Derleme
BibTex RIS Kaynak Göster

Havacılıkta Kullanılan Isıl (Termal) Pillerin Risk Analizi

Yıl 2024, Cilt: 2 Sayı: 2, 105 - 115, 31.12.2024

Öz

Bu çalışma, ısıl (termal) pillerin havacılık ve askeri uygulamalardaki kullanımı, yapısı, çalışma prensipleri ve risk analizi üzerine odaklanmaktadır. Amaç, ısıl pillerin yüksek enerji yoğunluğu, güvenilirlik ve dayanıklılık gibi özelliklerini inceleyerek, bu pillerin güç sistemlerinde nasıl etkin bir şekilde kullanılabileceğini ortaya koymaktır. Literatür taraması ve mevcut ısıl pil tasarımlarının analizi yoluyla gerçekleştirilen çalışmada, farklı kimyasal malzemeler ve elektrolit sistemleri performans ve güvenlik açısından değerlendirilmiştir. Bulgular, ısıl pillerin yüksek enerji yoğunluğu ve uzun ömürlü olması nedeniyle havacılık ve askeri uygulamalarda tercih edildiğini, ancak ısıl yönetim, kimyasal reaktivite ve çevresel etkiler gibi zorluklarla karşılaşıldığını göstermektedir. Sonuç olarak, ısıl pillerin güvenli ve verimli bir şekilde kullanılabilmesi için ileri malzeme teknolojileri ve optimize edilmiş tasarımlar gerektiği, çevresel sürdürülebilirlik ve maliyet etkinliğinin de önemli olduğu vurgulanmıştır.

