Research Article
BibTex RIS Cite

GİYİM SEKTÖRÜNDE DÖNGÜSEL EKONOMİNİN YÜRÜTÜCÜLERİNİN VE ENGELLERİNİN SWARA VE BWM METOTLARI İLE ANALİZİ

Year 2022, Volume: 9 Issue: 2, 763 - 787, 29.07.2022
https://doi.org/10.30798/makuiibf.822067

Abstract

Döngüsel ekonomi, çevresel etkileri azaltan ve ürünlerin etkin bir şekilde geri dönüştürülmesini sağlayan bir sürdürülebilirlik modelidir. Bu bakımdan giyim sektörü, döngüsel ekonomi sisteminde en yüksek çevresel etkiyi bünyesinde barındıran sektörlerden biridir. Bu çalışmada, SWARA ve BWM yöntemleriyle giyim sektöründe döngüsel ekonominin yürütücüleri ve güçlükleri analiz edilmiştir. Sonuçlar, SWARA ve BWM metotlarının oldukça benzer olduğunu ve karar vericiler tarafından kullanılabileceğini göstermektedir. Her iki yöntemde de döngüsel ekonominin en önemli yürütücüsü olarak "kaynakların korunmasından elde edilen maliyet tasarrufu", güçlüğü olarak ise "eğitim ve bilgi eksikliği" yer almıştır. Türkiye'de giyim sektöründe döngüsel ekonomi yaklaşımının kurumsallaşması açısından farkındalık ve meşruiyet eksikliğini gösteren bu çalışma, diğer gelişmekte olan ve geçiş ekonomilerinin vizyonlarını ve işleyişlerini iyileştirmelerinde faydalı olacağı düşünülmektedir.

