Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeşil Duvar Uygulamalarının Isıtma Yükü ve Karbon Emisyonu Üzerindeki Etkileri: Karadeniz Teknik Üniversitesi

Yıl 2025, Cilt: 2 Sayı: 2, 137 - 153, 31.07.2025

Öz

Yeşil çatı ve duvar sistemleri, enerji verimliliğinin artırılması, karbon emisyonlarının azaltılması ve kentsel ısı adası etkisinin hafifletilmesi gibi çevresel faydalar sunan sürdürülebilir mimari uygulamalardır. İç ve dış ortam sıcaklık farklarını azaltmak için bina cephelerine entegre edilen bu sistemler, ısıtma ve soğutma gereksinimlerini optimize ederken estetik, akustik ve hava kalitesi açısından da avantajlar sağlamaktadır. Bu çalışma, Karadeniz Teknik Üniversitesi Hasan Polat Kapalı Spor Salonu'nun güney cephesine entegre edilen yeşil duvar sisteminin enerji performansı üzerindeki etkisini araştırmaktadır. Simülasyon analizleri, yeşil duvarın mevcut cepheye kıyasla yıllık ısıtma yükünü %1,1 ve operasyonel karbon emisyonlarını %0,67 oranında azalttığını göstermektedir. Bununla birlikte, somutlaştırılmış karbon miktarında %2,06 ve maliyette %1,4'lük bir artış gözlemlenmiştir. Doğu Karadeniz bölgesinin nemli ve ılıman iklim koşulları, bitki örtüsünü yıl boyunca canlı tutarak yeşil duvar sistemlerinin etkinliğini artırabilir. Ayrıca, yüksek nem seviyelerinin neden olduğu yoğuşmayı dengeleyerek yapı malzemelerinin korunmasına da katkıda bulunabilir. Sonuç olarak, yeşil duvar sistemleri bu tür iklim bölgelerinde enerji tasarrufu ve sürdürülebilirlik için önemli bir strateji olarak düşünülebilir.

