Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 2, 363 - 385, 30.06.2025
https://doi.org/10.30798/makuiibf.1378862

Abstract

References

  • Adams, T., Ajello, A., Silva, D., & Vazquez‑Grande, F. (2023). More than words: Twitter chatter and financial market sentiment. (FEDS Working Paper No. 2023-034). https://doi.org/10.17016/FEDS.2023.034
  • Aqlan, A. A. Q., Manjula, B., & Naik, R. L. (2019). A study of sentiment analysis: Concepts, techniques, and challenges. In N. Chaki, N. Devarakonda, A. Sarkar, & N. C. Debnath (Eds.), Proceedings of the International Conference on Computational Intelligence and Data Engineering (Lecture Notes on Data Engineering and Communications Technologies, Vol. 28, pp. 147–162). Springer. https://doi.org/10.1007/978-981-13-6459-4_16
  • Brown, R. L., Durbin, J. & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Royal Statistical Society,37(2), 149-192.
  • Chen, N. (2022). Bitcoin price and miner behavior an application of ARDL model. Journal of Financial Studies & Research,1-16.
  • Chen, H., De, P., Hu, Y. J., & Hwang, B. H. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. The Review of Financial Studies, 27(5), 1367–1403. https://doi.org/10.1093/rfs/hhu001 Cristescu, R., Nebozhyn, M., Zhang, C., Albright, A., Kobie, J., Huang, L., Zhao, Q., Wang, A., Ma, H., Cao, Z. A., Morrissey, M., Ribas, A., Grivas, P., Cescon, D. W., McClanahan, T. K., Snyder, A., Ayers, M., Lunceford, J., & Loboda, A. (2022). Transcriptomic determinants of response to pembrolizumab monotherapy across solid tumor types. Clinical Cancer, 28(8), 1680-1689. https://doi.org/10.1158/1078-0432.CCR-21-3329
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.1080/01621459.1979.10482531
  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072.
  • Enders, W. & Lee, J. (2012). The flexible Fourier form and Dickey–Fuller type unit root tests. Economics Letters, 117(1), 196-199.
  • Gaies, B., M. S. Nakhli, J. M. Sahut & Guesmi, K. (2021). Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies. Technological Forecasting & Social Change, 172, 1-11.
  • Gozbasi, O., Altinoz, B., Sahin, E. E. (2021). Is Bitcoin a safe haven? A study on the factors that affect Bitcoin prices. International Journal of Economics and Financial Issues, Econjournals, 11(4), pp. 35-40.
  • Harguem S., Chabani, Z., Noaman, S.,Amjad, M., Alvi, M. B.,Asif, M., Mehmood, M. H. & Al–kassem, A. H. (2022). Machine learning based prediction of stock exchange on NASDAQ 100: A Twitter mining approach. 2022 International Conference on Cyber Resilience (ICCR) Dubai, United Arab Emirates.
  • Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis methods. In G. Dellino & C. Meloni (Eds.), Uncertainty Management in Simulation‑Optimization of Complex Systems (pp. 101–122). Springer. https://doi.org/10.1007/978-1-4899-7547-8_5
  • Katsafados, A.G., Nikoloutsopoulos, S.& Leledakis, G. N. (2023). Twitter sentiment and stock market: A COVID-19 analysis. Journal of Economic Studies, 50(8) https://doi.org/10.1108/JES-09-2022-0486.
  • Kjærland, F., Meland, M., Oust, A. & Øyen, V. (2018). How can Bitcoin price fluctuations be explained?. International Journal of Economics and Financial Issues, 8(1), 323-332.
  • Kolasani S. V., Assaf, R. (2020) Predicting stock movement using sentiment analysis of Twitter feed with neural networks. Journal of Data Analysis and Information Processing, (8), 309-319
  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer. https://doi.org/10.1007/978-3-540-27752-1
  • Newey, W. K. & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.
  • Natural Language Toolkit. (2023, April 19). Documentation. https://www.nltk.org/.
  • Pesaran, M. H., Shin, Y.& Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326.
  • Phillips C. B. P. & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.
  • Pruengkarn, R., Wong, K. W., & Fung, C. C. (2017). A review of data mining techniques and applications. Journal of Advanced Computational Intelligence and Intelligent Informatics, 21(1), 31–58.
  • Rajput, S.K.O., Soomro I. A.& Soomro, N. A. (2022). Bitcoin sentiment index, Bitcoin performance and US Dollar exchange rate. Journal of Behavioral Finance, 23(2), 150-165.
  • Rao T. & Srivastava, S. (2012). Analyzing stock market movements using Twitter sentiment analysis. In 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (pp. 119–126). IEEE. https://doi.org/10.1109/ASONAM.2012.30
  • Renault, T. (2017). Market manipulation and suspicious stock recommendations on social media. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.3010850
  • Sadeghi, Z., & Matwin, S. (2024). A review of global sensitivity analysis methods and a comparative case study on digit classification. [Preprint]. ArXiv. https://doi.org/10.48550/arXiv.2406.16975
  • Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., & Tarantola, S. (2008). Global sensitivity analysis: The primer. John Wiley & Sons.
  • Solomon, M. R. (2014). From thinking to doing: Toward a hands-on consumer behavior course. In C. H. Noble (Eds.), Proceedings of the 1999 academy of marketing science (AMS) annual conference, (p. 55). Springer.
  • Yang, N., Fernández‑Pérez, A., & Indriawan, I. (2024). Spillover between investor sentiment and volatility: The role of social media. International Review of Financial Analysis, 96(Part A), 103643. https://doi.org/10.1016/j.irfa.2024.103643
  • Yao, J. T. (2003). Sensitivity analysis for data mining. In 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, Chicago, IL, USA, (pp. 272-277).
  • Zhang X., Fuehres, H. & P. A. Gloor (2011). Predicting stock market indicators through Twitter “I hope it is not as bad as I fear”. Procedia - Social and Behavioral Sciences, 26, 55-62.
  • Zheludev, I., Smith, R., & Aste, T. (2015). When can social media lead financial markets?. Scientific Reports, 4, Article 4213. https://doi.org/10.1038/srep04213

