Araştırma Makalesi
BibTex RIS Kaynak Göster

Sonlu eleman yöntemleri kullanılarak dairesel testere makinesinde bir ana şablonun performans ve deformasyon davranışı

Yıl 2025, Cilt: 8 Sayı: 1, 143 - 155, 30.06.2025
https://doi.org/10.33725/mamad.1663809

Öz

Bu çalışmada, dairesel testere tezgahı operasyonları için tasarlanmış yeni geliştirilmiş bir Ana Jig'in (MJ) performansı, gerilim dağılımı, deformasyonu ve potansiyel arıza modları araştırılmıştır. Geliştirilen MJ üç bileşenden oluşmaktadır: Ana Kalıp Gövdesi (MJB), Ana Kalıp Aksesuarları (MJA) ve Ana Kalıp Kılavuzu (MJG). MJ'nin modellenmesi, simülasyonu ve analizi için SOLIDWORKS yazılımı kullanılmış ve sırasıyla 520N ve 600N statik yükler uygulanmıştır. MJ'nin performansı değerlendirilmiş, sonuçlar kaydedilmiş, deformasyon grafiği sunulmuş ve şekli gerçek ve belirlenmiş ölçeklerde gösterilmiştir. Analizler, maksimum yönlendirilmiş deformasyonların sırasıyla 8.463 × 10² mm ve 3.197 × 10³ mm, eşdeğer elastik şekil değişimlerinin 6.540 × 10⁰ ve 1.433 × 10¹, von Mises gerilmelerinin 2.580 × 10⁶ MPa ve 3.930 × 10⁷ MPa, akma dayanımlarının 2.000 × 10⁷ N/m² ve 3.930 × 10⁷ N/m², güvenlik katsayısının ise sırasıyla 31 ve 11 olduğunu göstermektedir. Çalışma, ağaç işleme fikstürlerinin tahmini tasarımında sonlu elemanlar modellemesinin potansiyelini vurgulamaktadır