Kaynakça

  • Ali, S. (2023). Electrochemical devices: History of electrochemistry. doi: 10.1016/b978-0-323-96022-9.00022-0.
  • Butler, P., Guidotti, R.A., Moya, L., Reinhardt, F., & Peterkin, F. (2002). High power thermal battery development. In Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop. Conference Record of the Twenty-Fifth International (pp. 1–4). IEEE.
  • Cha, J., Choi, D., Park, S., Jung, K., & Lee, S. (2006). Advanced emergency power system using thermal battery for future aircraft. In 4th International Energy Conversion Engineering Conference and Exhibit (IECEC) (p. 4161).
  • Chen-Glasser, M., & DeCaluwe, S. C. (2022). A review on the socio-environmental impacts of lithium supply for electric aircraft. Frontiers in Aerospace Engineering, 1, 1058940.
  • Crompton, T. R. (2000). Battery Reference Book (3rd ed.). Newnes. p. Glossary 3. ISBN 978-0-08-049995-6.
  • Dennis, A., & Corrigan, D.A. (2022). Electric Vehicle Batteries: Past, Present, and Future. The Electrochemical Society Interface, 31(3), 63.
  • de Freitas, F., Peixoto, F., & Vianna Jr, A. D. S. (2008). Simulation of a thermal battery using Phoenics (R). Journal of Power Sources, 179(1), 424-429.
  • Fujiwara, S., Inaba, M., & Tasaka, A. (2011). New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiF–LiCl, LiF–LiBr, and LiCl–LiBr. Journal of Power Sources, 196, 4012–4018.
  • Fujiwara, S., Kato, F., Watanabe, S., Inaba, M., & Tasaka, A. (2009). New iodide-based molten salt systems for high temperature molten salt batteries. Journal of Power Sources, 194, 1180–1183.
  • Faget. L. (2023). 1. Thermal Batteries as Power Sources for Space Applications. In 2023 13th European Space Power Conference (ESPC) (pp. 1-3). IEEE.
  • Gaddam, R., & Zhao, X. S. (2023). Handbook of Sodium-Ion Batteries Materials and Characterization, Rechargeable Ion Batteries. Singapore: Jenny Stanford Publishing.
  • Guidotti, R. A., & Masset, P. (2006). Thermally activated (“thermal”) battery technology: Part I: An overview. Journal of Power Sources, 161(2), 1443–1449.
  • Guidotti, R. A., & Masset, P. J. (2008). Thermally activated (“thermal”) battery technology: Part IV. Anode materials. Journal of Power Sources, 183(1), 388-398.
  • Guidotti, R.A., Scharrer, G.L., Binasiwicz, E., & Reinhardt, F.W. (1998). Feasibility of an 8kW/kg, 5-minute thermal battery. IEEE, 0-7803-4245-5/98.
  • Heit, Z., & Liscouet-Hanke, S. (2023). Estimation of Battery Pack Layout and Dimensions for the Conceptual Design of Hybrid-Electric Aircraft, In AIAA SCITECH 2023 Forum (p. 1362).
  • Iton, Z. W. B., Kim, S. S., Patheria, E. S., Qian, M. D., Ware, S. D., & See, K. A. (2023). Battery materials. In J. Reedijk & K. R. Poeppelmeier (Eds.), Comprehensive Inorganic Chemistry III (3rd ed., pp. 308-363). Elsevier. İdin, Ş. (2018). Güdümlü mühimmatın kalbi: Isıl pil. Bilim ve Teknik, 26-29.
  • Jiandong, C., & Shiqiang, Z. (2023). The battery cooling design and simulation study in multirotor eVTOL aircraft. In Proceedings of the 79th Annual Vertical Flight Society Forum and Technology Display, FORUM 79 (pp. 934-939). Vertical Flight Society.
  • Kauffman, S., & Chagnon, G. (1992). Thermal battery for aircraft emergency power. IEEE, 0-7803-0552-3/92. Kocher, J. D., Woods, J., Odukomaiya, A., & Yee, S. K. (2024). Thermal batteries cost scaling analysis minimizing the cost per kWh. Energy & Environmental Science, 17(2).
  • Kumar, R. V., & Sarakonsri, T. (2022). Introduction to electrochemical cells. In Rechargeable Ion Batteries (Chapter 1).
  • Masset, P.J., & Guidotti, R.A. (2008). Thermal activated (“thermal”) battery technology Part IIIa: FeS2 cathode material. Journal of Power Sources, 177, 595–609.
  • Pauling, L. (1988). General Chemistry. Dover Publications, Inc. p. 539. ISBN 978-0-486-65622-9.
  • Pistoia, G. (2005). Batteries for Portable Devices. Elsevier. p. 1. ISBN 978-0-08-045556-3.
  • Srivastava, V., Rantala, V., Mehdipour, P., Kauppinen, T., Tuomikoski, S., Heponiemi, A., Runtti, H., Tynjälä, P., Simões Dos Reis, G., & Lassi, U. (2023). A comprehensive review of the reclamation of resources from spent lithium-ion batteries. Chemical Engineering Journal, 474, Article 145822.
  • Sun, H. (2023). Batteries on aircrafts: Challenges & Expectations. Highlights in Science, Engineering and Technology, 32, 115-121.
  • TÜBİTAK SAGE. (2024). Savunma Sanayii Araştırma ve Geliştirme Enstitüsü Pil Teknolojileri Birimi. (Erişim tarihi: 08.06.2024).
  • Li, W., Zhou, Y., Zhang, H., & Tang, X. (2023). A review on battery thermal management for new energy vehicles. Energies, 16(13), 4845.
  • Yıldız, M. (2021). Battery management system architectures for unmanned air vehicles: A strategic issue. Journal of Anadolu Strategy, 1, 1-12.
  • Zdunich, P., Crain, A. D., Gibney, E., Hernandez, M., Recoskie, S., MacRae, N., Jang, D., Tang, J., & Naboka, O. (2023). Experimental validation of a module-level battery safety system for thermal runaway containment. In Electrical Energy Generation, Storage, & Management I (AIAA 2023-3988).
  • Zimmerschied, K., & Gahl, J. (2010). Modulated high power thermal battery test stand. IEEE, 978-1-4244-7129-4/10.