The Long and Short-Term Effect of Social Media Manipulation on the NASDAQ Index

Year 2025, Volume: 12 Issue: 2, 363 - 385, 30.06.2025
https://doi.org/10.30798/makuiibf.1378862

Abstract

Social media's power to manipulate the financial markets has sparked significant debates, particularly regarding its impact on stock exchanges and cryptocurrency markets. This study investigates the influence of social media manipulation, specifically through Twitter, on the NASDAQ Composite index during its decline from December 1, 2021, to January 31, 2022. Utilizing daily data, the research emphasizes the direction of the relationship between Twitter sentiment and the NASDAQ index. Sentiment analysis, conducted using TextBlob, determines the positivity or negativity of the language used in tweets related to NASDAQ. The study tests the hypothesis of a long- and short-term relationship between the sentiment scores and the index. Time series analysis required ensuring stationarity, which was verified using modern and traditional unit root tests. Subsequently, an ARDL model was employed to examine these relationships. The findings reveal that social media manipulation via Twitter does not impact NASDAQ Composite prices in either the long or short term. Instead, price variations in the NASDAQ Composite index are significantly influenced by the sentiment expressed on Twitter.

Ethical Statement

Ethics Committee approval was not required for this study. The author declares that the study was conducted in accordance with research and publication ethics. The author confirms that no part of the study was generated, either wholly or in part, using Artificial Intelligence (AI) tools. The author declares that there are no financial conflicts of interest involving any institution, organization, or individual associated with this article. The author affirms that the entire research process was performed by the sole declared author of the study.