Kaynakça

  • Ab. Azis, S. S., Sipan, I., Sapri, M., Mohd Yusoff, N. S., & Abdullah Hashim, H. (2019). Comparison on energy saving: Green roof and green wall. Planning Malaysia Journal, 17(9). https://doi.org/10.21837/pmjournal.v17.i9.585
  • Adejumo, A. O., Oyewole, M. O., Araloyi, F. M., & Adebara, T. M. (2022). Factors influencing users’ preference for green features in residential buildings: Experience from Ibadan Municipality, Nigeria. Nigerian Journal of Environmental Sciences and Technology, 6(1), 47–57. https://doi.org/10.36263/nijest.2022.01.0328
  • Akadiri, P. O. (2015). Understanding barriers affecting the selection of sustainable materials in building projects. Journal of Building Engineering, 4, 86–93. https://doi.org/10.1016/j.jobe.2015.08.006
  • Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70(3), 295–310. https://doi.org/10.1016/S0038-092X(00)00089-X
  • Alexandri, E., & Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, 43(4), 480–493. https://doi.org/10.1016/j.buildenv.2006.10.055
  • Al-Kayiem, H. H., Effendy, M., Riyadi, T. W. B., Kurnia, J. C., & Morganadus, A. (2023). Influence of life green wall and roof shedding on the internal thermal condition of buildings: Case study in Malaysia (pp. 35–45). https://doi.org/10.1007/978-981-19-1939-8_3
  • Anshebo, M. A., Mengesha, W. J., & Sokido, D. L. (2022). Selection of the most appropriate sustainable buildings assessment categories and criteria for developing countries: Case of Ethiopia. Urban and Regional Planning, 7(2), 55. https://doi.org/10.11648/j.urp.20220702.14
  • Carter, T., & Jackson, C. R. (2007). Vegetated roofs for stormwater management at multiple spatial scales. Landscape and Urban Planning, 80(1–2), 84–94. https://doi.org/10.1016/j.landurbplan.2006.06.005
  • Chen, C., Bi, L., & Zhu, K. (2021). Study on spatial-temporal change of urban green space in yangtze river economic belt and its driving mechanism. International Journal of Environmental Research and Public Health, 18(23), 12498. https://doi.org/10.3390/ijerph182312498
  • Conceição, E., Gomes, J., & Awbi, H. (2019). Influence of the airflow in a solar passive building on the indoor air quality and thermal comfort levels. Atmosphere, 10(12), 766. https://doi.org/10.3390/atmos10120766
  • Deshpande, A., Pagare, A., & Tomar, A. (2024). Assessing the efficacy of green building design strategies in minimizing energy consumption in commercial buildings of Mumbai: A building performance analysis. International Journal of Science and Research Archive, 11(1), 031–039. https://doi.org/10.30574/ijsra.2024.11.1.1101
  • Doll, B. A., Wise‐Frederick, D. E., Buckner, C. M., Wilkerson, S. D., Harman, W. A., Smith, R. E., & Spooner, J. (2002). Hydraulic geometry relationships for urban streams throughout the Piedmont of North Carolina. JAWRA Journal of the American Water Resources Association, 38(3), 641–651. https://doi.org/10.1111/j.1752-1688.2002.tb00986.x
  • Eghbali, Z., & Didari, A. (2018, June). Green building design and construction using concept of sustainability. https://doi.org/10.11159/iccste18.135
  • Eichholtz, P., Kok, N., & Quigley, J. M. (2013). The economics of green building. Review of Economics and Statistics, 95(1), 50–63. https://doi.org/10.1162/REST_a_00291
  • Fejes, Zs., & Gerzson, L. (2006). Development of different herbaceous perennial species on the experimental extensive green roof of Corvinus University Budapest. International Journal of Horticultural Science, 12(1). https://doi.org/10.31421/IJHS/12/1/628
