Research Article
BibTex RIS Cite

The Possibilistic Mean-Variance Model with Uncertain Possibility Distributions

Year 2024, Volume: 11 Issue: 2, 535 - 550, 30.06.2024
https://doi.org/10.30798/makuiibf.1389261

Abstract

The possibilistic mean–variance (MV) model is the counterpart of Markowitz’s MV model in the possibility theory. This study aims to examine the possibilistic MV model when the possibility distributions of stock returns are uncertain triangular fuzzy numbers. We define an uncertainty vector and use its ellipsoidal uncertainty set in a minimax optimization problem to model this uncertainty. We also show that this minimax optimization problem reduces to a strictly convex minimization problem. Thus, unlike the possibilistic MV model, we get diversified optimal portfolios uniquely with our approach. After laying down the theoretical points of our approach, we illustrate it with a real-world example in the literature by using a software package for convex optimization. To the best of our knowledge, this is the first paper that considers uncertain possibility distributions in the possibilistic MV model.

References

  • Akinyi, D. P., Karanja Ng'ang'a, S., Ngigi, M., Mathenge, M., & Girvetz, E. (2022). Cost-benefit analysis of prioritized climate-smart agricultural practices among smallholder farmers: evidence from selected value chains across sub-Saharan Africa. Heliyon, 8(4), e09228. https://doi.org/10.1016/j.heliyon.2022.e09228
  • Beck, A., & Sabach, S. (2014). A first order method for finding minimal norm-like solutions of convex optimization problems. Mathematical Programming, 147(1), 25-46. https://doi.org/10.1007/s10107-013-0708-2
  • Breuer, T. (2006). Providing against the worst: Risk capital for worst case scenarios. Managerial Finance, 32(9), 716–730. https://doi.org/10.1108/03074350610681934
  • Breuer, T., & Csiszár, I. (2013). Systematic stress tests with entropic plausibility constraints. Journal of Banking & Finance, 37(5), 1552-1559. https://doi.org/10.1016/j.jbankfin.2012.04.013
  • Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems, 122(2), 315-326. https://doi.org/10.1016/S0165-0114(00)00043-9
  • Carlsson, C., Fullér, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131(1), 13-21. https://doi.org/10.1016/S0165-0114(01)00251-2
  • Chicheportiche, R., & Bouchaud, J. P. (2012). The joint distribution of stock returns is not elliptical. International Journal of Theoretical and Applied Finance, 15(03), 1250019. http://dx.doi.org/10.2139/ssrn.1904287
  • Corazza, M., & Nardelli, C. (2019). Possibilistic mean–variance portfolios versus probabilistic ones: the winner is... Decisions in Economics and Finance, 42(1), 51-75. https://doi.org/10.1007/s10203-019-00234-1
  • Deng, X., & Lin, Y. (2022). Improved particle swarm optimization for mean-variance-Yager entropy-social responsibility portfolio with complex reality constraints. Engineering Computations, 39(4), 1288-1316. https://doi.org/10.1108/EC-02-2021-0080
  • DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798-812. https://doi.org/10.1287/mnsc.1080.0986
  • Ding, Y. (2006). Portfolio selection under maximum minimum criterion. Quality and Quantity, 40(3), 457-468. https://doi.org/10.1007/s11135-005-1054-0
  • Dubois, D. (2006). Possibility theory and statistical reasoning. Computational Statistics & Data Analysis, 51(1), 47-69. https://doi.org/10.1016/j.csda.2006.04.015
  • Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk Management: Value at Risk and Beyond, 1, 176-223. http://dx.doi.org/10.1017/CBO9780511615337.008
  • Garlappi, L., Uppal, R., & Wang, T. (2007). Portfolio selection with parameter and model uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. http://dx.doi.org/10.1093/rfs/hhl003
  • Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. http://dx.doi.org/10.1287/moor.28.1.1.14260
  • Göktaş, F. (2023). Ortogonal olabilirlik ortalama-varyans modeli. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6, 29-41. https://doi.org/10.47495/okufbed.1217550
  • Göktaş, F., & Duran, A. (2019). A new possibilistic mean-variance model based on the principal components analysis: an application on the Turkish holding stocks. Journal of Multiple Valued Logic & Soft Computing, 32(5-6). 455-476.
  • Göktaş, F., & Duran, A. (2020a). Olabilirlik ortalama–varyans modelinin matematiksel analizi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 80-91. https://doi.org/10.25092/baunfbed.677022
  • Göktaş, F., & Duran, A. (2020b). New robust portfolio selection models based on the principal components analysis: An application on the Turkish holding stocks. Journal of Multiple-Valued Logic & Soft Computing, 34(1-2), 43-58.
