İnceleme Makalesi
BibTex RIS Kaynak Göster

Binalarda Çift Kabuk Cephe Sistemlerinde Gün Işığı Performansının Değerlendirilmesi

Yıl 2026, Cilt: 3 Sayı: 1, 82 - 94, 31.01.2026
https://doi.org/10.65775/livenarch.1714468

Öz

Binalarda çift kabuk cephe (DSF) sistemlerinde günışığı performansı; cephe katmanlarının konfigürasyonu, boşluk derinliği, yönlenme, cam özellikleri ve gölgeleme elemanları gibi parametrelerden etkilenmektedir. Çok sayıda çalışma DSF’lerin ısıl ve enerji performansını incelemiş olsa da, özellikle günışığına odaklanan araştırmalar sınırlıdır. Bu çalışma, DSF’lerin günışığı performansını önceki araştırmalar üzerinden sistematik biçimde değerlendirmekte ve PRISMA protokolünü kullanmaktadır. Scopus ve Web of Science veri tabanlarında yapılan kapsamlı tarama sonucunda başlangıçta 503 yayın belirlenmiş, eleme süreci sonunda 24 uygun makale değerlendirmeye alınmıştır. Analiz, özellikle gölgeleme stratejileri, boşluk derinliği ve cephe yönlenmesi gibi mimari tasarım parametrelerinin günışığı sonuçlarını nasıl şekillendirdiğini ortaya koymaktadır. Genel olarak, DSF sistemleri tek kabuk cephelere kıyasla iç mekânda mutlak aydınlık seviyelerini azaltmakla birlikte, kamaşmayı minimize ederek ve daha homojen ışık dağılımı sağlayarak görsel konforu artırmaktadır. %37–50 deliklilik oranına sahip delikli paneller veya optimize edilmiş boşluk derinlikleri (40–90 cm) bulunan çok katlı DSF’ler gibi belirli konfigürasyonlar, faydalı günışığı aydınlatmasında %70’e varan iyileşmeler ve kamaşma olasılığında önemli azalmalar sağlamıştır. Bulgular, doğru şekilde tasarlandığında DSF’lerin günışığı sürekliliği, görsel konfor ve enerji verimliliği arasında denge kurabileceğini göstermektedir. Bu çalışma, nicel kanıtları bir araya getirerek ve DSF’lerin sürdürülebilir günışığı tasarım stratejilerine entegrasyonu için araştırma ihtiyaçlarını belirleyerek literatürdeki önemli bir boşluğu doldurmaktadır.