References

  • Beyond Our Limits. Sustainability Targets 2012-2016. Erişim: 21 Şubat 2020. https://keringcorporate.dam.kering.com/m/0dac111a1340c04b/original/Kering-Sustainability-targets-Report-2016.pdf
  • Bouton, S., Hannon, E., Rogers, M., Swartz, S., Johnson, R., Gold, A., & Staples, M. (2016). The circular economy: Moving from theory to practice. McKinsey Center for Business and Environment. Special edition.
  • Chae, Y. and Hinestroza, J. (2020). Building circular economy for smart textiles, smart clothing, and future wearables. Materials Circular Economy 2(2), 1-4.
  • Çakır, E., Kutlu Karabıyık, B. (2017). Bütünleşik SWARA - COPRAS yöntemi kullanarak bulut depolama hizmet sağlayicilarinin değerlendirilmesi. Bilişim Teknolojileri Dergisi, 10(4), 417-434.
  • Eryürük, S. H., Kalaoğlu, F. & Baskak, M. (2012). A site selection model for establishing a clothing logistics center. Textile and Apparel, 22 (1), 40-47. Retrieved from https://dergipark.org.tr/en/pub/tekstilvekonfeksiyon/issue/43726/526626.
  • Euratex Key Figures. Erişim: 29 Ekim 2020. https://euratex.eu/wp-content/uploads/2019/05/EURATEX-KEY-FIGURES-2018.pdf.
  • Fletcher, K. (2014). Sustainable fashion and textiles. London and New York: Routhledge.
  • Intergovernmental Panel on Climate Change. (2014). Summary for Policymakers. In Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-30). Cambridge: Cambridge University Press.
  • Hogge, E. (2019). How do clothing companies implement the circular economy in their business model to enhance the sustainability of the global fashion industry?. Unpublished Master Thesis. Université catholique de Louvain.
  • Jacometti, V. (2019). Circular economy and waste in the fashion industry. Laws, 8(4), 27
  • James, A. S. J., & Kent, A. (2019). Clothing sustainability and upcycling in Ghana. Fashion Practice, 11(3), 375-396.
  • Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258.
  • Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232.
  • Korhonen, J., Honkasalo, A., & Seppälä, J. (2018). Circular economy: The concept and its limitations. Ecological economics, 143, 37-46.
  • Koszewska, M. (2018). Circular economy—Challenges for the textile and clothing industry. Autex Research Journal, 18(4), 337-347.
  • Kumar, V., Kalita, K., Chatterjee, P., Zavadskas, E. K., & Chakraborty, S. (2022). A SWARA-CoCoSo-based approach for spray painting robot selection. Informatica, 33(1), 35-54.
  • Lin, C. and Twu, C.H. (2012), Fuzzy MCDM for evaluating fashion trend alternatives, International Journal of Clothing Science and Technology, 24(2/3), 141-153. https://doi.org/10.1108/09556221211205586.
  • Malik, A., Grohmann, E., & Akhtar, R. (2014). Environmental deterioration and human health. Dordrecht, The Netherlands: Springer.
  • Mishra, D., & Satapathy, S. (2020). MCDM approach for mitigation of flooding risks in Odisha (India) based on information retrieval. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 14(2), 77-91.
  • Moslem, S., Farooq, D., Ghorbanzadeh, O., & Blaschke, T. (2020). Application of the AHP-BWM model for evaluating driver behavior factors related to road safety: A case study for Budapest. Symmetry, 12(2), 243.
  • Moorhouse, D., & Moorhouse, D. (2017). Sustainable design: circular economy in fashion and textiles. The Design Journal, 20(sup1), S1948-S1959.
  • Mousumi Roy, Parag Sen, Parimal Pal. (2020). An integrated green management model to improve environmental performance of textile industry towards sustainability, Journal of Cleaner Production, 271, 122656, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2020.122656.
  • Özkan, A., Günkaya, Z., Özdemir, A. and Banar, M. (2017). Sanayide temiz üretim ve döngüsel ekonomiye geçişte endüstriyel simbiyoz yaklaşımı: Bir değerlendirme. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 6(1), 84–97.
  • Piyathanavong, V., Garza-Reyes, J. A., Kumar, V., Maldonado-Guzmán, G., & Mangla, S. K. (2019). The adoption of operational environmental sustainability approaches in the Thai manufacturing sector. Journal of Cleaner Production, 220. 507-528.
