Derleme
BibTex RIS Kaynak Göster

Nanotechnology Modulation of Gut Microbiota for Cancer Treatment

Yıl 2024, Cilt: 2 Sayı: 2, 90 - 104, 31.12.2024

Öz

Microbiota refers to the totality of microorganisms living in a person's body or in a specific environment. The gastrointestinal microbiota is considered a fundamental component of the human body. Intestinal microbiota can increase the effectiveness of anticancer treatments and play a role in the prevention of cancer. Changes in the intestinal microbiota or microbiome play important roles in diseases, especially cancer. Traditional microbiome treatments are also effective in cancer treatments in some cases. However, problems such as the side effects of these treatments on the symbiotic microbiome and the reliability of these treatments necessitate the development of new technological developments that intersect with the cancer microbiota. Nanostructures have begun to be used in cancer treatments today. The success of nanomaterials in the prevention of cancer occurs because nanomaterials can change the cancer-causing microbiota and their metabolites and the cancer microenvironment. Therefore, nanomaterials can be used as new strategies to eliminate cancer. However, this new field of research requires further in vivo clinical trials to determine the exact mechanisms involved in the process of cancer eradication via nanomaterials. The link between nanomaterials, microbiota, microbial metabolites, cancer and cancer-associated microenvironments should be investigated in animals and humans. This review will focus on the roles of microbiota and nanomaterials in cancer treatment, the role of microbiota and metabolic interventions via nanomaterials.