References

  • Adams, T., Ajello, A., Silva, D., & Vazquez‑Grande, F. (2023). More than words: Twitter chatter and financial market sentiment. (FEDS Working Paper No. 2023-034). https://doi.org/10.17016/FEDS.2023.034
  • Aqlan, A. A. Q., Manjula, B., & Naik, R. L. (2019). A study of sentiment analysis: Concepts, techniques, and challenges. In N. Chaki, N. Devarakonda, A. Sarkar, & N. C. Debnath (Eds.), Proceedings of the International Conference on Computational Intelligence and Data Engineering (Lecture Notes on Data Engineering and Communications Technologies, Vol. 28, pp. 147–162). Springer. https://doi.org/10.1007/978-981-13-6459-4_16
  • Brown, R. L., Durbin, J. & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Royal Statistical Society,37(2), 149-192.
  • Chen, N. (2022). Bitcoin price and miner behavior an application of ARDL model. Journal of Financial Studies & Research,1-16.
  • Chen, H., De, P., Hu, Y. J., & Hwang, B. H. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. The Review of Financial Studies, 27(5), 1367–1403. https://doi.org/10.1093/rfs/hhu001 Cristescu, R., Nebozhyn, M., Zhang, C., Albright, A., Kobie, J., Huang, L., Zhao, Q., Wang, A., Ma, H., Cao, Z. A., Morrissey, M., Ribas, A., Grivas, P., Cescon, D. W., McClanahan, T. K., Snyder, A., Ayers, M., Lunceford, J., & Loboda, A. (2022). Transcriptomic determinants of response to pembrolizumab monotherapy across solid tumor types. Clinical Cancer, 28(8), 1680-1689. https://doi.org/10.1158/1078-0432.CCR-21-3329
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.1080/01621459.1979.10482531
  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072.
  • Enders, W. & Lee, J. (2012). The flexible Fourier form and Dickey–Fuller type unit root tests. Economics Letters, 117(1), 196-199.
  • Gaies, B., M. S. Nakhli, J. M. Sahut & Guesmi, K. (2021). Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies. Technological Forecasting & Social Change, 172, 1-11.
  • Gozbasi, O., Altinoz, B., Sahin, E. E. (2021). Is Bitcoin a safe haven? A study on the factors that affect Bitcoin prices. International Journal of Economics and Financial Issues, Econjournals, 11(4), pp. 35-40.
  • Harguem S., Chabani, Z., Noaman, S.,Amjad, M., Alvi, M. B.,Asif, M., Mehmood, M. H. & Al–kassem, A. H. (2022). Machine learning based prediction of stock exchange on NASDAQ 100: A Twitter mining approach. 2022 International Conference on Cyber Resilience (ICCR) Dubai, United Arab Emirates.
  • Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis methods. In G. Dellino & C. Meloni (Eds.), Uncertainty Management in Simulation‑Optimization of Complex Systems (pp. 101–122). Springer. https://doi.org/10.1007/978-1-4899-7547-8_5
  • Katsafados, A.G., Nikoloutsopoulos, S.& Leledakis, G. N. (2023). Twitter sentiment and stock market: A COVID-19 analysis. Journal of Economic Studies, 50(8) https://doi.org/10.1108/JES-09-2022-0486.
  • Kjærland, F., Meland, M., Oust, A. & Øyen, V. (2018). How can Bitcoin price fluctuations be explained?. International Journal of Economics and Financial Issues, 8(1), 323-332.
  • Kolasani S. V., Assaf, R. (2020) Predicting stock movement using sentiment analysis of Twitter feed with neural networks. Journal of Data Analysis and Information Processing, (8), 309-319
  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer. https://doi.org/10.1007/978-3-540-27752-1
  • Newey, W. K. & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.
  • Natural Language Toolkit. (2023, April 19). Documentation. https://www.nltk.org/.
  • Pesaran, M. H., Shin, Y.& Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326.
  • Phillips C. B. P. & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.
  • Pruengkarn, R., Wong, K. W., & Fung, C. C. (2017). A review of data mining techniques and applications. Journal of Advanced Computational Intelligence and Intelligent Informatics, 21(1), 31–58.
  • Rajput, S.K.O., Soomro I. A.& Soomro, N. A. (2022). Bitcoin sentiment index, Bitcoin performance and US Dollar exchange rate. Journal of Behavioral Finance, 23(2), 150-165.
  • Rao T. & Srivastava, S. (2012). Analyzing stock market movements using Twitter sentiment analysis. In 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (pp. 119–126). IEEE. https://doi.org/10.1109/ASONAM.2012.30
  • Renault, T. (2017). Market manipulation and suspicious stock recommendations on social media. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.3010850
  • Sadeghi, Z., & Matwin, S. (2024). A review of global sensitivity analysis methods and a comparative case study on digit classification. [Preprint]. ArXiv. https://doi.org/10.48550/arXiv.2406.16975
  • Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., & Tarantola, S. (2008). Global sensitivity analysis: The primer. John Wiley & Sons.
  • Solomon, M. R. (2014). From thinking to doing: Toward a hands-on consumer behavior course. In C. H. Noble (Eds.), Proceedings of the 1999 academy of marketing science (AMS) annual conference, (p. 55). Springer.
  • Yang, N., Fernández‑Pérez, A., & Indriawan, I. (2024). Spillover between investor sentiment and volatility: The role of social media. International Review of Financial Analysis, 96(Part A), 103643. https://doi.org/10.1016/j.irfa.2024.103643
  • Yao, J. T. (2003). Sensitivity analysis for data mining. In 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, Chicago, IL, USA, (pp. 272-277).
  • Zhang X., Fuehres, H. & P. A. Gloor (2011). Predicting stock market indicators through Twitter “I hope it is not as bad as I fear”. Procedia - Social and Behavioral Sciences, 26, 55-62.
  • Zheludev, I., Smith, R., & Aste, T. (2015). When can social media lead financial markets?. Scientific Reports, 4, Article 4213. https://doi.org/10.1038/srep04213
There are 31 citations in total.

Details

Primary Language English
Subjects Economic Models and Forecasting, Time-Series Analysis
Journal Section Research Articles
Authors

Çağrı Ulu 0000-0001-5338-2987

Early Pub Date June 28, 2025
Publication Date June 30, 2025
Submission Date October 20, 2023
Acceptance Date June 23, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Ulu, Ç. (2025). The Long and Short-Term Effect of Social Media Manipulation on the NASDAQ Index. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 12(2), 363-385. https://doi.org/10.30798/makuiibf.1378862

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The author(s) bear full responsibility for the ideas and arguments presented in their articles. All scientific and legal accountability concerning the language, style, adherence to scientific ethics, and content of the published work rests solely with the author(s). Neither the journal nor the institution(s) affiliated with the author(s) assume any liability in this regard.