Araştırma Makalesi
BibTex RIS Kaynak Göster

A Research on the Production of Insulation Materials from some Fungi Mycelia

Yıl 2024, Cilt: 15 Sayı: Özel Sayı, 73 - 82, 30.12.2024
https://doi.org/10.30708/mantar.1566720

Öz

It was aimed to investigate the manufacturability of mycelium-based, environmentally friendly insulation materials. Ganoderma resinaceum (Cilalı reyşi),Schizophyllum commune (Kımuk) collected from Aydın Province and Pleurotus ostreatus (İstiridye mantarı) ready-made mycels obtained from Agroma Mantar company were used as materials. Molds suitable to produce test samples were prepared with a 3D printer and trials were carried out in the mushroom production tent and air conditioning automation system. Agricultural residues such as wheat straw, corn stalk and cotton straw were studied as a substrate for mycelium growth. Agricultural residues were inoculated with mycelium and after 14 days of incubation at 27 °C in 60-80% humidity, molding was done and incubation was continued for another 7 days. The samples removed from the mold were dried in a Pasteur oven at 70 °C for 8 hours. The material was produced, compression, tensile, bending, thermal conductivity tests and FTIR analysis were performed. At the end of the trials, wheat straw as substrate, temperature 27 °C humidity 60-80% were determined as optimum. In order to determine the best inoculum amount, mycelium was inoculated into compost medium containing wheat straw in various ratios such as ½ and ¼ of the petri dish after the mycelium was developed in a petri dish containing malt extract agar. Mycelial growth was observed using three types of fungi and three different substrates. It was determined that the best fungus was Ganoderma resinaceum and the best substrate was wheat straw.