Kaynakça

  • Al-Attabi, A., Thabit, S., Hanan, Z., Qasim Alasheqi, M., Al-Azzawi, A., Zabibah, R., & Fadhil, A. (2023). Modulating gut microbiota using nanotechnology to increase anticancer efficacy of the treatments. Macromolecular Research, 31. https://doi.org/10.1007/s13233-023-00168-z
  • Al Bander, Z., Nitert, M. D., Mousa, A., & Naderpoor, N. (2020). The gut microbiota and inflammation: An overview. Int J Environ Res Public Health, 17(20). https://doi.org/10.3390/ijerph17207618
  • Algrafi, A. S., Jamal, A. A., & Ismaeel, D. M. (2023). Microbiota as a new target in cancer pathogenesis and treatment. Cureus, 15(10), e47072. https://doi.org/10.7759/cureus.47072
  • Ashaolu, T. J. (2021). Emerging applications of nanotechnologies to probiotics and prebiotics. International Journal of Food Science & Technology, 56. https://doi.org/10.1111/ijfs.15020
  • Bhatt, A. P., Redinbo, M. R., & Bultman, S. J. (2017). The role of the microbiome in cancer development and therapy. CA Cancer J Clin, 67(4), 326-344. https://doi.org/10.3322/caac.21398
  • Chehelgerdi, M., Chehelgerdi, M., Allela, O. Q. B., Pecho, R. D. C., Jayasankar, N., Rao, D. P., & Akhavan-Sigari, R. (2023). Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer, 22(1), 169. https://doi.org/10.1186/s12943-023-01865-0
  • Chuaypen, N., Asumpinawong, A., Sawangsri, P., Khamjerm, J., Iadsee, N., Jinato, T., & Tangkijvanich, P. (2024). Gut microbiota in patients with non-alcoholic fatty liver disease without type 2 diabetes: Stratified by body mass index. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/ijms25031807
  • Dang, Y., & Guan, J. (2020). Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine, 1, 10-19. https://doi.org/https://doi.org/10.1016/j.smaim.2020.04.001
  • Dangi, P., Chaudhary, N., Chaudhary, V., Virdi, A. S., Kajla, P., Khanna, P., & Haque, S. (2023). Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol, 388, 110083. https://doi.org/10.1016/j.ijfoodmicro.2022.110083
  • Ehdaie, B. (2007). Application of nanotechnology in cancer research: review of progress in the National Cancer Institute's Alliance for Nanotechnology. Int J Biol Sci, 3(2), 108-110. https://doi.org/10.7150/ijbs.3.108
  • Elumalai, K., Srinivasan, S., & Shanmugam, A. (2024). Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology, 5, 109-122. https://doi.org/10.1016/j.bmt.2023.09.001
  • Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., & Langer, R. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A, 103(16), 6315-6320. https://doi.org/10.1073/pnas.0601755103
  • Hamurci, Y., Ihlamur, M., & Abamor, E.Ş. (2024). Mide kanserine karşı geliştirilen aşı formülasyonunun immünostimülan ve sitotoksik etkilerinin incelenmesi. Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi, 26(1): 293-304. https://doi.org/10.25092/baunfbed.1179656
  • Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., & Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. Biomed Res Int, 150845. https://doi.org/10.1155/2014/150845
  • Ihlamur, M., Akgul, B., Zengin, Y., Korkut Ş, V., Kelleci, K., & Abamor, E. (2024). The mTOR signaling pathway and mTOR inhibitors in cancer: Next-generation inhibitors and approaches. Curr Mol Med, 24(4), 478-494. https://doi.org/10.2174/1566524023666230509161645
  • Ihlamur, M., Kelleci, K., Zengin, Y., Allahverdiyev, M. A., & Abamor, E. (2024). Applications of exosome vesicles in different cancer types as biomarkers. Curr Mol Med, 24(3), 281-297. https://doi.org/10.2174/1566524023666230320120419
  • Jin, C., Wang, K., Oppong-Gyebi, A., & Hu, J. (2020). Application of nanotechnology in cancer diagnosis and therapy - a mini-review. Int J Med Sci, 17(18), 2964-2973. https://doi.org/10.7150/ijms.49801
  • Karavolos, M., & Holban, A. (2016). Nanosized drug delivery systems in gastrointestinal targeting: Interactions with microbiota. Pharmaceuticals (Basel), 9(4). https://doi.org/10.3390/ph9040062
  • Kelleci K., Allahverdiyev A., Bağırova M., Ihlamur M., Abamor E.Ş. (2024). Immunomodulatory activity of polycaprolactone nanoparticles with calcium phosphate salts against Leishmania infantum infection. Asian Pacific Journal of Tropical Biomedicine 14(8): 359-368.
  • Kelleci, K., Allahverdiyev, A., Bağirova, M., Ihlamur, M., & Abamor, E. (2023). Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review. J Vector Borne Dis, 60(2), 125-141. https://doi.org/10.4103/0972-9062.361179
  • Krieghoff-Henning, E., Folkerts, J., Penzkofer, A., & Weg-Remers, S. (2017). Cancer – an overview. Med Monatsschr Pharm, 40(2), 48-54.
