated expression of PF4 (plateletfactor 4) and eotaxin in the NOA mouse, a model for atopicdermatitis. J Hum Genet. 1999; 44(3): 173-6. 42.Haraguchi M, Hino M, Tanaka H, Maru M. Naturally occur-ring dermatitis associated with Staphylococcus aureus in DS-Nh mice. Exp Anim. 1997; 46: 225–9. 43.O'Regan GM, Irvine AD. The role of filaggrin in the atopicdiathesis. Clin Exp Allergy. 2010; 40(7): 965-72. 44.Moniaga CS, Kabashima K. Filaggrin in atopic dermatitis:flaky tail mice as a novel model for developing drug targetsin atopic dermatitis. Inflamm Allergy Drug Targets. 2011;10(6): 477-85 45.Spergel J, Mizoguchi E, Brewer J, Martin T, Bhan A, GehaR. Epicutaneous sensitization with protein antigen induces lo-calized allergic dermatitis and hyperresponsiveness to metac-holine after single exposure to aerosolized antigen in mice.J Clin Invest. 1998; 101: 1614–22. 46.Man MQ, Hatano Y, Lee SH, Man M, Chang S, Feingold KR,et al. Characterization of a Hapten-Induced, Murine Modelwith Multiple Features of Atopic Dermatitis: Structural, Im-munologic, and Biochemical Changes following Single Ver-sus Multiple Oxazolone Challenges. J Invest Dermatol.2008; 128(1): 79-86. 47.Laouini D, Kawamoto S, Yalcindag A, Bryce P, Mizoguchi E,Oettgen H, et al. Epicutaneous sensitization with superanti-gen induces allergic skin inflammation. J Allergy Clin Immu-nol 2003; 112: 981–987. 48.Zhang Z, Hener P, Frossard N, Kato S, Metzger D, Li M,Chambon P: Thymic stromal lymphopoietin overproduced bykeratinocytes in mouse skin aggravates experimental asthma.Proc Natl Acad Sci USA 2009, 106(5): 1536-41. 49.Sozmen SC, Karaman M, Micili SC, Isik S, Ayyildiz ZA, Bag-riyanik A, Uzuner N, Karaman O. Resveratrol ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like lesionsthrough effects on the epithelium. PeerJ. 2016; DOI10.7717/peerj.1889 50.Hanifin JM, Thurston M, Omoto M, Cherill R, Tofte SJ, Grae-ber M. The eczema area and severity index (EASI): assessmentof reliability in atopic dermatitis. EASI evaluatorgroup. ExpDermatol 2001; 10: 11–18.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm makale
Yazarlar

Doç. Dr. Meral Karaman Bu kişi benim

Yayımlanma Tarihi 15 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 9 Sayı: 2

Kaynak Göster

APA Karaman, D. D. M. (2017). Alerjik Hastalıklarda Fare, Sıçan Modelleri. Klinik Tıp Pediatri Dergisi, 9(2), 186-193.
AMA Karaman DDM. Alerjik Hastalıklarda Fare, Sıçan Modelleri. Pediatri. Mart 2017;9(2):186-193.
Chicago Karaman, Doç. Dr. Meral. “Alerjik Hastalıklarda Fare, Sıçan Modelleri”. Klinik Tıp Pediatri Dergisi 9, sy. 2 (Mart 2017): 186-93.
EndNote Karaman DDM (01 Mart 2017) Alerjik Hastalıklarda Fare, Sıçan Modelleri. Klinik Tıp Pediatri Dergisi 9 2 186–193.
IEEE D. D. M. Karaman, “Alerjik Hastalıklarda Fare, Sıçan Modelleri”, Pediatri, c. 9, sy. 2, ss. 186–193, 2017.
ISNAD Karaman, Doç. Dr. Meral. “Alerjik Hastalıklarda Fare, Sıçan Modelleri”. Klinik Tıp Pediatri Dergisi 9/2 (Mart 2017), 186-193.
JAMA Karaman DDM. Alerjik Hastalıklarda Fare, Sıçan Modelleri. Pediatri. 2017;9:186–193.
MLA Karaman, Doç. Dr. Meral. “Alerjik Hastalıklarda Fare, Sıçan Modelleri”. Klinik Tıp Pediatri Dergisi, c. 9, sy. 2, 2017, ss. 186-93.
Vancouver Karaman DDM. Alerjik Hastalıklarda Fare, Sıçan Modelleri. Pediatri. 2017;9(2):186-93.