  • Remy, N., Speelman, E., & Swartz, S. (2016). Style that’s sustainable: A new fast-fashion formula. McKinsey & Company, 1-6.
  • Resta, B., Gaiardelli, P., Pinto, R., & Dotti, S. (2016). Enhancing environmental management in the textile sector: an organisational-life cycle assessment approach. Journal of Cleaner Production, 135, 620-632.
  • Rezaei, J., Wang, J., & Tavasszy, L. (2015). Linking supplier development to supplier segmentation using Best Worst Method. Expert Systems with Applications, 42(23), 9152-9164.
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130.
  • Rezaei, J., Nispeling, T., Sarkis, J., & Tavasszy, L. (2016). A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. Journal of Cleaner Production, 135, 577-588.
  • Rossily. (2016). Stella McCartney Talks Sustainability at the Third LCFxKering Talk. Erişim: 29 Ekim 2020. http;//sustainable-fashion.com.
  • Setterwall Rydberg, A. (2016). Circular economy business models in the clothing industry. Unpublished Master Thesis, Uppsala University.
  • Sharma, H., Sohani, N., & Yadav, A. (2021). Comparative analysis of ranking the lean supply chain enablers: An AHP, BWM and fuzzy SWARA based approach. International Journal of Quality & Reliability Management.
  • Shaw, P. and Williams, I. (2018). Reuse in practice: the Uk’s car and clothing sectors. Detritus: Multidisciplinary Journal for Waste Resources & Residues (04): 36-47.
  • Shi, W. (2018). Brief Analysis on Closed-loop Ecosystem of Textile and Clothing Recycling. IOP Conference Series: Earth and Environmental Science 186 (4): 1-5.
  • Shukla, S., Mishra, P. K., Jain, R., & Yadav, H. C. (2016). An integrated decision making approach for ERP system selection using SWARA and PROMETHEE method. International Journal of Intelligent Enterprise, 3(2), 120-147.
  • Snoek, S. (2017). Circular Economy in the Textile Industry. Unpublished Master Thesis. Wageningen University.
  • Stefania Bait, Serena Marino Lauria, Massimiliano M. Schiraldi. (2022). A risk-based hybrid multi-criteria approach to support managers in the industrial location selection in developing countries: A case study of textile sector in Africa, Journal of Cleaner Production, Volume 335, 130325, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.130325.
  • Tayyar, N. & Arslan, P. (2013). Hazır Giyim Sektöründe En İyi Fason İşletme Seçimi İçin AHP ve VİKOR. Manisa Celal Bayar Üniversitesi Sosyal Bilimler Dergisi, 11 (1), 340-358. Retrieved from https://dergipark.org.tr/en/pub/cbayarsos/issue/4065/53609
  • Tas, M. A., & Akcan, S. (2021). Selecting a Green, Agile and Industry 4.0 Supplier with the Fuzzy-Swara-Bwm Integrated Method.
  • Vanegas-López, J.G., Baena-Rojas, J.J., López-Cadavid, D.A. and Mathew, M. (2021), "International market selection: an application of hybrid multi-criteria decision-making technique in the textile sector", Review of International Business and Strategy, Vol. 31 No. 1, pp. 127-150. https://doi.org/10.1108/RIBS-07-2020-0088
  • Vasiljević, M., Stević, Ž., Pamučar, D., & Stojić, G. (2018). Evaluation of suppliers criteria in textile company using rough swara approach. In International May Conference on Strategic Management – IMCSM18 May 25 – 27, 2018, Bor, Serbia, 709–19.
  • Yongbo Li, Mark Christhian Barrueta Pinto, Ali Diabat, (2020). Analyzing the critical success factor of CSR for the Chinese textile industry, Journal of Cleaner Production,Volume 260. 120878, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2020.120878.
  • Zavadskas, E. K., Stević, Ž., Tanackov, I., & Prentkovskis, O. (2018). A novel multicriteria approach–rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics. Studies in Informatics and Control, 27(1), 97-106.
  • Zolfani, S. H., & Chatterjee, P. (2019). Comparative evaluation of sustainable design based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) methods: a perspective on household furnishing materials. Symmetry, 11(1), 74.