  • Liong, M. T. (2008). Roles of probiotics and prebiotics in colon cancer prevention: Postulated mechanisms and in-vivo evidence. Int J Mol Sci, 9(5), 854-863. https://doi.org/10.3390/ijms9050854
  • Ma, J., Chen, Q., O'Connor, P., & Sheng, G. (2019). Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? Environmental Pollution, 256, 113463. https://doi.org/10.1016/j.envpol.2019.113463
  • Ramos, Meyers, G., Samouda, H., & Bohn, T. (2022). Short chain fatty acid metabolism in relation to gut microbiota and genetic variability. Nutrients, 14(24). https://doi.org/10.3390/nu14245361
  • Riaz Rajoka, M. S., Mehwish, H. M., Xiong, Y., Song, X., Hussain, N., Zhu, Q., & He, Z. (2021). Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends in Food Science & Technology, 107, 240-251. https://doi.org/10.1016/j.tifs.2020.10.036
  • Salman, T., Varol, U., Yildiz, I., Kucukzeybek, Y., & Alacacıoğlu, A. (2015). Microbiota ve Cancer. Acta Oncologica Turcica, 48, 73-78. https://doi.org/10.5505/aot.2015.49368
  • Sathe, T. R., Agrawal, A., & Nie, S. (2006). Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem, 78(16), 5627-5632. https://doi.org/10.1021/ac0610309
  • Shah, T., Baloch, Z., Shah, Z., Cui, X., & Xia, X. (2021). The intestinal microbiota: Impacts of Antibiotics therapy, colonization resistance, and diseases. Int J Mol Sci, 22(12). https://doi.org/10.3390/ijms22126597
  • Silva, G. A. (2004). Introduction to nanotechnology and its applications to medicine. Surg Neurol, 61(3), 216-220. https://doi.org/10.1016/j.surneu.2003.09.036
  • Singh, K. K. (2005). Nanotechnology in cancer detection and treatment. Technol Cancer Res Treat, 4(6), 583. https://doi.org/10.1177/153303460500400601
  • Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A., & Arya, S. (2023). Future of nanotechnology in food industry: challenges in processing, packaging, and food safety. Glob Chall, 7(4), 2200209. https://doi.org/10.1002/gch2.202200209
  • Suzuki, H., Fujiwara, Y., Thongbhubate, K., Maeda, M., & Kanaori, K. (2023). Spore-forming lactic acid-producing bacterium bacillus coagulans synthesizes and excretes spermidine into the extracellular space. J Agric Food Chem, 71(25), 9868-9876. https://doi.org/10.1021/acs.jafc.3c02184
  • Thangaraju, M., Cresci, G. A., Liu, K., Ananth, S., Gnanaprakasam, J. P., Browning, D. D., Ganapathy, V. (2009). GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res, 69(7), 2826-2832. https://doi.org/10.1158/0008-5472.Can-08-4466
  • Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochem J, 474(11), 1823-1836. https://doi.org/10.1042/bcj20160510
  • Wang, B., Yao, M., Lv, L., Ling, Z., & Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71-82. https://doi.org/10.1016/J.ENG.2017.01.008
  • Wang, L. (2004). Ultrasound-mediated biophotonic imaging: A Review of acousto-optical tomography and photo-acoustic tomography. Disease markers, 19, 123-138. https://doi.org/10.1155/2004/478079
  • Williams, K., Milner, J., Boudreau, M. D., Gokulan, K., Cerniglia, C. E., & Khare, S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9(3), 279-289. https://doi.org/10.3109/17435390.2014.921346
  • Yang, L., Wang, Q., He, L., & Sun, X. (2024). The critical role of tumor microbiome in cancer immunotherapy. Cancer Biol Ther, 25(1), 2301801. https://doi.org/10.1080/15384047.2024.2301801
  • Ye, Z., Liang, L., Lu, H., Shen, Y., Zhou, W., & Li, Y. (2021). Nanotechnology-employed bacteria-based delivery strategy for enhanced anticancer therapy. Int J Nanomedicine, 16, 8069-8086. https://doi.org/10.2147/ijn.S329855
  • Zegadło, K., Gieroń, M., Żarnowiec, P., Durlik-Popińska, K., Kręcisz, B., Kaca, W., & Czerwonka, G. (2023). Bacterial motility and its role in skin and wound infections. Int J Mol Sci, 24(2). https://doi.org/10.3390/ijms24021707
  • Zengin, Y., Ihlamur, M., & Başarı, H., (2022). Immunostimulant/cytotoxic effect of cardamom extract with adjuvant combination on breast cancer cell line. Bayburt Üniversitesi Fen Bilimleri Dergisi, 5(2), 229-234.
  • Zdrojewicz, Z., Waracki, M., Bugaj, B., Pypno, D., & Cabała, K. (2015). Medical applications of nanotechnology. Postepy Hig Med Dosw (Online), 69, 1196-1204. https://doi.org/10.5604/17322693.1177169
  • Zhao, L. Y., Mei, J. X., Yu, G., Lei, L., Zhang, W. H., Liu, K., & Hu, J. K. (2023). Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther, 8(1), 201. https://doi.org/10.1038/s41392-023-01406-7