Kaynakça

  • Aksamija, A. (2018). Thermal energy and daylight analysis of different types of double skin facades in various climates. Journal of Facade Design and Engineering, 6(1), 1-39. https://doi.org/10.7480/jfde.2018.1.1527
  • Alrubaih, M. S., Zain, M. F. M., Alghoul, M. A., Ibrahim, N. L. N., Shameri, M. A., & Elayeb, O. (2013). Research and development on aspects of daylighting fundamentals. Renewable and Sustainable Energy Reviews, 21, 494-505.
  • Barbosa, S., & Ip, K. (2014). Perspectives of double skin facades for naturally ventilated buildings: A review. Renewable and Sustainable Energy Reviews, 40, 1019-1029.
  • Barbosa, S., & Ip, K. (2016). Predicted thermal acceptance in naturally ventilated office buildings with double skin facades under Brazilian climates. Journal of Building Engineering, 7, 92-102.
  • Barbosa, S., Alberto, K. C., & Piroozfar, P. (2024). Natural daylighting through double skin facades: A review. Architectural Engineering and Design Management. https://doi.org/10.1080/17452007.2024.2400711
  • Barone, G., Vardopoulos, I., Attia, S., & Vassilliades, C. (2024). Optimizing energy-efficient building renovation: Integrating double-skin facades with solar systems in the Mediterranean landscape. Energy Reports, 12, 2933-2945.
  • Bian, Y., Kim, J. J., & Kensek, K. (2020). Variable set points of glare control strategy for side-lit spaces: Daylight glare tolerance by time of day. Solar Energy, 201, 268–278. doi:10.1016/j.solener.2020.03.021
  • Chen, M., Zhang, W., Xie, L., He, B., Wang, W., Li, J., & Li, Z. (2021). Improvement of the electricity performance of bifacial PV module applied on the building envelope. Energy and Buildings, 238, 110849.
  • Cheshire, D., & Godefroy, J. (2020). Sustainability: CIBSE Guide L (p. 190). London: CIBSE – The Chartered Institution of Building Services Engineers.
  • Chi, D. A., Moreno, D., & Navarro, J. (2017). Design optimisation of perforated solar facades in order to balance daylighting with thermal performance. Building and Environment, 125, 383-400.
  • Dastoum, M., Sanchez Guevara, C., & Arranz, B. (2024). Efficient daylighting and thermal performance through tessellation of geometric patterns in building facade: A systematic review. Energy for Sustainable Development, 83, 101563. https://doi.org/10.1016/j.esd.2024.101563
  • Dewi, O. C., Rahmasari, K., Hanjani, T. A., Ismoyo, A. D., & Dugar, A. M. (2022). Window-to-Wall Ratio as a Mode of Daylight Optimization for an Educational Building with Opaque Double-Skin Facade. Journal of Sustainable Architecture and Civil Engineering, 30(1), 142-152. https://doi.org/10.5755/j01.sace.30.1.29744
  • ElBatran, R. M., & Ismaeel, W. S. E. (2021). Applying a parametric design approach for optimizing daylighting and visual comfort in office buildings. Ain Shams Engineering Journal, 12(3), 3275-3284.
  • Flor, J. F., Liu, X., Sun, Y., Beccarelli, P., Chilton, J., & Wu, Y. (2022). Switching daylight: Performance prediction of climate adaptive ETFE foil facades. Building and Environment, 209, 108650.
  • Gaspari, J., Fabbri, K., & Marchi, L. (2024). Investigating the influence of perforated facade skins on indoor illuminance level: A case study. Architectural Engineering and Design Management. https://doi.org/10.1080/17452007.2024.2322506
  • Gholami, H., & Talaei, M. (2024). Synergistic Strategies: Comparing Energy Performance in Climate-Adaptive Building Envelopes for Iran’s Cold Semi-Arid Climate. Journal of Daylighting, 11(2), 181–202. https://doi.org/10.15627/jd.2024.14
  • Gomes, M. G., Santos, A. J., & Calhau, M. (2022). Experimental study on the impact of double tilted Venetian blinds on indoor daylight conditions. Building and Environment, 225, 109675.
  • Hee, W. J., Tang, Y., & Lee, S. (2015). The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42, 323-343. doi:10.1016/j.rser.2014.10.027
  • Huang, L., Zou, K., Zhang, X., & Zhao, S. (2024). Effects of non-uniform perforated solar screen on daylighting and visual comfort performance. Journal of Building Engineering, 97, 110684.
  • Ioannidis, Z., Buonomano, A., Athienitis, A. K., & Stathopoulos, T. (2017). Modeling of double skin facades integrating photovoltaic panels and automated roller shades: Analysis of the thermal and electrical performance. Energy and Buildings, 154, 618-632. https://doi.org/10.1016/j.enbuild.2017.08.046
  • Khabir, S., & Vakilinezhad, R. (2023). Energy and thermal analysis of DSF in the retrofit design of office buildings in hot climates. Architectural Engineering and Design Management, 19(6), 642-664.
  • Khabir, S., Vakilinezhad, R., & Sepúlveda, A. (2024). Comparative analysis of space layouts and facade systems for office retrofit design in hot climate. Advances in Building Energy Research, 18(2), 126–155. https://doi.org/10.1080/17512549.2024.2343851
  • Kim, G., Lim, H. S., & Kim, J. T. (2015). Sustainable lighting performance of refurbished glazed walls for old residential buildings. Energy and Buildings, 91, 163-169. https://doi.org/10.1016/j.enbuild.2014.12.058
  • Konstantzos, I., et al. (2020). The effect of lighting environment on task performance in buildings – A review. Energy and Buildings, 226, 110394.
  • Le-Thanh, L., Nguyen-Thi-Viet, H., Lee, J., & Nguyen-Xuan, H. (2022). Machine learning-based real-time daylight analysis in buildings. Journal of Building Engineering, 52, 104374.
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. doi:10.1136/bmj.n71
  • Pariafsai, F. (2016). A review of design considerations in glass buildings. Frontiers of Architectural Research, 5(2), 171-193.
  • Pomponi, F., et al. (2016). Energy performance of double-skin facades in temperate climates: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 54, 1525–1539.
  • Roberts, F., Yang, S., Du, H., & Yang, R. (2023). Effect of semi-transparent a-Si PV glazing within double-skin facades on visual and energy performances under the UK climate condition. Renewable Energy, 207, 601–610. https://doi.org/10.1016/j.renene.2023.03.023
  • Srisamranrungruang, T., & Hiyama, K. (2021). Correlations between building performances and design parameters of double-skin facade utilizing perforated screen. Japan Architectural Review, 4(3), 533-544.
  • Tolba, L. E., El Mokadem, A. A., Badawy, N., & Shahda, M. M. (2023). A retrofitting framework for improving curtain wall performance by the integration of adaptive technologies. Journal of Building Engineering, 80, 107979. https://doi.org/10.1016/j.jobe.2023.107979
  • Unluturk, M. S., & Kazanasmaz, Z. T. (2024). Integration of Daylight Use and Analysis in Double Skin Facades: A Literature Review. Gazi University Journal of Science, 37(2), 520-544. https://doi.org/10.35378/gujs.1243933
  • Wang, C., Ji, J., Yu, B., Zhang, C., Ke, W., Wang, J. (2022). Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells. Energy, 238, 121757.
  • Wang, M., Peng, J., Li, N., Yang, H., Wang, C., Li, X., & Lu, T. (2017). Comparison of energy performance between PV double skin facades and PV insulating glass units. Applied Energy, 194, 148-160. doi:10.1016/j.apenergy.2017.03.019
  • Zhang, Y., Zhang, Y., & Li, Z. (2022). A novel productive double skin facades for residential buildings: Concept, design and daylighting performance investigation. Building and Environment, 212, 108817.
  • Zheng, C., Chen, C., Hong, X., Zhang, W., Yang, R., & Shi, F. (2024). Experimental evaluation of the thermal, lighting, and energy performances of a mechanically ventilated double-skin fac-ade with Venetian blinds and a light shelf. Energy and Buildings, 306, 113947.