ANALYSIS OF DRIVERS AND CHALLENGES IN CIRCULAR ECONOMY WITH SWARA AND BWM METHODS IN CLOTHING SECTOR

Year 2022, Volume: 9 Issue: 2, 763 - 787, 29.07.2022
https://doi.org/10.30798/makuiibf.822067

Abstract

The circular economy is a sustainability model that reduces environmental impacts and enables products to be recycled effectively. In this respect, the clothing sector is one of the sectors that has the highest environmental impact in the circular economy system. In this study, drivers and challenges of circular economy in clothing sector were analyzed with SWARA and BWM methods. The results show that the SWARA and BWM methods are quite similar and can be used by decision makers. In both methods, " Cost savings from conservation in resources" as the driver of the circular economy and "lack of training and knowledge" as a challenge took the first row. This study shows the lack of awareness and legitimacy for the institutionalization of the circular economy approach in the clothing industry in Turkey, will be useful in other developing and transition economies and improve the functioning of vision is considered.

References

  • Beyond Our Limits. Sustainability Targets 2012-2016. Erişim: 21 Şubat 2020. https://keringcorporate.dam.kering.com/m/0dac111a1340c04b/original/Kering-Sustainability-targets-Report-2016.pdf
  • Bouton, S., Hannon, E., Rogers, M., Swartz, S., Johnson, R., Gold, A., & Staples, M. (2016). The circular economy: Moving from theory to practice. McKinsey Center for Business and Environment. Special edition.
  • Chae, Y. and Hinestroza, J. (2020). Building circular economy for smart textiles, smart clothing, and future wearables. Materials Circular Economy 2(2), 1-4.
  • Çakır, E., Kutlu Karabıyık, B. (2017). Bütünleşik SWARA - COPRAS yöntemi kullanarak bulut depolama hizmet sağlayicilarinin değerlendirilmesi. Bilişim Teknolojileri Dergisi, 10(4), 417-434.
  • Eryürük, S. H., Kalaoğlu, F. & Baskak, M. (2012). A site selection model for establishing a clothing logistics center. Textile and Apparel, 22 (1), 40-47. Retrieved from https://dergipark.org.tr/en/pub/tekstilvekonfeksiyon/issue/43726/526626.
  • Euratex Key Figures. Erişim: 29 Ekim 2020. https://euratex.eu/wp-content/uploads/2019/05/EURATEX-KEY-FIGURES-2018.pdf.
  • Fletcher, K. (2014). Sustainable fashion and textiles. London and New York: Routhledge.
  • Intergovernmental Panel on Climate Change. (2014). Summary for Policymakers. In Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-30). Cambridge: Cambridge University Press.
  • Hogge, E. (2019). How do clothing companies implement the circular economy in their business model to enhance the sustainability of the global fashion industry?. Unpublished Master Thesis. Université catholique de Louvain.
  • Jacometti, V. (2019). Circular economy and waste in the fashion industry. Laws, 8(4), 27
  • James, A. S. J., & Kent, A. (2019). Clothing sustainability and upcycling in Ghana. Fashion Practice, 11(3), 375-396.
  • Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258.
  • Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232.
  • Korhonen, J., Honkasalo, A., & Seppälä, J. (2018). Circular economy: The concept and its limitations. Ecological economics, 143, 37-46.
  • Koszewska, M. (2018). Circular economy—Challenges for the textile and clothing industry. Autex Research Journal, 18(4), 337-347.
  • Kumar, V., Kalita, K., Chatterjee, P., Zavadskas, E. K., & Chakraborty, S. (2022). A SWARA-CoCoSo-based approach for spray painting robot selection. Informatica, 33(1), 35-54.
  • Lin, C. and Twu, C.H. (2012), Fuzzy MCDM for evaluating fashion trend alternatives, International Journal of Clothing Science and Technology, 24(2/3), 141-153. https://doi.org/10.1108/09556221211205586.
  • Malik, A., Grohmann, E., & Akhtar, R. (2014). Environmental deterioration and human health. Dordrecht, The Netherlands: Springer.
  • Mishra, D., & Satapathy, S. (2020). MCDM approach for mitigation of flooding risks in Odisha (India) based on information retrieval. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 14(2), 77-91.
  • Moslem, S., Farooq, D., Ghorbanzadeh, O., & Blaschke, T. (2020). Application of the AHP-BWM model for evaluating driver behavior factors related to road safety: A case study for Budapest. Symmetry, 12(2), 243.
  • Moorhouse, D., & Moorhouse, D. (2017). Sustainable design: circular economy in fashion and textiles. The Design Journal, 20(sup1), S1948-S1959.
  • Mousumi Roy, Parag Sen, Parimal Pal. (2020). An integrated green management model to improve environmental performance of textile industry towards sustainability, Journal of Cleaner Production, 271, 122656, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2020.122656.
  • Özkan, A., Günkaya, Z., Özdemir, A. and Banar, M. (2017). Sanayide temiz üretim ve döngüsel ekonomiye geçişte endüstriyel simbiyoz yaklaşımı: Bir değerlendirme. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 6(1), 84–97.
  • Piyathanavong, V., Garza-Reyes, J. A., Kumar, V., Maldonado-Guzmán, G., & Mangla, S. K. (2019). The adoption of operational environmental sustainability approaches in the Thai manufacturing sector. Journal of Cleaner Production, 220. 507-528.