Kanser Tedavisi İçin Bağırsak Mikrobiyotasının Nanoteknoloji Modülasyonu

Yıl 2024, Cilt: 2 Sayı: 2, 90 - 104, 31.12.2024

Öz

Mikrobiyota, bir insanın vücudunda veya belirli bir ortamda yaşayan mikroorganizmaların toplamını ifade etmektedir. Gastrointestinal sistem mikrobiyotası, insan vücudunun temel bir bileşeni olarak kabul edilmektedir. Bağırsak mikrobiyotası, antikanser tedavilerinin etkinliğini artırabilmekte ve kanserin önlenmesinde rol oynamaktadır. Bağırsak mikrobiyotasındaki veya mikrobiyomdaki değişiklikler, hastalıklarında, özellikle kanserde önemli roller oynamaktadır. Geleneksel mikrobiyom tedavileri bazı durumlarda kanser tedavilerinde de etkili olmaktadır. Ancak, bu tedavilerin simbiyotik mikrobiyoma yan etkileri ve bu tedavilerin güvenilirliği gibi sorunlar, özellikle kanser mikrobiyotası ile kesişen yeni teknolojik gelişmelerin geliştirilmesini zorunlu kılmaktadır. Nanoyapılar günümüzde kanser tedavilerinde kullanılmaya başlanmıştır. Nanomalzemelerin kanserin önlenmesindeki başarısı, nanomalzemelerin kansere neden olan mikrobiyotayı ve bunların metabolitlerini ve kanser mikroçevresini değiştirebildiği için gerçekleşmektedir. Bundan dolayı nanomalzemeler kanseri yok etmek için yeni stratejiler olarak kullanılabilmektedir. Ancak, bu yeni araştırma alanı, nanomalzemeler aracılığıyla kanseri yok etme sürecindeki tam mekanizmaları belirlemek için daha fazla in vivo klinik deney gerektirmektedir. Nanomalzemelerin, mikrobiyotanın, mikrobiyal metabolitlerin, kanser ve kanserle ilişkili mikroçevrelerin bağlantısını hayvanlarda ve insanlarda araştırmalıdır. Bu derlemede, mikrobiyota ve nanomalzemelerin kanser tedavisindeki rollerine, mikrobiyotanın ve metabolik müdahalelerin nanomalzemeler aracılığıyla rolüne odaklanılacaktır.