Proje Numarası

(TETF/DR&D/CE/UNI/CALABAR/IBR/2024/batch 8

Kaynakça

  • Autengruber, M., Lukacevic, M., Wenighofer G., Raimund Mauritz, R., & Füssl, J. (2021). Finite-element-based concept to predict stiffness, strength, and failure of wood composite I-joist beams under various loads and climatic conditions, Engineering Structures, 245 112908, DOI: 10.1016/j.engstruct.2021.112908
  • Blomqvist, L., Ormarsson, S. & Ziethén, R. (2023). Stress distribution in veneers under lamination and simultaneously bending: an experimental and numerical investigation, Wood Material Science & Engineering, 18:3, 995-1002, DOI:10.1080/17480272.2022.2099762
  • Brischke, C., Alfredsen, G., Humar, M., Conti, E., Cookson, L., Emmerich, L., & Suttie, E. (2021). Modelling the material resistance of wood—part 3: relative resistance in above-and in-ground situations—results of a global survey. Forests, 12(5), 590, DOI: 10.3390/f12070959
  • DeCristoforo, R.J. (1988). The Complete Book of Stationary Power Tool Techniques. Sterling Publishing Co., Inc. Two Park Avenue, New York, N. Y. 388p
  • Falk, R. H., & Itani, R. Y. (1989). Finite element modeling of wood diaphragms, Journal of Structural Engineering, 115(3), 543-559, https://www.fpl.fs.usda.gov/documnts
  • Falko, F. Ehrenstein, J. Höltgen, C. Blondrath, A. Schäper, L. Göppert, A. & Schmitt, R. (2023). Jigs and fixtures in production: a systematic literature review. Journal of Manufacturing Systems, 72, 373–405, DOI: 10.1016/j.jmsy.2023.10.006
  • Frontini F. (2023) A novel approach for modelling a historic timber roof, International Wood Products Journal, 14:1, 21-33, DOI: 10.1080/20426445.2023.2171895 Fleming, S. (2020). Woodworking and Whittling for Kids, Teens and Parents: A Beginner’s Guide with 51 DIY Projects for Digital Detox and Family Bonding. Stephen Fleming.
  • Hernández, R.E., Passarini, L. & Koubaa, A. (2014). Effects of temperature and moisture content on selected wood mechanical properties involved in the chipping process, Wood Science and Technology, 48, 1281-1301.
  • Hong, J. P., & Barrett, D. (2010). Three-dimensional finite-element modelling of nailed connections in wood, Journal of Structural Engineering, 136(6), 715-722. DOI: 10.1061/ASCEST.1943-541X.0000160
  • Huber, J. A., Broman, O., Ekevad, M., Oja, J., & Hansson, L. (2022). A method for generating finite element models of wood boards from X-ray computed tomography scans, Computers & structures, 260, 106702, DOI: 10.1016/j.compstruc.2021.106702
  • Hu, W., Yan Liu Y., & Konukcu, A. C. (2022). Study on withdrawal load resistance of screw in wood-based materials: experimental and numerical, Wood Material Science & Engineering, DOI: 10.1080/17480272.2022.2084699 Icha, A. A., & Odey, S. O. (2024). Development of a master jig for circular saw machine, Nigerian Journal of Engineering Research Unicross (NJERU) ISSN No. 2971-785X 1(2), 87-95. https://njerunicross.com.ng/assets/images/articles/1727797215_article.pdf
  • Icha, A. A., & Odey, S. O. (2024). Modelling and simulation of a tenoning jig to predict performance and failure mode on circular saw machine, International Wood Products Journal, 15(1), 44–54. DOI: 10.1177/20426445241226534
  • Icha A, Odey S, Ekpe H (2024) A finite element approach to ınvestigate the performance and reliability of an extension stand in table saw machines, Wood Industry and Engineering, 6(2),1-13. https://dergipark.org.tr/en/pub/wie/issue/89190/1503930
  • Kumar, S. R., Campilho, R. D. S. G., & Silva, F. J. G. (2019). Rethinking modular jigs’ design regarding the optimization of machining times, Procedia Manufacturing, 38, 876–883. DOI: 10.1016/j.promfg.2020.01.169
  • Massaro, F. M., & Malo, K. A. (2020). Stress-laminated timber decks in bridges: Friction between lamellas, butt joints and pre-stressing system, Engineering Structures, 213, 110592, ISSN 0141-0296, DOI: 10.1016/j.engstruct.2020.110592
  • Odey, S. O., & Icha, A. A. (2022). Finite element modelling and evaluation of a sliding table jig for mitering operations in circular saw machine, Journal of Contemporary Research (JOCRES) 1(2), 173 -181. ISSN: 2814-2241
  • Okpala, C. C., & Okechukwu, E. (2015). The design and need for jigs and fixtures in manufacturing, Science Research, 3(4), 213-219.
  • Qiu, L. P., Zhu, E. C., & Van de Kuilen, J. W. G. (2014). Modelling crack propagation in wood by extended finite element method, European Journal of Wood and Wood Products, 72(2), 273-283, DOI: 10.1007/s00107-013-0773-5
  • Radhwan, H., Effendi, M. S. M., Rosli, F.R., Shayfull, Z. & Nadia, K. N. (2019) Design and analysis of jigs and fixtures for manufacturing process, IOP Conference Series Materials Science and Engineering, 551(1), 012028–012028, DOI:10.1088/1757-899x/551/1/012028
  • Salin, J. G. (2008). Modelling water absorption in wood, Wood Material Science and Engineering, 3(3-4), 102-108. DOI: 10.1080/17480270902781576
  • Seward, D. (2014). Connections. In: Understanding Structures, Palgrave, London. 231 – 251, DOI: 10.1007/978-1-349-14809-7_10
  • SOLIDWORKS. (2021). SolidWorks 2021 [Computer software]. Dassault Systèmes. Tankut, N., Tankut, A. N., & Zor, M. (2014). Finite element analysis of wood materials, Drvna industrija, 65(2), 159-171. DOI:10.5552/drind.2014.1254
  • Vasic, S., Smith, I., & Landis, E. (2005). Finite element techniques and models for wood fracture mechanics, Wood science and technology, 39, 3-17. DOI: 10.1007/s00226-004-0255-3
  • Yıldırım, M. N, Karaman, A., & Akınay, A. (2016). Finite element method application of wooden furniture, International conference on research in education science, Bodrum/Muğla/Türkiye, 19 - 22 Mayıs 2016, ss.1258-1270.
  • Zhong, W., Zhang, Z., Chen, X., Wei, Q., Chen, G., & Huang, X. (2021). Multi-scale finite element simulation on large deformation behaviour of wood under axial and transverse compression conditions, Acta Mechanica Sinica, 37, 1136-1151, DOI: 10.1007/s10409-021-01112-z

Performance and deformation behavior of a master jig on circular saw machine using finite element method

Yıl 2025, Cilt: 8 Sayı: 1, 143 - 155, 30.06.2025
https://doi.org/10.33725/mamad.1663809