Risk Analysis of Thermal Batteries Used in Aviation

Yıl 2024, Cilt: 2 Sayı: 2, 105 - 115, 31.12.2024

Öz

This study focuses on the use, structure, operating principles, and risk analysis of thermal batteries in aviation and military applications. The aim is to examine the characteristics of thermal batteries, such as high energy density, reliability, and durability, to determine how they can be effectively utilized in power systems. The study was conducted through a literature review and analysis of existing thermal battery designs, evaluating different chemical materials and electrolyte systems in terms of performance and safety. The findings indicate that thermal batteries are preferred in aviation and military applications due to their high energy density and long lifespan, but challenges such as thermal management, chemical reactivity, and environmental impacts remain. In conclusion, the safe and efficient use of thermal batteries requires advanced material technologies and optimized designs, with an emphasis on environmental sustainability and cost-effectiveness in future developments.

Kaynakça

  • Ali, S. (2023). Electrochemical devices: History of electrochemistry. doi: 10.1016/b978-0-323-96022-9.00022-0.
  • Butler, P., Guidotti, R.A., Moya, L., Reinhardt, F., & Peterkin, F. (2002). High power thermal battery development. In Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop. Conference Record of the Twenty-Fifth International (pp. 1–4). IEEE.
  • Cha, J., Choi, D., Park, S., Jung, K., & Lee, S. (2006). Advanced emergency power system using thermal battery for future aircraft. In 4th International Energy Conversion Engineering Conference and Exhibit (IECEC) (p. 4161).
  • Chen-Glasser, M., & DeCaluwe, S. C. (2022). A review on the socio-environmental impacts of lithium supply for electric aircraft. Frontiers in Aerospace Engineering, 1, 1058940.
  • Crompton, T. R. (2000). Battery Reference Book (3rd ed.). Newnes. p. Glossary 3. ISBN 978-0-08-049995-6.
  • Dennis, A., & Corrigan, D.A. (2022). Electric Vehicle Batteries: Past, Present, and Future. The Electrochemical Society Interface, 31(3), 63.
  • de Freitas, F., Peixoto, F., & Vianna Jr, A. D. S. (2008). Simulation of a thermal battery using Phoenics (R). Journal of Power Sources, 179(1), 424-429.
  • Fujiwara, S., Inaba, M., & Tasaka, A. (2011). New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiF–LiCl, LiF–LiBr, and LiCl–LiBr. Journal of Power Sources, 196, 4012–4018.
  • Fujiwara, S., Kato, F., Watanabe, S., Inaba, M., & Tasaka, A. (2009). New iodide-based molten salt systems for high temperature molten salt batteries. Journal of Power Sources, 194, 1180–1183.
  • Faget. L. (2023). 1. Thermal Batteries as Power Sources for Space Applications. In 2023 13th European Space Power Conference (ESPC) (pp. 1-3). IEEE.
  • Gaddam, R., & Zhao, X. S. (2023). Handbook of Sodium-Ion Batteries Materials and Characterization, Rechargeable Ion Batteries. Singapore: Jenny Stanford Publishing.
  • Guidotti, R. A., & Masset, P. (2006). Thermally activated (“thermal”) battery technology: Part I: An overview. Journal of Power Sources, 161(2), 1443–1449.
  • Guidotti, R. A., & Masset, P. J. (2008). Thermally activated (“thermal”) battery technology: Part IV. Anode materials. Journal of Power Sources, 183(1), 388-398.