  • Han, K.-T., Ruan, L.-W., & Liao, L.-S. (2022). Effects of indoor plants on human functions: A systematic review with meta-analyses. International Journal of Environmental Research and Public Health, 19(12), 7454. https://doi.org/10.3390/ijerph19127454
  • Huo, Y. J., Pu, L., & Zhao, W. (2012). A brief analysis of planning approaches to the reduction of urban carbon emissions. Applied Mechanics and Materials, 209–211, 1054–1057. https://doi.org/10.4028/www.scientific.net/AMM.209-211.1054
  • Jaffal, I., Ouldboukhitine, S.-E., & Belarbi, R. (2012). A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy, 43, 157–164. https://doi.org/10.1016/j.renene.2011.12.004
  • Kamel, B., Wahba, S., Nassar, K., & Abdelsalam, A. (2012). Effectiveness of green-roof on reducing energy consumption through simulation program for a residential building: Cairo, Egypt. Construction Research Congress 2012, 1740–1749. https://doi.org/10.1061/9780784412329.175
  • Kim, S., & Kim, S. (2023). Economic feasibility comparison between building-integrated photovoltaics and green systems in Northeast Texas. Energies, 16(12), 4672. https://doi.org/10.3390/en16124672
  • Köhler, M. (2008). Green facades: A view back and some visions. Urban Ecosystems, 11(4), 423–436. https://doi.org/10.1007/s11252-008-0063-x
  • Kováč, M. (2022). Green roofs on buildings – different view on its construction solution. IOP Conference Series: Materials Science and Engineering, 1252(1), 012080. https://doi.org/10.1088/1757-899X/1252/1/012080
  • Kubota, T., & Toe, D. H. C. (2015). Application of passive cooling techniques in vernacular houses to modern urban houses: A case study of Malaysia. Procedia - Social and Behavioral Sciences, 179, 29–39. https://doi.org/10.1016/j.sbspro.2015.02.408
  • Liu, X., & Chui, T. F. M. (2019). Evaluation of green roof performance in mitigating the impact of extreme storms. Water, 11(4), 815. https://doi.org/10.3390/w11040815
  • Mahmoud, A., Asif, M., Hassanain, M., Babsail, M., & Sanni-Anibire, M. (2017). Energy and economic evaluation of green roofs for residential buildings in hot-humid climates. Buildings, 7(2), 30. https://doi.org/10.3390/buildings7020030
  • Manning, M. M., Swinton, M. C., Szadkowski, F., Gusdorf, J., & Ruest, K. (2007). The effects of thermostat set-back and set-up on seasonal energy consumption, surface temperatures and recovery times at the CCHT Twin House facility. Ashrae Transactions, 113(1), 1–12.
  • Manzer, E. (2017). Sustainability through green roofs and walls in urban areas. Topophilia, 58–65. https://doi.org/10.29173/topo39 MGM. (2024). İllerimize ait genel istatistik verileri. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=TRABZON
  • Mir, M. A. (2011). Green facades and building structures [Master Thesis]. Tu Delft University.
  • Neuenschwander, N., Wissen Hayek, U., & Grêt-Regamey, A. (2014). Integrating an urban green space typology into procedural 3D visualization for collaborative planning. Computers, Environment and Urban Systems, 48, 99–110. https://doi.org/10.1016/j.compenvurbsys.2014.07.010
  • Nur Ramdiana, D., & Yola, L. (2023). The effect of vegetation and water body on thermal comfort in Banteng City Park, Jakarta. Planning Malaysia, 21. https://doi.org/10.21837/pm.v21i25.1238
  • Okwandu, A. C., Akande, D. O., & Nwokediegwu, Z. Q. S. (2024). Green architecture: Conceptualizing vertical greenery in urban design. Engineering Science & Technology Journal, 5(5), 1657–1677. https://doi.org/10.51594/estj.v5i5.1114
  • Ostendorf, M., Morgan, S., Celik, S., & Retzlaff, W. (2021). Evaluating the potential stormwater retention of a living retaining wall system. Journal of Living Architecture, 8(1), 1–18. https://doi.org/10.46534/jliv.2021.08.01.001