Kaynakça

  • Al-Attabi, A., Thabit, S., Hanan, Z., Qasim Alasheqi, M., Al-Azzawi, A., Zabibah, R., & Fadhil, A. (2023). Modulating gut microbiota using nanotechnology to increase anticancer efficacy of the treatments. Macromolecular Research, 31. https://doi.org/10.1007/s13233-023-00168-z
  • Al Bander, Z., Nitert, M. D., Mousa, A., & Naderpoor, N. (2020). The gut microbiota and inflammation: An overview. Int J Environ Res Public Health, 17(20). https://doi.org/10.3390/ijerph17207618
  • Algrafi, A. S., Jamal, A. A., & Ismaeel, D. M. (2023). Microbiota as a new target in cancer pathogenesis and treatment. Cureus, 15(10), e47072. https://doi.org/10.7759/cureus.47072
  • Ashaolu, T. J. (2021). Emerging applications of nanotechnologies to probiotics and prebiotics. International Journal of Food Science & Technology, 56. https://doi.org/10.1111/ijfs.15020
  • Bhatt, A. P., Redinbo, M. R., & Bultman, S. J. (2017). The role of the microbiome in cancer development and therapy. CA Cancer J Clin, 67(4), 326-344. https://doi.org/10.3322/caac.21398
  • Chehelgerdi, M., Chehelgerdi, M., Allela, O. Q. B., Pecho, R. D. C., Jayasankar, N., Rao, D. P., & Akhavan-Sigari, R. (2023). Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer, 22(1), 169. https://doi.org/10.1186/s12943-023-01865-0
  • Chuaypen, N., Asumpinawong, A., Sawangsri, P., Khamjerm, J., Iadsee, N., Jinato, T., & Tangkijvanich, P. (2024). Gut microbiota in patients with non-alcoholic fatty liver disease without type 2 diabetes: Stratified by body mass index. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/ijms25031807
  • Dang, Y., & Guan, J. (2020). Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine, 1, 10-19. https://doi.org/https://doi.org/10.1016/j.smaim.2020.04.001
  • Dangi, P., Chaudhary, N., Chaudhary, V., Virdi, A. S., Kajla, P., Khanna, P., & Haque, S. (2023). Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol, 388, 110083. https://doi.org/10.1016/j.ijfoodmicro.2022.110083
  • Ehdaie, B. (2007). Application of nanotechnology in cancer research: review of progress in the National Cancer Institute's Alliance for Nanotechnology. Int J Biol Sci, 3(2), 108-110. https://doi.org/10.7150/ijbs.3.108
  • Elumalai, K., Srinivasan, S., & Shanmugam, A. (2024). Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology, 5, 109-122. https://doi.org/10.1016/j.bmt.2023.09.001
  • Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., & Langer, R. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A, 103(16), 6315-6320. https://doi.org/10.1073/pnas.0601755103
  • Hamurci, Y., Ihlamur, M., & Abamor, E.Ş. (2024). Mide kanserine karşı geliştirilen aşı formülasyonunun immünostimülan ve sitotoksik etkilerinin incelenmesi. Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi, 26(1): 293-304. https://doi.org/10.25092/baunfbed.1179656
  • Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., & Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. Biomed Res Int, 150845. https://doi.org/10.1155/2014/150845
  • Ihlamur, M., Akgul, B., Zengin, Y., Korkut Ş, V., Kelleci, K., & Abamor, E. (2024). The mTOR signaling pathway and mTOR inhibitors in cancer: Next-generation inhibitors and approaches. Curr Mol Med, 24(4), 478-494. https://doi.org/10.2174/1566524023666230509161645
  • Ihlamur, M., Kelleci, K., Zengin, Y., Allahverdiyev, M. A., & Abamor, E. (2024). Applications of exosome vesicles in different cancer types as biomarkers. Curr Mol Med, 24(3), 281-297. https://doi.org/10.2174/1566524023666230320120419
  • Jin, C., Wang, K., Oppong-Gyebi, A., & Hu, J. (2020). Application of nanotechnology in cancer diagnosis and therapy - a mini-review. Int J Med Sci, 17(18), 2964-2973. https://doi.org/10.7150/ijms.49801
  • Karavolos, M., & Holban, A. (2016). Nanosized drug delivery systems in gastrointestinal targeting: Interactions with microbiota. Pharmaceuticals (Basel), 9(4). https://doi.org/10.3390/ph9040062
  • Kelleci K., Allahverdiyev A., Bağırova M., Ihlamur M., Abamor E.Ş. (2024). Immunomodulatory activity of polycaprolactone nanoparticles with calcium phosphate salts against Leishmania infantum infection. Asian Pacific Journal of Tropical Biomedicine 14(8): 359-368.
  • Kelleci, K., Allahverdiyev, A., Bağirova, M., Ihlamur, M., & Abamor, E. (2023). Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review. J Vector Borne Dis, 60(2), 125-141. https://doi.org/10.4103/0972-9062.361179
  • Krieghoff-Henning, E., Folkerts, J., Penzkofer, A., & Weg-Remers, S. (2017). Cancer – an overview. Med Monatsschr Pharm, 40(2), 48-54.
  • Liong, M. T. (2008). Roles of probiotics and prebiotics in colon cancer prevention: Postulated mechanisms and in-vivo evidence. Int J Mol Sci, 9(5), 854-863. https://doi.org/10.3390/ijms9050854