Evaluation of Daylight Performance in Double-Skin Facade Systems for Buildings

Yıl 2026, Cilt: 3 Sayı: 1, 82 - 94, 31.01.2026
https://doi.org/10.65775/livenarch.1714468

Öz

In buildings with double skin facades (DSFs), daylighting performance is influenced by parameters such as facade layer configuration, cavity depth, orientation, glazing properties, and shading devices. Although numerous studies have investigated the thermal and energy aspects of DSFs, research focusing specifically on daylighting remains limited. This review systematically evaluates previous studies on DSF daylighting performance using the PRISMA protocol. A comprehensive search of the Scopus and Web of Science databases initially identified 503 publications, which were screened and reduced to 24 relevant articles. The analysis highlights how architectural design parameters, particularly shading strategies, cavity depth, and facade orientation, shape daylighting outcomes. Overall, DSF systems tend to reduce absolute illumination levels compared to single skin facades but improve visual comfort by minimizing glare and ensuring more uniform light distribution. Certain configurations, such as perforated screens with 37–50% openness or multi-storey DSFs with optimized cavity depths (40–90 cm), demonstrated improvements up to 70% in useful daylighting illuminance and significant reductions in glare probability. The findings emphasize that DSFs, when appropriately designed, can balance daylight autonomy, visual comfort, and energy efficiency. This study contributes to filling a gap in the literature by synthesizing quantitative evidence and identifying research needs for integrating DSFs into sustainable daylighting design strategies.