  • Pauleit, S., Ennos, R., & Golding, Y. (2005). Modeling the environmental impacts of urban land use and land cover change -a study in Merseyside, UK. Landscape and Urban Planning, 71(2–4), 295–310. https://doi.org/10.1016/j.landurbplan.2004.03.009
  • Pérez, G., Coma, J., Sol, S., & Cabeza, L. F. (2017). Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Applied Energy, 187, 424-437. https://doi.org/10.1016/j.apenergy.2016.11.055
  • Pragati, S., Shanthi Priya, R., Pradeepa, C., & Senthil, R. (2023). Simulation of the energy performance of a building with green roofs and green walls in a tropical climate. Sustainability, 15(3), 2006. https://doi.org/10.3390/su15032006
  • Qin, B., Zou, W., Jiang, N., & Lu, Y. (2023). Study on building energy saving effect and thermal response of roof greening in extremely hot weather. E3S Web of Conferences, 406, 02043. https://doi.org/10.1051/e3sconf/202340602043
  • Ryu, J. H., Lee, H. B., Kim, C. M., Jung, H. H., & Kim, K. S. (2014). Cold tolerance of ground cover plants for use as green roofs and walls. Horticultural Science and Technology, 32(5), 590–599. https://doi.org/10.7235/hort.2014.14035
  • Sabbagh, M., Mansour, O., & Banawi, A. (2019). Grease the green wheels: A Framework for expediting the green building movement in the Arab world. Sustainability, 11(20), 5545. https://doi.org/10.3390/su11205545
  • Sailor, D. J. (2008). A green roof model for building energy simulation programs. Energy and Buildings, 40(8), 1466–1478. https://doi.org/10.1016/j.enbuild.2008.02.001
  • Sapuan, N. M., Haron, N. F., Vija Kumaran, V., Saudi, N. S., & Ridzuan, A. R. (2022). Green building best practices in achieving energy and environmental sustainability. Environmental Management and Sustainable Development, 11(4), 74. https://doi.org/10.5296/emsd.v11i4.21052
  • Sheweka, S. M., & Mohamed, N. M. (2012). Green facades as a new sustainable approach towards climate change. Energy Procedia, 18, 507–520. https://doi.org/10.1016/j.egypro.2012.05.062
  • Song, Y., Song, X., & Shao, G. (2020). Effects of green space patterns on urban thermal environment at multiple spatial–temporal scales. Sustainability, 12(17), 6850. https://doi.org/10.3390/su12176850
  • Tan, H., Hao, X., Long, P., Xing, Q., Lin, Y., & Hu, J. (2020). Building envelope integrated green plants for energy saving. Energy Exploration & Exploitation, 38(1), 222–234. https://doi.org/10.1177/0144598719875529
  • Terfa, B. K., Chen, N., Zhang, X., & Niyogi, D. (2020). Spatial configuration and extent explains the urban heat mitigation potential due to green spaces: Analysis over Addis Ababa, Ethiopia. Remote Sensing, 12(18), 2876. https://doi.org/10.3390/rs12182876
  • Yalcinalp, E., Ozveren, S., Meral, A., Pulatkan, M., & Akbulut, S. (2017). Habitat effect on urban roof vegetation. Sustainability, 9(11), 1985. https://doi.org/10.3390/su9111985
  • Yao, L., Chen, L., Wei, W., & Sun, R. (2015). Potential reduction in urban runoff by green spaces in Beijing: A scenario analysis. Urban Forestry & Urban Greening, 14(2), 300–308. https://doi.org/10.1016/j.ufug.2015.02.014
  • Zheng, Y., & Chen, L. (2023). Modeling the effect of green roofs for building energy savings and air pollution reduction in Shanghai. Sustainability, 16(1), 286. https://doi.org/10.3390/su16010286
  • Zuo, J., & Zhao, Z. Y. (2014). Green building research–current status and future agenda: A review. Renewable and Sustainable Energy Reviews, 30, 271–281. https://doi.org/10.1016/j.rser.2013.10.021