  • Grant, M. C., & Boyd, S. P. (2008). Graph implementations for nonsmooth convex programs. In Recent advances in learning and control (pp. 95-110). Springer, London. https://doi.org/10.1007/978-1-84800-155-8_7
  • Guillaume, R., Kasperski, A., & Zieliński, P. (2024). A framework of distributionally robust possibilistic optimization. Fuzzy Optimization and Decision Making, 23, 253–278. https://doi.org/10.1007/s10700-024-09420-2
  • Hu, J., Sui, Y., & Ma, F. (2021). A portfolio selection model based on the interval number. Mathematical Problems in Engineering, 2577264. http://dx.doi.org/10.1155/2021/2577264
  • Huang, Y. Y., Tsaur, R. C., & Huang, N. C. (2022). Sustainable fuzzy portfolio selection concerning multi-objective risk attitudes in group decision. Mathematics, 10(18), 3304. https://doi.org/10.3390/math10183304
  • Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21(3), 279-292. https://doi.org/10.2307/2331042
  • Kamaludin, K., Sundarasen, S., & Ibrahim, I. (2021). Covid-19, Dow Jones and equity market movement in ASEAN-5 countries: evidence from wavelet analyses. Heliyon, 7(1), e05851. https://doi.org/10.1016/j.heliyon.2020.e05851
  • Ketabchi, S., Moosaei, H., & Hladík, M. (2021). On the minimum-norm solution of convex quadratic programming. RAIRO-Operations Research, 55(1), 247-260. https://doi.org/10.1051/ro/2021011
  • Lam, W. S., Lam, W. H., & Jaaman, S. H. (2021). Portfolio optimization with a mean–absolute deviation–entropy multi-objective model. Entropy, 23(10), 1266. https://doi.org/10.3390/e23101266
  • Li, H., Cao, Y., & Su, L. (2022). Pythagorean fuzzy multi-criteria decision-making approach based on Spearman rank correlation coefficient. Soft Computing, 26(6), 3001-3012. https://doi.org/10.1007/s00500-021-06615-2
  • Li, X., Guo, S., & Yu, L. (2015). Skewness of fuzzy numbers and its applications in portfolio selection. IEEE Transactions on Fuzzy Systems, 23(6), 2135-2143. http://dx.doi.org/10.1109/TFUZZ.2015.2404340
  • Mandal, P. K., & Thakur, M. (2024). Higher-order moments in portfolio selection problems: A comprehensive literature review. Expert Systems with Applications, 238, 121625. https://doi.org/10.1016/j.eswa.2023.121625
  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.2307/2975974
  • Saki, M., Nazemia, A., & Ataabadib, A. A. (2023). Multi-objective possibility model for selecting the optimal stock portfolio. Advances in Mathematical Finance & Applications, 8(2), 667-685.
  • Souliotis, G., Alanazi, Y., & Papadopoulos, B. (2022). Construction of fuzzy numbers via cumulative distribution function. Mathematics, 10(18), 3350. https://doi.org/10.3390/math10183350
  • Studer, G. (1999). Risk measurement with maximum loss. Mathematical Methods of Operations Research, 50(1), 121-134. https://doi.org/10.1007/s001860050039
  • Sui, Y., Hu, J., & Ma, F. (2020a). A possibilistic portfolio model with fuzzy liquidity constraint. Complexity, 3703017. https://doi.org/10.1155/2020/3703017
  • Sui, Y., Hu, J., & Ma, F. (2020b). A mean-variance portfolio selection model with interval-valued possibility measures. Mathematical Problems in Engineering, 4135740. http://dx.doi.org/10.1155/2020/4135740
  • Taş, O., Kahraman, C., & Güran, C. B. (2016). A scenario based linear fuzzy approach in portfolio selection problem: application in the Istanbul Stock Exchange. Journal of Multiple-Valued Logic & Soft Computing, 26(3-5), 269-294.
  • Tütüncü, R. H., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132, 157-187. http://dx.doi.org/10.1023/B:ANOR.0000045281.41041.ed
  • Young, M. R. (1998). A minimax portfolio selection rule with linear programming solution. Management Science, 44(5), 673-683. https://doi.org/10.1287/mnsc.44.5.673
  • Zhang, W. G. (2007). Possibilistic mean–standard deviation models to portfolio selection for bounded assets. Applied Mathematics and Computation, 189(2), 1614-1623. https://doi.org/10.1016/j.amc.2006.12.080
  • Zhang, W. G., Zhang, X. L., & Xiao, W. L. (2009). Portfolio selection under possibilistic mean–variance utility and a SMO algorithm. European Journal of Operational Research, 197(2), 693-700. https://doi.org/10.1016/j.ejor.2008.07.011
  • Zhang, Y., Li, X., & Guo, S. (2018). Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature. Fuzzy Optimization and Decision Making, 17(2), 125-158. https://link.springer.com/article/10.1007/s10700-017-9266-z
Year 2024, Volume: 11 Issue: 2, 535 - 550, 30.06.2024
https://doi.org/10.30798/makuiibf.1389261