Proje Numarası

ADÜ-BAP FEF21022

Kaynakça

  • Abhijith, R., Anagha Ashok, ve C. R. Rejeesh (2018). Sustainable packaging applications from mycelium to substitute polystyrene: a review." Materials Today: Proceedings 5.1, 2139-2145.
  • Adamatzky, A., ve Gandia, A. (2022). Living mycelium composites discern weights via patterns of electrical activity. Journal of Bioresources and Bioproducts, 7(1), 26-32.
  • Allı, H., Işıloğlu, M., ve Solak, M. H. (2007). Macrofungi of Aydin Province, Turkey. Mycotaxon, 99:163-165.
  • Alemu, D., Tafesse, M., ve Gudetta Deressa, Y. (2022). Production of mycoblock from the mycelium of the fungus Pleurotus ostreatus for use as sustainable construction materials. Advances in Materials Science and Engineering, 2022(1):1-12.
  • Angelova, G., Brazkova, M., Stefanova, P., Blazheva, D., Vladev, V., Petkova, N., Slavov, A., Denev, P., Karashanova, D., Zaharieva, R., Enev, A., ve Krastanov, A. (2021). Waste rose flower and lavender straw biomass—An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum GA1M. Journal of Fungi, 7(10), 866.
  • Appels, F. V., Camere, S., Montalti, M., Karana, E., Jansen, K. M., Dijksterhuis, J., ve Wösten, H. A. (2019). Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Materials & Design, 161, 64-71. 36
  • Attias, N., Danai, O., Tarazi, E., Pereman, I., ve Grobman, Y. J. (2019). Implementing bio-design tools to develop mycelium-based products. The Design Journal, 22(sup1), 1647-1657.
  • Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., ve Grobman, Y. J. (2020). Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. Journal of Cleaner Production, 246, 119037.
  • Bartnicki-Garcia, S. (1968). Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Reviews in Microbiology, 22(1), 87-108.
  • Butu, A., Rodino, S., Miu, B., ve Butu, M. (2020). Mycelium-based materials for the ecodesign of bioeconomy. Digest Journal of Nanomaterials and Biostructures, 15(4), 1129-1140.
  • Bhat, T., Jones, M., Kandare, E., Yuen, R., Wang, C. H., ve John, S. (2018). Biomass and Waste-derived Sustainable Mycelium Composite Construction Materials with Enhanced Fire Safety. In 18th European Conference on Composite Materials, ECCM 2018. Book of Full Text, (ss1-8). Athens, Greece
  • Colmo, C., ve Ayres, P. (2020, September). 3d printed bio-hybrid structures: Investigating the architectural potentials of mycoremediation. In 38th eCAADe Conference (online) 2020: Anthropologic-Architecture and Fabrication in the cognitive age, 573-582.
  • Dicker, M. P., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., ve Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites part A: applied science and manufacturing, 56, 280-289.
  • Ekblad, A., Wallander, H., Godbold, D. L., Cruz, C., Johnson, D., Baldrian, P., Björk, R., G., Epron, D., Kieliszewska-Rokicka, B., Kjøller, R., Kraigher, H., Matzner, E., Neumann, J., ve Plassard, C. (2013). The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant and Soil, 366(1), 1-27.
  • Elsacker, E., Peeters, E., & De Laet, L. (2022). Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustainable Futures, 100085.
  • Fairus, M. J. B. M., Bahrin, E. K., Arbaain, E. N. N., Ramli, N., ve Enis, N., (2022). Mycelium-based composite: A way forward for renewable material. J. Sustain. Sci. Manag, 17, 271-280.
  • Ghazvinian, A. (2021). A sustainable alternative to architectural materials: Mycelium-based bio-composites. Proceedings of the Divergence in Architectural Research, Atlanta, GA, USA, 15, 159-167.
  • Ghazvinian, A., ve Gürsoy, B. (2022). Mycelium-Based Composite Graded Materials: Assessing the Effects of Time and Substrate Mixture on Mechanical Properties. Biomimetics, 7(2), 48.
  • Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., ve Savino, E. (2019). Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability, 11(1), 281.
  • Gross, T., ve Sayama, H. (2009). Adaptive networks, Springer, Berlin, Heidelberg, 1-8.
  • Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., ve Athanassiou, A. (2017). Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Scientific reports, 7(1), 1-11.
  • Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., ve Picu, R. C. (2017). Morphology and mechanics of fungal mycelium. Scientific reports, 7(1), 1-12.
  • Holkar, S., K., ve Chandra, R. (2016) Triveni Enterprises, Journal of environmental biology 37: 7-12.
  • Jones, M., Bhat, T., Huynh, T., Kandare, E., Yuen, R., Wang, C. H., ve John, S. (2018). Waste derived low cost mycelium composite construction materials with improved fire safety. Fire and Materials, 42(7), 816-825.
  • Lelivelt, R. J. J. (2015). The mechanical possibilities of mycelium materials. Eindhoven university of technology (TU/e), 682.
  • Nashiruddin, N. I., Chua, K. S., Mansor, A. F., A Rahman, R., Lai, J. C., Wan Azelee, N. I., ve El Enshasy, H. (2022). Effect of growth factors on the production of mycelium-based biofoam. Clean Technologies and Environmental Policy, 24(1), 351-361.
  • Ozkan, D., Morrow, R., Zhang, M., ve Dade-Robertson, M. (2022). Are Mushrooms Parametric?. Biomimetics, 7(2), 60.
  • Rafiee, K., Schritt, H., Pleissner, D., Kaur, G., ve Brar, S. K. (2021). Biodegradable green composites: It's never too late to mend. Current Opinion in Green and Sustainable Chemistry, 30, 100482.
  • Scott, J., Ozkan, D., Hoenerloh, A., Birch, E., Kaiser, R., Agraviador, A., Bridgens, B., ve Elsacker, E. (2021). Bioknit Building: Strategies for living textile architectures. In CEES 2021 International Conference Construction, Energy Environment and Sustainability, Portugal, 1-4.
  • Sesli, E., Asan, A., Selçuk, F., (eds.) Abacı Günyar, Ö., Akata, I., Akgül, H., Aktaş, S., Alkan, S., Allı, H., Aydoğdu, H., Berikten, D., Demirel, K., Demirel, R., Doğan, H.H., Erdoğdu, M., Ergül, C,, Eroğlu, G., Giray, G., Halikî Uztan, A., Kabaktepe, Ş., Kadaifçiler, D., Kalyoncu, F., Karaltı, İ., Kaşık, G., Kaya, A., Keleş, A., Kırbağ, S., Kıvanç, M., Ocak, İ., Ökten, S., Özkale, E., Öztürk, C., Sevindik, M., Şen, B., Şen, İ., Türkekul, İ., Ulukapı, M., Uzun, Ya., Uzun, Yu. ve Yoltaş, A. (2020). Türkiye mantarları listesi (The checklist of fungi of Turkey). Ali Nihat Gökyiğit Vakfı Yayını. İstanbul
  • Tacer-Caba, Z., Varis, J. J.,Lankinen, P., ve Mikkonen, K. S. (2020). Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials & Design, 192, 108728.
  • Van Wylick, A., Elsacker, E., Yap, L. L., Peeters, E., ve De Laet, L. (2022). Mycelium Composites and their Biodegradability: An Exploration on the Disintegration of Mycelium-Based Materials in Soil. In Construction Technologies and Architecture, Vol. 1, 652-659.
  • United States. Congress. Office of Technology Assessment. (1993). Biopolymers: Making Materials Nature's Way. Congress.
  • URL_1 TMMOB. (2023) Ankara Makina Mühendisleri Odası, https://www.mmo.org.tr/sites/default/files/gonderi_dosya_ekleri/0f0c65cbf947d1c_ek.pdf [Erişim Tarihi:13/03/2023] Webster, J., & Weber, R. (2007). Introduction to fungi. Cambridge university press.
  • Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., & Jones, P. (2018, February). Growing and testing mycelium bricks as building insulation materials. In IOP conference series: earth and environmental science (Vol. 121, p. 022032). IOP Publishing.