The Effects of Green Wall Applications on Heating Load and Carbon Emissions: Karadeniz Technical University

Yıl 2025, Cilt: 2 Sayı: 2, 137 - 153, 31.07.2025

Öz

Green roof and wall systems are sustainable architectural practices that offer environmental benefits such as increasing energy efficiency, reducing carbon emissions, and mitigating the urban heat island effect. These systems, which are integrated into building façades to reduce indoor and outdoor temperature differences, optimise heating and cooling requirements while also providing advantages in terms of aesthetics, acoustics, and air quality. This study investigates the effect of the green wall system integrated into the south façade of Karadeniz Technical University Hasan Polat Indoor Sports Hall on energy performance. The simulation analyses show that the green wall reduces the annual heating load by 6.84% and operational carbon emissions by 4.54% compared to the existing façade. However, an increase of 13.1% in the amount of embodied carbon was observed. The humid and mild climatic conditions of the Eastern Black Sea region can increase the effectiveness of green wall systems, keeping vegetation alive throughout the year. It can also contribute to the preservation of building materials by stabilising condensation caused by high humidity levels. As a result, green wall systems can be considered as an important strategy for energy saving and sustainability in such climate zones.

Kaynakça

  • Ab. Azis, S. S., Sipan, I., Sapri, M., Mohd Yusoff, N. S., & Abdullah Hashim, H. (2019). Comparison on energy saving: Green roof and green wall. Planning Malaysia Journal, 17(9). https://doi.org/10.21837/pmjournal.v17.i9.585
  • Adejumo, A. O., Oyewole, M. O., Araloyi, F. M., & Adebara, T. M. (2022). Factors influencing users’ preference for green features in residential buildings: Experience from Ibadan Municipality, Nigeria. Nigerian Journal of Environmental Sciences and Technology, 6(1), 47–57. https://doi.org/10.36263/nijest.2022.01.0328
  • Akadiri, P. O. (2015). Understanding barriers affecting the selection of sustainable materials in building projects. Journal of Building Engineering, 4, 86–93. https://doi.org/10.1016/j.jobe.2015.08.006
  • Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70(3), 295–310. https://doi.org/10.1016/S0038-092X(00)00089-X
  • Alexandri, E., & Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, 43(4), 480–493. https://doi.org/10.1016/j.buildenv.2006.10.055
  • Al-Kayiem, H. H., Effendy, M., Riyadi, T. W. B., Kurnia, J. C., & Morganadus, A. (2023). Influence of life green wall and roof shedding on the internal thermal condition of buildings: Case study in Malaysia (pp. 35–45). https://doi.org/10.1007/978-981-19-1939-8_3
  • Anshebo, M. A., Mengesha, W. J., & Sokido, D. L. (2022). Selection of the most appropriate sustainable buildings assessment categories and criteria for developing countries: Case of Ethiopia. Urban and Regional Planning, 7(2), 55. https://doi.org/10.11648/j.urp.20220702.14
  • Carter, T., & Jackson, C. R. (2007). Vegetated roofs for stormwater management at multiple spatial scales. Landscape and Urban Planning, 80(1–2), 84–94. https://doi.org/10.1016/j.landurbplan.2006.06.005
  • Chen, C., Bi, L., & Zhu, K. (2021). Study on spatial-temporal change of urban green space in yangtze river economic belt and its driving mechanism. International Journal of Environmental Research and Public Health, 18(23), 12498. https://doi.org/10.3390/ijerph182312498
  • Conceição, E., Gomes, J., & Awbi, H. (2019). Influence of the airflow in a solar passive building on the indoor air quality and thermal comfort levels. Atmosphere, 10(12), 766. https://doi.org/10.3390/atmos10120766
  • Deshpande, A., Pagare, A., & Tomar, A. (2024). Assessing the efficacy of green building design strategies in minimizing energy consumption in commercial buildings of Mumbai: A building performance analysis. International Journal of Science and Research Archive, 11(1), 031–039. https://doi.org/10.30574/ijsra.2024.11.1.1101
  • Doll, B. A., Wise‐Frederick, D. E., Buckner, C. M., Wilkerson, S. D., Harman, W. A., Smith, R. E., & Spooner, J. (2002). Hydraulic geometry relationships for urban streams throughout the Piedmont of North Carolina. JAWRA Journal of the American Water Resources Association, 38(3), 641–651. https://doi.org/10.1111/j.1752-1688.2002.tb00986.x