  • Remy, N., Speelman, E., & Swartz, S. (2016). Style that’s sustainable: A new fast-fashion formula. McKinsey & Company, 1-6.
  • Resta, B., Gaiardelli, P., Pinto, R., & Dotti, S. (2016). Enhancing environmental management in the textile sector: an organisational-life cycle assessment approach. Journal of Cleaner Production, 135, 620-632.
  • Rezaei, J., Wang, J., & Tavasszy, L. (2015). Linking supplier development to supplier segmentation using Best Worst Method. Expert Systems with Applications, 42(23), 9152-9164.
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130.
  • Rezaei, J., Nispeling, T., Sarkis, J., & Tavasszy, L. (2016). A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. Journal of Cleaner Production, 135, 577-588.
  • Rossily. (2016). Stella McCartney Talks Sustainability at the Third LCFxKering Talk. Erişim: 29 Ekim 2020. http;//sustainable-fashion.com.
  • Setterwall Rydberg, A. (2016). Circular economy business models in the clothing industry. Unpublished Master Thesis, Uppsala University.
  • Sharma, H., Sohani, N., & Yadav, A. (2021). Comparative analysis of ranking the lean supply chain enablers: An AHP, BWM and fuzzy SWARA based approach. International Journal of Quality & Reliability Management.
  • Shaw, P. and Williams, I. (2018). Reuse in practice: the Uk’s car and clothing sectors. Detritus: Multidisciplinary Journal for Waste Resources & Residues (04): 36-47.
  • Shi, W. (2018). Brief Analysis on Closed-loop Ecosystem of Textile and Clothing Recycling. IOP Conference Series: Earth and Environmental Science 186 (4): 1-5.
  • Shukla, S., Mishra, P. K., Jain, R., & Yadav, H. C. (2016). An integrated decision making approach for ERP system selection using SWARA and PROMETHEE method. International Journal of Intelligent Enterprise, 3(2), 120-147.
  • Snoek, S. (2017). Circular Economy in the Textile Industry. Unpublished Master Thesis. Wageningen University.
  • Stefania Bait, Serena Marino Lauria, Massimiliano M. Schiraldi. (2022). A risk-based hybrid multi-criteria approach to support managers in the industrial location selection in developing countries: A case study of textile sector in Africa, Journal of Cleaner Production, Volume 335, 130325, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.130325.
  • Tayyar, N. & Arslan, P. (2013). Hazır Giyim Sektöründe En İyi Fason İşletme Seçimi İçin AHP ve VİKOR. Manisa Celal Bayar Üniversitesi Sosyal Bilimler Dergisi, 11 (1), 340-358. Retrieved from https://dergipark.org.tr/en/pub/cbayarsos/issue/4065/53609
  • Tas, M. A., & Akcan, S. (2021). Selecting a Green, Agile and Industry 4.0 Supplier with the Fuzzy-Swara-Bwm Integrated Method.
  • Vanegas-López, J.G., Baena-Rojas, J.J., López-Cadavid, D.A. and Mathew, M. (2021), "International market selection: an application of hybrid multi-criteria decision-making technique in the textile sector", Review of International Business and Strategy, Vol. 31 No. 1, pp. 127-150. https://doi.org/10.1108/RIBS-07-2020-0088
  • Vasiljević, M., Stević, Ž., Pamučar, D., & Stojić, G. (2018). Evaluation of suppliers criteria in textile company using rough swara approach. In International May Conference on Strategic Management – IMCSM18 May 25 – 27, 2018, Bor, Serbia, 709–19.
  • Yongbo Li, Mark Christhian Barrueta Pinto, Ali Diabat, (2020). Analyzing the critical success factor of CSR for the Chinese textile industry, Journal of Cleaner Production,Volume 260. 120878, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2020.120878.
  • Zavadskas, E. K., Stević, Ž., Tanackov, I., & Prentkovskis, O. (2018). A novel multicriteria approach–rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics. Studies in Informatics and Control, 27(1), 97-106.
  • Zolfani, S. H., & Chatterjee, P. (2019). Comparative evaluation of sustainable design based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) methods: a perspective on household furnishing materials. Symmetry, 11(1), 74.
There are 45 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Gözde Koca 0000-0001-6847-6812

Özüm Eğilmez 0000-0001-5251-5629

Ezgi Demir 0000-0002-7335-5094

Çağlar Karamaşa 0000-0003-2454-1824

Halil Gökcan 0000-0001-8880-588X

Publication Date July 29, 2022
Submission Date November 5, 2020
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Koca, G., Eğilmez, Ö., Demir, E., Karamaşa, Ç., et al. (2022). ANALYSIS OF DRIVERS AND CHALLENGES IN CIRCULAR ECONOMY WITH SWARA AND BWM METHODS IN CLOTHING SECTOR. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 9(2), 763-787. https://doi.org/10.30798/makuiibf.822067

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The author(s) bear full responsibility for the ideas and arguments presented in their articles. All scientific and legal accountability concerning the language, style, adherence to scientific ethics, and content of the published work rests solely with the author(s). Neither the journal nor the institution(s) affiliated with the author(s) assume any liability in this regard.