Bazı Mantar Miselyumlarından Yalıtım Malzemesi Üretimi Üzerine Bir Araştırma

Yıl 2024, Cilt: 15 Sayı: Özel Sayı, 73 - 82, 30.12.2024
https://doi.org/10.30708/mantar.1566720

Öz

Çalışmada, miselyum bazlı, çevre dostu yalıtım malzemelerinin üretilebilirliğinin araştırılması amaçlanmıştır. Materyal olarak Aydın ilinden toplanan Ganoderma resinaceum (Cilalı reyşi), Schizophyllum commune (Kımuk) ve Agroma Mantar Şirketinden temin edilen Pleurotus ostreatus (İstiridye mantarı) hazır miselleri kullanılmıştır. Deney örneklerinin üretimine uygun kalıplar 3D yazıcı ile hazırlanmış ve mantar üretim çadırı ve iklimlendirme otomasyon sisteminde denemeler gerçekleştirilmiştir. Buğday sapı, mısır ve pamuk sapı gibi tarımsal artıklar miselyum gelişimi için substrat olarak incelenmiştir. Tarımsal artıklar miselyum ile aşılanmış ve 27 °C'de % 60-80 nemde 14 gün inkübasyondan sonra kalıplama yapılmış ve inkübasyona 7 gün daha devam edilmiştir. Kalıptan çıkarılan örnekler 70 °C'de Pasteur fırınında 8 saat kurutulmuştur. Materyal üretildikten sonra, basma, çekme, eğme, ısıl iletkenlik testleri ve FTIR analizi yapılmıştır. Denemeler sonunda substrat olarak buğday sapının, 27 ℃ sıcaklık ve % 60-80 nemde optimum olarak uygunluğu belirlendi. En iyi inokulum miktarını belirlemek için miselyum, malt ekstrak agar içeren petri kabında geliştirildikten sonra, buğday sapı içeren kompost ortamına ½ ve ¼ gibi çeşitli oranlarda miselyumla aşılandı. Üç tip mantar ve üç farklı substrat kullanılarak miselyal büyüme gözlendi. En iyi mantarın Ganoderma resinaceum, en iyi substratın ise buğday sapı olduğu belirlendi.

Etik Beyan

Etik beyanı yoktur

Destekleyen Kurum

Bu çalışma ADÜ-BAP tarafından finansal olarak desteklenmiştir (Proje Numarası: FEF21022). Bu araştırma bir yüksek lisans tezidir.