  • Eghbali, Z., & Didari, A. (2018, June). Green building design and construction using concept of sustainability. https://doi.org/10.11159/iccste18.135
  • Eichholtz, P., Kok, N., & Quigley, J. M. (2013). The economics of green building. Review of Economics and Statistics, 95(1), 50–63. https://doi.org/10.1162/REST_a_00291
  • Fejes, Zs., & Gerzson, L. (2006). Development of different herbaceous perennial species on the experimental extensive green roof of Corvinus University Budapest. International Journal of Horticultural Science, 12(1). https://doi.org/10.31421/IJHS/12/1/628
  • Han, K.-T., Ruan, L.-W., & Liao, L.-S. (2022). Effects of indoor plants on human functions: A systematic review with meta-analyses. International Journal of Environmental Research and Public Health, 19(12), 7454. https://doi.org/10.3390/ijerph19127454
  • Huo, Y. J., Pu, L., & Zhao, W. (2012). A brief analysis of planning approaches to the reduction of urban carbon emissions. Applied Mechanics and Materials, 209–211, 1054–1057. https://doi.org/10.4028/www.scientific.net/AMM.209-211.1054
  • Jaffal, I., Ouldboukhitine, S.-E., & Belarbi, R. (2012). A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy, 43, 157–164. https://doi.org/10.1016/j.renene.2011.12.004
  • Kamel, B., Wahba, S., Nassar, K., & Abdelsalam, A. (2012). Effectiveness of green-roof on reducing energy consumption through simulation program for a residential building: Cairo, Egypt. Construction Research Congress 2012, 1740–1749. https://doi.org/10.1061/9780784412329.175
  • Kim, S., & Kim, S. (2023). Economic feasibility comparison between building-integrated photovoltaics and green systems in Northeast Texas. Energies, 16(12), 4672. https://doi.org/10.3390/en16124672
  • Köhler, M. (2008). Green facades: A view back and some visions. Urban Ecosystems, 11(4), 423–436. https://doi.org/10.1007/s11252-008-0063-x
  • Kováč, M. (2022). Green roofs on buildings – different view on its construction solution. IOP Conference Series: Materials Science and Engineering, 1252(1), 012080. https://doi.org/10.1088/1757-899X/1252/1/012080
  • Kubota, T., & Toe, D. H. C. (2015). Application of passive cooling techniques in vernacular houses to modern urban houses: A case study of Malaysia. Procedia - Social and Behavioral Sciences, 179, 29–39. https://doi.org/10.1016/j.sbspro.2015.02.408
  • Liu, X., & Chui, T. F. M. (2019). Evaluation of green roof performance in mitigating the impact of extreme storms. Water, 11(4), 815. https://doi.org/10.3390/w11040815
  • Mahmoud, A., Asif, M., Hassanain, M., Babsail, M., & Sanni-Anibire, M. (2017). Energy and economic evaluation of green roofs for residential buildings in hot-humid climates. Buildings, 7(2), 30. https://doi.org/10.3390/buildings7020030
  • Manning, M. M., Swinton, M. C., Szadkowski, F., Gusdorf, J., & Ruest, K. (2007). The effects of thermostat set-back and set-up on seasonal energy consumption, surface temperatures and recovery times at the CCHT Twin House facility. Ashrae Transactions, 113(1), 1–12.
  • Manzer, E. (2017). Sustainability through green roofs and walls in urban areas. Topophilia, 58–65. https://doi.org/10.29173/topo39 MGM. (2024). İllerimize ait genel istatistik verileri. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=TRABZON
  • Mir, M. A. (2011). Green facades and building structures [Master Thesis]. Tu Delft University.
  • Neuenschwander, N., Wissen Hayek, U., & Grêt-Regamey, A. (2014). Integrating an urban green space typology into procedural 3D visualization for collaborative planning. Computers, Environment and Urban Systems, 48, 99–110. https://doi.org/10.1016/j.compenvurbsys.2014.07.010
  • Nur Ramdiana, D., & Yola, L. (2023). The effect of vegetation and water body on thermal comfort in Banteng City Park, Jakarta. Planning Malaysia, 21. https://doi.org/10.21837/pm.v21i25.1238
  • Okwandu, A. C., Akande, D. O., & Nwokediegwu, Z. Q. S. (2024). Green architecture: Conceptualizing vertical greenery in urban design. Engineering Science & Technology Journal, 5(5), 1657–1677. https://doi.org/10.51594/estj.v5i5.1114