Abstract

References

  • Akinyi, D. P., Karanja Ng'ang'a, S., Ngigi, M., Mathenge, M., & Girvetz, E. (2022). Cost-benefit analysis of prioritized climate-smart agricultural practices among smallholder farmers: evidence from selected value chains across sub-Saharan Africa. Heliyon, 8(4), e09228. https://doi.org/10.1016/j.heliyon.2022.e09228
  • Beck, A., & Sabach, S. (2014). A first order method for finding minimal norm-like solutions of convex optimization problems. Mathematical Programming, 147(1), 25-46. https://doi.org/10.1007/s10107-013-0708-2
  • Breuer, T. (2006). Providing against the worst: Risk capital for worst case scenarios. Managerial Finance, 32(9), 716–730. https://doi.org/10.1108/03074350610681934
  • Breuer, T., & Csiszár, I. (2013). Systematic stress tests with entropic plausibility constraints. Journal of Banking & Finance, 37(5), 1552-1559. https://doi.org/10.1016/j.jbankfin.2012.04.013
  • Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems, 122(2), 315-326. https://doi.org/10.1016/S0165-0114(00)00043-9
  • Carlsson, C., Fullér, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131(1), 13-21. https://doi.org/10.1016/S0165-0114(01)00251-2
  • Chicheportiche, R., & Bouchaud, J. P. (2012). The joint distribution of stock returns is not elliptical. International Journal of Theoretical and Applied Finance, 15(03), 1250019. http://dx.doi.org/10.2139/ssrn.1904287
  • Corazza, M., & Nardelli, C. (2019). Possibilistic mean–variance portfolios versus probabilistic ones: the winner is... Decisions in Economics and Finance, 42(1), 51-75. https://doi.org/10.1007/s10203-019-00234-1
  • Deng, X., & Lin, Y. (2022). Improved particle swarm optimization for mean-variance-Yager entropy-social responsibility portfolio with complex reality constraints. Engineering Computations, 39(4), 1288-1316. https://doi.org/10.1108/EC-02-2021-0080
  • DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798-812. https://doi.org/10.1287/mnsc.1080.0986
  • Ding, Y. (2006). Portfolio selection under maximum minimum criterion. Quality and Quantity, 40(3), 457-468. https://doi.org/10.1007/s11135-005-1054-0
  • Dubois, D. (2006). Possibility theory and statistical reasoning. Computational Statistics & Data Analysis, 51(1), 47-69. https://doi.org/10.1016/j.csda.2006.04.015
  • Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk Management: Value at Risk and Beyond, 1, 176-223. http://dx.doi.org/10.1017/CBO9780511615337.008
  • Garlappi, L., Uppal, R., & Wang, T. (2007). Portfolio selection with parameter and model uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. http://dx.doi.org/10.1093/rfs/hhl003
  • Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. http://dx.doi.org/10.1287/moor.28.1.1.14260
  • Göktaş, F. (2023). Ortogonal olabilirlik ortalama-varyans modeli. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6, 29-41. https://doi.org/10.47495/okufbed.1217550
  • Göktaş, F., & Duran, A. (2019). A new possibilistic mean-variance model based on the principal components analysis: an application on the Turkish holding stocks. Journal of Multiple Valued Logic & Soft Computing, 32(5-6). 455-476.
  • Göktaş, F., & Duran, A. (2020a). Olabilirlik ortalama–varyans modelinin matematiksel analizi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 80-91. https://doi.org/10.25092/baunfbed.677022
  • Göktaş, F., & Duran, A. (2020b). New robust portfolio selection models based on the principal components analysis: An application on the Turkish holding stocks. Journal of Multiple-Valued Logic & Soft Computing, 34(1-2), 43-58.
  • Grant, M. C., & Boyd, S. P. (2008). Graph implementations for nonsmooth convex programs. In Recent advances in learning and control (pp. 95-110). Springer, London. https://doi.org/10.1007/978-1-84800-155-8_7
  • Guillaume, R., Kasperski, A., & Zieliński, P. (2024). A framework of distributionally robust possibilistic optimization. Fuzzy Optimization and Decision Making, 23, 253–278. https://doi.org/10.1007/s10700-024-09420-2
  • Hu, J., Sui, Y., & Ma, F. (2021). A portfolio selection model based on the interval number. Mathematical Problems in Engineering, 2577264. http://dx.doi.org/10.1155/2021/2577264
  • Huang, Y. Y., Tsaur, R. C., & Huang, N. C. (2022). Sustainable fuzzy portfolio selection concerning multi-objective risk attitudes in group decision. Mathematics, 10(18), 3304. https://doi.org/10.3390/math10183304
  • Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21(3), 279-292. https://doi.org/10.2307/2331042