Öz

This study investigates the performance, stress distribution, deformation and potential failure modes of a newly developed Master Jig (MJ) designed for circular saw machine operations. The MJ comprises three components: the master jig body (MJB), the master jig accessories (MJA) and the master jig guide (MJG). The jig was modelled and simulated under applied static loads of 520 N and 600 N using SOLIDWORKS software. The MJ performance was evaluated, results were recorded, and a deformation graph was presented and shape displayed in true and defined scales of 0.135238 and 0.036047, respectively. The analysis shows that, maximum directional deformations at 520 N and 600 N were 8.463 x 102 mm and 3.197 x 103 mm respectively, elastic strains at 6.540 x 10 and 1.433 x 10, von mises stresses at 2.580 x 106 MPa and 3.930 x 107 MPa respectively, the Yield Strengths at 2.000 x 107 MPa and 3.930 x 107 MPa respectively, and the factor of safety at 31 and 11 respectively. The study underscores the potential of finite element modelling in the predictive design of woodworking jigs.

Etik Beyan

Not applicable

Destekleyen Kurum

University of Cross River State, Calabar Nigeria

Proje Numarası

(TETF/DR&D/CE/UNI/CALABAR/IBR/2024/batch 8

Teşekkür

We appreciate the editorial board and the Chief editor's invitation to present our work for consideration. We hope it meets your journal's high standards. Thank you. Asibong Icha