  • Ostendorf, M., Morgan, S., Celik, S., & Retzlaff, W. (2021). Evaluating the potential stormwater retention of a living retaining wall system. Journal of Living Architecture, 8(1), 1–18. https://doi.org/10.46534/jliv.2021.08.01.001
  • Pauleit, S., Ennos, R., & Golding, Y. (2005). Modeling the environmental impacts of urban land use and land cover change -a study in Merseyside, UK. Landscape and Urban Planning, 71(2–4), 295–310. https://doi.org/10.1016/j.landurbplan.2004.03.009
  • Pérez, G., Coma, J., Sol, S., & Cabeza, L. F. (2017). Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Applied Energy, 187, 424-437. https://doi.org/10.1016/j.apenergy.2016.11.055
  • Pragati, S., Shanthi Priya, R., Pradeepa, C., & Senthil, R. (2023). Simulation of the energy performance of a building with green roofs and green walls in a tropical climate. Sustainability, 15(3), 2006. https://doi.org/10.3390/su15032006
  • Qin, B., Zou, W., Jiang, N., & Lu, Y. (2023). Study on building energy saving effect and thermal response of roof greening in extremely hot weather. E3S Web of Conferences, 406, 02043. https://doi.org/10.1051/e3sconf/202340602043
  • Ryu, J. H., Lee, H. B., Kim, C. M., Jung, H. H., & Kim, K. S. (2014). Cold tolerance of ground cover plants for use as green roofs and walls. Horticultural Science and Technology, 32(5), 590–599. https://doi.org/10.7235/hort.2014.14035
  • Sabbagh, M., Mansour, O., & Banawi, A. (2019). Grease the green wheels: A Framework for expediting the green building movement in the Arab world. Sustainability, 11(20), 5545. https://doi.org/10.3390/su11205545
  • Sailor, D. J. (2008). A green roof model for building energy simulation programs. Energy and Buildings, 40(8), 1466–1478. https://doi.org/10.1016/j.enbuild.2008.02.001
  • Sapuan, N. M., Haron, N. F., Vija Kumaran, V., Saudi, N. S., & Ridzuan, A. R. (2022). Green building best practices in achieving energy and environmental sustainability. Environmental Management and Sustainable Development, 11(4), 74. https://doi.org/10.5296/emsd.v11i4.21052
  • Sheweka, S. M., & Mohamed, N. M. (2012). Green facades as a new sustainable approach towards climate change. Energy Procedia, 18, 507–520. https://doi.org/10.1016/j.egypro.2012.05.062
  • Song, Y., Song, X., & Shao, G. (2020). Effects of green space patterns on urban thermal environment at multiple spatial–temporal scales. Sustainability, 12(17), 6850. https://doi.org/10.3390/su12176850
  • Tan, H., Hao, X., Long, P., Xing, Q., Lin, Y., & Hu, J. (2020). Building envelope integrated green plants for energy saving. Energy Exploration & Exploitation, 38(1), 222–234. https://doi.org/10.1177/0144598719875529
  • Terfa, B. K., Chen, N., Zhang, X., & Niyogi, D. (2020). Spatial configuration and extent explains the urban heat mitigation potential due to green spaces: Analysis over Addis Ababa, Ethiopia. Remote Sensing, 12(18), 2876. https://doi.org/10.3390/rs12182876
  • Yalcinalp, E., Ozveren, S., Meral, A., Pulatkan, M., & Akbulut, S. (2017). Habitat effect on urban roof vegetation. Sustainability, 9(11), 1985. https://doi.org/10.3390/su9111985
  • Yao, L., Chen, L., Wei, W., & Sun, R. (2015). Potential reduction in urban runoff by green spaces in Beijing: A scenario analysis. Urban Forestry & Urban Greening, 14(2), 300–308. https://doi.org/10.1016/j.ufug.2015.02.014
  • Zheng, Y., & Chen, L. (2023). Modeling the effect of green roofs for building energy savings and air pollution reduction in Shanghai. Sustainability, 16(1), 286. https://doi.org/10.3390/su16010286
  • Zuo, J., & Zhao, Z. Y. (2014). Green building research–current status and future agenda: A review. Renewable and Sustainable Energy Reviews, 30, 271–281. https://doi.org/10.1016/j.rser.2013.10.021
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlıkta Malzeme ve Teknoloji, Sürdürülebilir Mimari
Bölüm Araştırma Makalesi
Yazarlar

Ayça Akkan Çavdar 0000-0002-3333-8943

Gönderilme Tarihi 5 Mart 2025
Kabul Tarihi 25 Haziran 2025
Yayımlanma Tarihi 31 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 2

Kaynak Göster

APA Akkan Çavdar, A. (2025). The Effects of Green Wall Applications on Heating Load and Carbon Emissions: Karadeniz Technical University. Livenarch+ Journal, 2(2), 137-153.