Etik Beyan

During the preparation of this work, the authors used ChatGPT by OpenAI to translate the text from Turkish to English. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Kaynakça

  • Aksamija, A. (2018). Thermal energy and daylight analysis of different types of double skin facades in various climates. Journal of Facade Design and Engineering, 6(1), 1-39. https://doi.org/10.7480/jfde.2018.1.1527
  • Alrubaih, M. S., Zain, M. F. M., Alghoul, M. A., Ibrahim, N. L. N., Shameri, M. A., & Elayeb, O. (2013). Research and development on aspects of daylighting fundamentals. Renewable and Sustainable Energy Reviews, 21, 494-505.
  • Barbosa, S., & Ip, K. (2014). Perspectives of double skin facades for naturally ventilated buildings: A review. Renewable and Sustainable Energy Reviews, 40, 1019-1029.
  • Barbosa, S., & Ip, K. (2016). Predicted thermal acceptance in naturally ventilated office buildings with double skin facades under Brazilian climates. Journal of Building Engineering, 7, 92-102.
  • Barbosa, S., Alberto, K. C., & Piroozfar, P. (2024). Natural daylighting through double skin facades: A review. Architectural Engineering and Design Management. https://doi.org/10.1080/17452007.2024.2400711
  • Barone, G., Vardopoulos, I., Attia, S., & Vassilliades, C. (2024). Optimizing energy-efficient building renovation: Integrating double-skin facades with solar systems in the Mediterranean landscape. Energy Reports, 12, 2933-2945.
  • Bian, Y., Kim, J. J., & Kensek, K. (2020). Variable set points of glare control strategy for side-lit spaces: Daylight glare tolerance by time of day. Solar Energy, 201, 268–278. doi:10.1016/j.solener.2020.03.021
  • Chen, M., Zhang, W., Xie, L., He, B., Wang, W., Li, J., & Li, Z. (2021). Improvement of the electricity performance of bifacial PV module applied on the building envelope. Energy and Buildings, 238, 110849.
  • Cheshire, D., & Godefroy, J. (2020). Sustainability: CIBSE Guide L (p. 190). London: CIBSE – The Chartered Institution of Building Services Engineers.
  • Chi, D. A., Moreno, D., & Navarro, J. (2017). Design optimisation of perforated solar facades in order to balance daylighting with thermal performance. Building and Environment, 125, 383-400.
  • Dastoum, M., Sanchez Guevara, C., & Arranz, B. (2024). Efficient daylighting and thermal performance through tessellation of geometric patterns in building facade: A systematic review. Energy for Sustainable Development, 83, 101563. https://doi.org/10.1016/j.esd.2024.101563
  • Dewi, O. C., Rahmasari, K., Hanjani, T. A., Ismoyo, A. D., & Dugar, A. M. (2022). Window-to-Wall Ratio as a Mode of Daylight Optimization for an Educational Building with Opaque Double-Skin Facade. Journal of Sustainable Architecture and Civil Engineering, 30(1), 142-152. https://doi.org/10.5755/j01.sace.30.1.29744
  • ElBatran, R. M., & Ismaeel, W. S. E. (2021). Applying a parametric design approach for optimizing daylighting and visual comfort in office buildings. Ain Shams Engineering Journal, 12(3), 3275-3284.
  • Flor, J. F., Liu, X., Sun, Y., Beccarelli, P., Chilton, J., & Wu, Y. (2022). Switching daylight: Performance prediction of climate adaptive ETFE foil facades. Building and Environment, 209, 108650.
  • Gaspari, J., Fabbri, K., & Marchi, L. (2024). Investigating the influence of perforated facade skins on indoor illuminance level: A case study. Architectural Engineering and Design Management. https://doi.org/10.1080/17452007.2024.2322506
  • Gholami, H., & Talaei, M. (2024). Synergistic Strategies: Comparing Energy Performance in Climate-Adaptive Building Envelopes for Iran’s Cold Semi-Arid Climate. Journal of Daylighting, 11(2), 181–202. https://doi.org/10.15627/jd.2024.14
  • Gomes, M. G., Santos, A. J., & Calhau, M. (2022). Experimental study on the impact of double tilted Venetian blinds on indoor daylight conditions. Building and Environment, 225, 109675.
  • Hee, W. J., Tang, Y., & Lee, S. (2015). The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42, 323-343. doi:10.1016/j.rser.2014.10.027