Kaynakça

  • Autengruber, M., Lukacevic, M., Wenighofer G., Raimund Mauritz, R., & Füssl, J. (2021). Finite-element-based concept to predict stiffness, strength, and failure of wood composite I-joist beams under various loads and climatic conditions, Engineering Structures, 245 112908, DOI: 10.1016/j.engstruct.2021.112908
  • Blomqvist, L., Ormarsson, S. & Ziethén, R. (2023). Stress distribution in veneers under lamination and simultaneously bending: an experimental and numerical investigation, Wood Material Science & Engineering, 18:3, 995-1002, DOI:10.1080/17480272.2022.2099762
  • Brischke, C., Alfredsen, G., Humar, M., Conti, E., Cookson, L., Emmerich, L., & Suttie, E. (2021). Modelling the material resistance of wood—part 3: relative resistance in above-and in-ground situations—results of a global survey. Forests, 12(5), 590, DOI: 10.3390/f12070959
  • DeCristoforo, R.J. (1988). The Complete Book of Stationary Power Tool Techniques. Sterling Publishing Co., Inc. Two Park Avenue, New York, N. Y. 388p
  • Falk, R. H., & Itani, R. Y. (1989). Finite element modeling of wood diaphragms, Journal of Structural Engineering, 115(3), 543-559, https://www.fpl.fs.usda.gov/documnts
  • Falko, F. Ehrenstein, J. Höltgen, C. Blondrath, A. Schäper, L. Göppert, A. & Schmitt, R. (2023). Jigs and fixtures in production: a systematic literature review. Journal of Manufacturing Systems, 72, 373–405, DOI: 10.1016/j.jmsy.2023.10.006
  • Frontini F. (2023) A novel approach for modelling a historic timber roof, International Wood Products Journal, 14:1, 21-33, DOI: 10.1080/20426445.2023.2171895 Fleming, S. (2020). Woodworking and Whittling for Kids, Teens and Parents: A Beginner’s Guide with 51 DIY Projects for Digital Detox and Family Bonding. Stephen Fleming.
  • Hernández, R.E., Passarini, L. & Koubaa, A. (2014). Effects of temperature and moisture content on selected wood mechanical properties involved in the chipping process, Wood Science and Technology, 48, 1281-1301.
  • Hong, J. P., & Barrett, D. (2010). Three-dimensional finite-element modelling of nailed connections in wood, Journal of Structural Engineering, 136(6), 715-722. DOI: 10.1061/ASCEST.1943-541X.0000160
  • Huber, J. A., Broman, O., Ekevad, M., Oja, J., & Hansson, L. (2022). A method for generating finite element models of wood boards from X-ray computed tomography scans, Computers & structures, 260, 106702, DOI: 10.1016/j.compstruc.2021.106702
  • Hu, W., Yan Liu Y., & Konukcu, A. C. (2022). Study on withdrawal load resistance of screw in wood-based materials: experimental and numerical, Wood Material Science & Engineering, DOI: 10.1080/17480272.2022.2084699 Icha, A. A., & Odey, S. O. (2024). Development of a master jig for circular saw machine, Nigerian Journal of Engineering Research Unicross (NJERU) ISSN No. 2971-785X 1(2), 87-95. https://njerunicross.com.ng/assets/images/articles/1727797215_article.pdf
  • Icha, A. A., & Odey, S. O. (2024). Modelling and simulation of a tenoning jig to predict performance and failure mode on circular saw machine, International Wood Products Journal, 15(1), 44–54. DOI: 10.1177/20426445241226534
  • Icha A, Odey S, Ekpe H (2024) A finite element approach to ınvestigate the performance and reliability of an extension stand in table saw machines, Wood Industry and Engineering, 6(2),1-13. https://dergipark.org.tr/en/pub/wie/issue/89190/1503930
  • Kumar, S. R., Campilho, R. D. S. G., & Silva, F. J. G. (2019). Rethinking modular jigs’ design regarding the optimization of machining times, Procedia Manufacturing, 38, 876–883. DOI: 10.1016/j.promfg.2020.01.169
  • Massaro, F. M., & Malo, K. A. (2020). Stress-laminated timber decks in bridges: Friction between lamellas, butt joints and pre-stressing system, Engineering Structures, 213, 110592, ISSN 0141-0296, DOI: 10.1016/j.engstruct.2020.110592
  • Odey, S. O., & Icha, A. A. (2022). Finite element modelling and evaluation of a sliding table jig for mitering operations in circular saw machine, Journal of Contemporary Research (JOCRES) 1(2), 173 -181. ISSN: 2814-2241
  • Okpala, C. C., & Okechukwu, E. (2015). The design and need for jigs and fixtures in manufacturing, Science Research, 3(4), 213-219.
  • Qiu, L. P., Zhu, E. C., & Van de Kuilen, J. W. G. (2014). Modelling crack propagation in wood by extended finite element method, European Journal of Wood and Wood Products, 72(2), 273-283, DOI: 10.1007/s00107-013-0773-5
  • Radhwan, H., Effendi, M. S. M., Rosli, F.R., Shayfull, Z. & Nadia, K. N. (2019) Design and analysis of jigs and fixtures for manufacturing process, IOP Conference Series Materials Science and Engineering, 551(1), 012028–012028, DOI:10.1088/1757-899x/551/1/012028
  • Salin, J. G. (2008). Modelling water absorption in wood, Wood Material Science and Engineering, 3(3-4), 102-108. DOI: 10.1080/17480270902781576
  • Seward, D. (2014). Connections. In: Understanding Structures, Palgrave, London. 231 – 251, DOI: 10.1007/978-1-349-14809-7_10
  • SOLIDWORKS. (2021). SolidWorks 2021 [Computer software]. Dassault Systèmes. Tankut, N., Tankut, A. N., & Zor, M. (2014). Finite element analysis of wood materials, Drvna industrija, 65(2), 159-171. DOI:10.5552/drind.2014.1254
  • Vasic, S., Smith, I., & Landis, E. (2005). Finite element techniques and models for wood fracture mechanics, Wood science and technology, 39, 3-17. DOI: 10.1007/s00226-004-0255-3
  • Yıldırım, M. N, Karaman, A., & Akınay, A. (2016). Finite element method application of wooden furniture, International conference on research in education science, Bodrum/Muğla/Türkiye, 19 - 22 Mayıs 2016, ss.1258-1270.
  • Zhong, W., Zhang, Z., Chen, X., Wei, Q., Chen, G., & Huang, X. (2021). Multi-scale finite element simulation on large deformation behaviour of wood under axial and transverse compression conditions, Acta Mechanica Sinica, 37, 1136-1151, DOI: 10.1007/s10409-021-01112-z
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer), Ahşap Esaslı Kompozitler, Ahşap Fiziği ve Mekaniği, Ahşap Yapılar ve Konstrüksiyonları
Bölüm Araştırma Makaleleri
Yazarlar

Asibong Icha 0000-0001-6180-1467

Simon Ogbeche Odey 0000-0003-2904-4544

Proje Numarası (TETF/DR&D/CE/UNI/CALABAR/IBR/2024/batch 8
Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 23 Mart 2025
Kabul Tarihi 22 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Icha, A., & Ogbeche Odey, S. (2025). Performance and deformation behavior of a master jig on circular saw machine using finite element method. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 8(1), 143-155. https://doi.org/10.33725/mamad.1663809

Uluslararası Dergidir

33353  32217  18332 18333   3221918334 18335   18336   18339   18434    32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400  

34808