  • Guidotti, R.A., Scharrer, G.L., Binasiwicz, E., & Reinhardt, F.W. (1998). Feasibility of an 8kW/kg, 5-minute thermal battery. IEEE, 0-7803-4245-5/98.
  • Heit, Z., & Liscouet-Hanke, S. (2023). Estimation of Battery Pack Layout and Dimensions for the Conceptual Design of Hybrid-Electric Aircraft, In AIAA SCITECH 2023 Forum (p. 1362).
  • Iton, Z. W. B., Kim, S. S., Patheria, E. S., Qian, M. D., Ware, S. D., & See, K. A. (2023). Battery materials. In J. Reedijk & K. R. Poeppelmeier (Eds.), Comprehensive Inorganic Chemistry III (3rd ed., pp. 308-363). Elsevier. İdin, Ş. (2018). Güdümlü mühimmatın kalbi: Isıl pil. Bilim ve Teknik, 26-29.
  • Jiandong, C., & Shiqiang, Z. (2023). The battery cooling design and simulation study in multirotor eVTOL aircraft. In Proceedings of the 79th Annual Vertical Flight Society Forum and Technology Display, FORUM 79 (pp. 934-939). Vertical Flight Society.
  • Kauffman, S., & Chagnon, G. (1992). Thermal battery for aircraft emergency power. IEEE, 0-7803-0552-3/92. Kocher, J. D., Woods, J., Odukomaiya, A., & Yee, S. K. (2024). Thermal batteries cost scaling analysis minimizing the cost per kWh. Energy & Environmental Science, 17(2).
  • Kumar, R. V., & Sarakonsri, T. (2022). Introduction to electrochemical cells. In Rechargeable Ion Batteries (Chapter 1).
  • Masset, P.J., & Guidotti, R.A. (2008). Thermal activated (“thermal”) battery technology Part IIIa: FeS2 cathode material. Journal of Power Sources, 177, 595–609.
  • Pauling, L. (1988). General Chemistry. Dover Publications, Inc. p. 539. ISBN 978-0-486-65622-9.
  • Pistoia, G. (2005). Batteries for Portable Devices. Elsevier. p. 1. ISBN 978-0-08-045556-3.
  • Srivastava, V., Rantala, V., Mehdipour, P., Kauppinen, T., Tuomikoski, S., Heponiemi, A., Runtti, H., Tynjälä, P., Simões Dos Reis, G., & Lassi, U. (2023). A comprehensive review of the reclamation of resources from spent lithium-ion batteries. Chemical Engineering Journal, 474, Article 145822.
  • Sun, H. (2023). Batteries on aircrafts: Challenges & Expectations. Highlights in Science, Engineering and Technology, 32, 115-121.
  • TÜBİTAK SAGE. (2024). Savunma Sanayii Araştırma ve Geliştirme Enstitüsü Pil Teknolojileri Birimi. (Erişim tarihi: 08.06.2024).
  • Li, W., Zhou, Y., Zhang, H., & Tang, X. (2023). A review on battery thermal management for new energy vehicles. Energies, 16(13), 4845.
  • Yıldız, M. (2021). Battery management system architectures for unmanned air vehicles: A strategic issue. Journal of Anadolu Strategy, 1, 1-12.
  • Zdunich, P., Crain, A. D., Gibney, E., Hernandez, M., Recoskie, S., MacRae, N., Jang, D., Tang, J., & Naboka, O. (2023). Experimental validation of a module-level battery safety system for thermal runaway containment. In Electrical Energy Generation, Storage, & Management I (AIAA 2023-3988).
  • Zimmerschied, K., & Gahl, J. (2010). Modulated high power thermal battery test stand. IEEE, 978-1-4244-7129-4/10.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Uzay Bilimleri (Diğer), Kimyasal Termodinamik ve Enerji Bilimi, Elektrik Enerjisi Depolama
Bölüm Derlemeler
Yazarlar

Ozan Öztürk 0000-0002-4959-6808

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 19 Kasım 2024
Kabul Tarihi 14 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 2

Kaynak Göster

APA Öztürk, O. (2024). Havacılıkta Kullanılan Isıl (Termal) Pillerin Risk Analizi. Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 105-115.