  • Huang, L., Zou, K., Zhang, X., & Zhao, S. (2024). Effects of non-uniform perforated solar screen on daylighting and visual comfort performance. Journal of Building Engineering, 97, 110684.
  • Ioannidis, Z., Buonomano, A., Athienitis, A. K., & Stathopoulos, T. (2017). Modeling of double skin facades integrating photovoltaic panels and automated roller shades: Analysis of the thermal and electrical performance. Energy and Buildings, 154, 618-632. https://doi.org/10.1016/j.enbuild.2017.08.046
  • Khabir, S., & Vakilinezhad, R. (2023). Energy and thermal analysis of DSF in the retrofit design of office buildings in hot climates. Architectural Engineering and Design Management, 19(6), 642-664.
  • Khabir, S., Vakilinezhad, R., & Sepúlveda, A. (2024). Comparative analysis of space layouts and facade systems for office retrofit design in hot climate. Advances in Building Energy Research, 18(2), 126–155. https://doi.org/10.1080/17512549.2024.2343851
  • Kim, G., Lim, H. S., & Kim, J. T. (2015). Sustainable lighting performance of refurbished glazed walls for old residential buildings. Energy and Buildings, 91, 163-169. https://doi.org/10.1016/j.enbuild.2014.12.058
  • Konstantzos, I., et al. (2020). The effect of lighting environment on task performance in buildings – A review. Energy and Buildings, 226, 110394.
  • Le-Thanh, L., Nguyen-Thi-Viet, H., Lee, J., & Nguyen-Xuan, H. (2022). Machine learning-based real-time daylight analysis in buildings. Journal of Building Engineering, 52, 104374.
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. doi:10.1136/bmj.n71
  • Pariafsai, F. (2016). A review of design considerations in glass buildings. Frontiers of Architectural Research, 5(2), 171-193.
  • Pomponi, F., et al. (2016). Energy performance of double-skin facades in temperate climates: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 54, 1525–1539.
  • Roberts, F., Yang, S., Du, H., & Yang, R. (2023). Effect of semi-transparent a-Si PV glazing within double-skin facades on visual and energy performances under the UK climate condition. Renewable Energy, 207, 601–610. https://doi.org/10.1016/j.renene.2023.03.023
  • Srisamranrungruang, T., & Hiyama, K. (2021). Correlations between building performances and design parameters of double-skin facade utilizing perforated screen. Japan Architectural Review, 4(3), 533-544.
  • Tolba, L. E., El Mokadem, A. A., Badawy, N., & Shahda, M. M. (2023). A retrofitting framework for improving curtain wall performance by the integration of adaptive technologies. Journal of Building Engineering, 80, 107979. https://doi.org/10.1016/j.jobe.2023.107979
  • Unluturk, M. S., & Kazanasmaz, Z. T. (2024). Integration of Daylight Use and Analysis in Double Skin Facades: A Literature Review. Gazi University Journal of Science, 37(2), 520-544. https://doi.org/10.35378/gujs.1243933
  • Wang, C., Ji, J., Yu, B., Zhang, C., Ke, W., Wang, J. (2022). Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells. Energy, 238, 121757.
  • Wang, M., Peng, J., Li, N., Yang, H., Wang, C., Li, X., & Lu, T. (2017). Comparison of energy performance between PV double skin facades and PV insulating glass units. Applied Energy, 194, 148-160. doi:10.1016/j.apenergy.2017.03.019
  • Zhang, Y., Zhang, Y., & Li, Z. (2022). A novel productive double skin facades for residential buildings: Concept, design and daylighting performance investigation. Building and Environment, 212, 108817.
  • Zheng, C., Chen, C., Hong, X., Zhang, W., Yang, R., & Shi, F. (2024). Experimental evaluation of the thermal, lighting, and energy performances of a mechanically ventilated double-skin fac-ade with Venetian blinds and a light shelf. Energy and Buildings, 306, 113947.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlıkta Malzeme ve Teknoloji
Bölüm İnceleme Makalesi
Yazarlar

Hilal Günay 0000-0002-4465-794X

Gönderilme Tarihi 4 Haziran 2025
Kabul Tarihi 17 Kasım 2025
Yayımlanma Tarihi 31 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 3 Sayı: 1

Kaynak Göster

APA Günay, H. (2026). Evaluation of Daylight Performance in Double-Skin Facade Systems for Buildings. Livenarch+ Journal, 3(1), 82-94. https://doi.org/10.65775/livenarch.1714468