  • Kamaludin, K., Sundarasen, S., & Ibrahim, I. (2021). Covid-19, Dow Jones and equity market movement in ASEAN-5 countries: evidence from wavelet analyses. Heliyon, 7(1), e05851. https://doi.org/10.1016/j.heliyon.2020.e05851
  • Ketabchi, S., Moosaei, H., & Hladík, M. (2021). On the minimum-norm solution of convex quadratic programming. RAIRO-Operations Research, 55(1), 247-260. https://doi.org/10.1051/ro/2021011
  • Lam, W. S., Lam, W. H., & Jaaman, S. H. (2021). Portfolio optimization with a mean–absolute deviation–entropy multi-objective model. Entropy, 23(10), 1266. https://doi.org/10.3390/e23101266
  • Li, H., Cao, Y., & Su, L. (2022). Pythagorean fuzzy multi-criteria decision-making approach based on Spearman rank correlation coefficient. Soft Computing, 26(6), 3001-3012. https://doi.org/10.1007/s00500-021-06615-2
  • Li, X., Guo, S., & Yu, L. (2015). Skewness of fuzzy numbers and its applications in portfolio selection. IEEE Transactions on Fuzzy Systems, 23(6), 2135-2143. http://dx.doi.org/10.1109/TFUZZ.2015.2404340
  • Mandal, P. K., & Thakur, M. (2024). Higher-order moments in portfolio selection problems: A comprehensive literature review. Expert Systems with Applications, 238, 121625. https://doi.org/10.1016/j.eswa.2023.121625
  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.2307/2975974
  • Saki, M., Nazemia, A., & Ataabadib, A. A. (2023). Multi-objective possibility model for selecting the optimal stock portfolio. Advances in Mathematical Finance & Applications, 8(2), 667-685.
  • Souliotis, G., Alanazi, Y., & Papadopoulos, B. (2022). Construction of fuzzy numbers via cumulative distribution function. Mathematics, 10(18), 3350. https://doi.org/10.3390/math10183350
  • Studer, G. (1999). Risk measurement with maximum loss. Mathematical Methods of Operations Research, 50(1), 121-134. https://doi.org/10.1007/s001860050039
  • Sui, Y., Hu, J., & Ma, F. (2020a). A possibilistic portfolio model with fuzzy liquidity constraint. Complexity, 3703017. https://doi.org/10.1155/2020/3703017
  • Sui, Y., Hu, J., & Ma, F. (2020b). A mean-variance portfolio selection model with interval-valued possibility measures. Mathematical Problems in Engineering, 4135740. http://dx.doi.org/10.1155/2020/4135740
  • Taş, O., Kahraman, C., & Güran, C. B. (2016). A scenario based linear fuzzy approach in portfolio selection problem: application in the Istanbul Stock Exchange. Journal of Multiple-Valued Logic & Soft Computing, 26(3-5), 269-294.
  • Tütüncü, R. H., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132, 157-187. http://dx.doi.org/10.1023/B:ANOR.0000045281.41041.ed
  • Young, M. R. (1998). A minimax portfolio selection rule with linear programming solution. Management Science, 44(5), 673-683. https://doi.org/10.1287/mnsc.44.5.673
  • Zhang, W. G. (2007). Possibilistic mean–standard deviation models to portfolio selection for bounded assets. Applied Mathematics and Computation, 189(2), 1614-1623. https://doi.org/10.1016/j.amc.2006.12.080
  • Zhang, W. G., Zhang, X. L., & Xiao, W. L. (2009). Portfolio selection under possibilistic mean–variance utility and a SMO algorithm. European Journal of Operational Research, 197(2), 693-700. https://doi.org/10.1016/j.ejor.2008.07.011
  • Zhang, Y., Li, X., & Guo, S. (2018). Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature. Fuzzy Optimization and Decision Making, 17(2), 125-158. https://link.springer.com/article/10.1007/s10700-017-9266-z
There are 42 citations in total.

Details

Primary Language English
Subjects Operations Research, Investment and Portfolio Management
Journal Section Research Articles
Authors

Furkan Göktaş 0000-0001-9291-3912

Publication Date June 30, 2024
Submission Date November 10, 2023
Acceptance Date June 11, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Göktaş, F. (2024). The Possibilistic Mean-Variance Model with Uncertain Possibility Distributions. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 11(2), 535-550. https://doi.org/10.30798/makuiibf.1389261

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The author(s) bear full responsibility for the ideas and arguments presented in their articles. All scientific and legal accountability concerning the language, style, adherence to scientific ethics, and content of the published work rests solely with the author(s). Neither the journal nor the institution(s) affiliated with the author(s) assume any liability in this regard.