  • Ma, J., Chen, Q., O'Connor, P., & Sheng, G. (2019). Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? Environmental Pollution, 256, 113463. https://doi.org/10.1016/j.envpol.2019.113463
  • Ramos, Meyers, G., Samouda, H., & Bohn, T. (2022). Short chain fatty acid metabolism in relation to gut microbiota and genetic variability. Nutrients, 14(24). https://doi.org/10.3390/nu14245361
  • Riaz Rajoka, M. S., Mehwish, H. M., Xiong, Y., Song, X., Hussain, N., Zhu, Q., & He, Z. (2021). Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends in Food Science & Technology, 107, 240-251. https://doi.org/10.1016/j.tifs.2020.10.036
  • Salman, T., Varol, U., Yildiz, I., Kucukzeybek, Y., & Alacacıoğlu, A. (2015). Microbiota ve Cancer. Acta Oncologica Turcica, 48, 73-78. https://doi.org/10.5505/aot.2015.49368
  • Sathe, T. R., Agrawal, A., & Nie, S. (2006). Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem, 78(16), 5627-5632. https://doi.org/10.1021/ac0610309
  • Shah, T., Baloch, Z., Shah, Z., Cui, X., & Xia, X. (2021). The intestinal microbiota: Impacts of Antibiotics therapy, colonization resistance, and diseases. Int J Mol Sci, 22(12). https://doi.org/10.3390/ijms22126597
  • Silva, G. A. (2004). Introduction to nanotechnology and its applications to medicine. Surg Neurol, 61(3), 216-220. https://doi.org/10.1016/j.surneu.2003.09.036
  • Singh, K. K. (2005). Nanotechnology in cancer detection and treatment. Technol Cancer Res Treat, 4(6), 583. https://doi.org/10.1177/153303460500400601
  • Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A., & Arya, S. (2023). Future of nanotechnology in food industry: challenges in processing, packaging, and food safety. Glob Chall, 7(4), 2200209. https://doi.org/10.1002/gch2.202200209
  • Suzuki, H., Fujiwara, Y., Thongbhubate, K., Maeda, M., & Kanaori, K. (2023). Spore-forming lactic acid-producing bacterium bacillus coagulans synthesizes and excretes spermidine into the extracellular space. J Agric Food Chem, 71(25), 9868-9876. https://doi.org/10.1021/acs.jafc.3c02184
  • Thangaraju, M., Cresci, G. A., Liu, K., Ananth, S., Gnanaprakasam, J. P., Browning, D. D., Ganapathy, V. (2009). GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res, 69(7), 2826-2832. https://doi.org/10.1158/0008-5472.Can-08-4466
  • Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochem J, 474(11), 1823-1836. https://doi.org/10.1042/bcj20160510
  • Wang, B., Yao, M., Lv, L., Ling, Z., & Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71-82. https://doi.org/10.1016/J.ENG.2017.01.008
  • Wang, L. (2004). Ultrasound-mediated biophotonic imaging: A Review of acousto-optical tomography and photo-acoustic tomography. Disease markers, 19, 123-138. https://doi.org/10.1155/2004/478079
  • Williams, K., Milner, J., Boudreau, M. D., Gokulan, K., Cerniglia, C. E., & Khare, S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9(3), 279-289. https://doi.org/10.3109/17435390.2014.921346
  • Yang, L., Wang, Q., He, L., & Sun, X. (2024). The critical role of tumor microbiome in cancer immunotherapy. Cancer Biol Ther, 25(1), 2301801. https://doi.org/10.1080/15384047.2024.2301801
  • Ye, Z., Liang, L., Lu, H., Shen, Y., Zhou, W., & Li, Y. (2021). Nanotechnology-employed bacteria-based delivery strategy for enhanced anticancer therapy. Int J Nanomedicine, 16, 8069-8086. https://doi.org/10.2147/ijn.S329855
  • Zegadło, K., Gieroń, M., Żarnowiec, P., Durlik-Popińska, K., Kręcisz, B., Kaca, W., & Czerwonka, G. (2023). Bacterial motility and its role in skin and wound infections. Int J Mol Sci, 24(2). https://doi.org/10.3390/ijms24021707
  • Zengin, Y., Ihlamur, M., & Başarı, H., (2022). Immunostimulant/cytotoxic effect of cardamom extract with adjuvant combination on breast cancer cell line. Bayburt Üniversitesi Fen Bilimleri Dergisi, 5(2), 229-234.
  • Zdrojewicz, Z., Waracki, M., Bugaj, B., Pypno, D., & Cabała, K. (2015). Medical applications of nanotechnology. Postepy Hig Med Dosw (Online), 69, 1196-1204. https://doi.org/10.5604/17322693.1177169
  • Zhao, L. Y., Mei, J. X., Yu, G., Lei, L., Zhang, W. H., Liu, K., & Hu, J. K. (2023). Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther, 8(1), 201. https://doi.org/10.1038/s41392-023-01406-7
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Nanobiyoteknoloji, Mikrobiyoloji (Diğer)
Bölüm Derlemeler
Yazarlar

Tuba Dolgun 0009-0009-3026-0931

Semanur Tekpak 0009-0003-8737-2682

Murat Ihlamur 0000-0002-0458-5638

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 25 Temmuz 2024
Kabul Tarihi 29 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 2

Kaynak Göster

APA Dolgun, T., Tekpak, S., & Ihlamur, M. (2024). Kanser Tedavisi İçin Bağırsak Mikrobiyotasının Nanoteknoloji Modülasyonu. Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 90-104.