Proje Numarası

ADÜ-BAP FEF21022

Teşekkür

Bu çalışma ADÜ-BAP tarafından finansal olarak desteklenmiştir (Proje Numarası: FEF21022). ADÜ-BAP birimine teşekkür ederiz

Kaynakça

  • Abhijith, R., Anagha Ashok, ve C. R. Rejeesh (2018). Sustainable packaging applications from mycelium to substitute polystyrene: a review." Materials Today: Proceedings 5.1, 2139-2145.
  • Adamatzky, A., ve Gandia, A. (2022). Living mycelium composites discern weights via patterns of electrical activity. Journal of Bioresources and Bioproducts, 7(1), 26-32.
  • Allı, H., Işıloğlu, M., ve Solak, M. H. (2007). Macrofungi of Aydin Province, Turkey. Mycotaxon, 99:163-165.
  • Alemu, D., Tafesse, M., ve Gudetta Deressa, Y. (2022). Production of mycoblock from the mycelium of the fungus Pleurotus ostreatus for use as sustainable construction materials. Advances in Materials Science and Engineering, 2022(1):1-12.
  • Angelova, G., Brazkova, M., Stefanova, P., Blazheva, D., Vladev, V., Petkova, N., Slavov, A., Denev, P., Karashanova, D., Zaharieva, R., Enev, A., ve Krastanov, A. (2021). Waste rose flower and lavender straw biomass—An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum GA1M. Journal of Fungi, 7(10), 866.
  • Appels, F. V., Camere, S., Montalti, M., Karana, E., Jansen, K. M., Dijksterhuis, J., ve Wösten, H. A. (2019). Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Materials & Design, 161, 64-71. 36
  • Attias, N., Danai, O., Tarazi, E., Pereman, I., ve Grobman, Y. J. (2019). Implementing bio-design tools to develop mycelium-based products. The Design Journal, 22(sup1), 1647-1657.
  • Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., ve Grobman, Y. J. (2020). Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. Journal of Cleaner Production, 246, 119037.
  • Bartnicki-Garcia, S. (1968). Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Reviews in Microbiology, 22(1), 87-108.
  • Butu, A., Rodino, S., Miu, B., ve Butu, M. (2020). Mycelium-based materials for the ecodesign of bioeconomy. Digest Journal of Nanomaterials and Biostructures, 15(4), 1129-1140.
  • Bhat, T., Jones, M., Kandare, E., Yuen, R., Wang, C. H., ve John, S. (2018). Biomass and Waste-derived Sustainable Mycelium Composite Construction Materials with Enhanced Fire Safety. In 18th European Conference on Composite Materials, ECCM 2018. Book of Full Text, (ss1-8). Athens, Greece
  • Colmo, C., ve Ayres, P. (2020, September). 3d printed bio-hybrid structures: Investigating the architectural potentials of mycoremediation. In 38th eCAADe Conference (online) 2020: Anthropologic-Architecture and Fabrication in the cognitive age, 573-582.
  • Dicker, M. P., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., ve Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites part A: applied science and manufacturing, 56, 280-289.
  • Ekblad, A., Wallander, H., Godbold, D. L., Cruz, C., Johnson, D., Baldrian, P., Björk, R., G., Epron, D., Kieliszewska-Rokicka, B., Kjøller, R., Kraigher, H., Matzner, E., Neumann, J., ve Plassard, C. (2013). The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant and Soil, 366(1), 1-27.
  • Elsacker, E., Peeters, E., & De Laet, L. (2022). Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustainable Futures, 100085.
  • Fairus, M. J. B. M., Bahrin, E. K., Arbaain, E. N. N., Ramli, N., ve Enis, N., (2022). Mycelium-based composite: A way forward for renewable material. J. Sustain. Sci. Manag, 17, 271-280.
  • Ghazvinian, A. (2021). A sustainable alternative to architectural materials: Mycelium-based bio-composites. Proceedings of the Divergence in Architectural Research, Atlanta, GA, USA, 15, 159-167.
  • Ghazvinian, A., ve Gürsoy, B. (2022). Mycelium-Based Composite Graded Materials: Assessing the Effects of Time and Substrate Mixture on Mechanical Properties. Biomimetics, 7(2), 48.
  • Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., ve Savino, E. (2019). Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability, 11(1), 281.
  • Gross, T., ve Sayama, H. (2009). Adaptive networks, Springer, Berlin, Heidelberg, 1-8.
  • Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., ve Athanassiou, A. (2017). Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Scientific reports, 7(1), 1-11.
  • Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., ve Picu, R. C. (2017). Morphology and mechanics of fungal mycelium. Scientific reports, 7(1), 1-12.
  • Holkar, S., K., ve Chandra, R. (2016) Triveni Enterprises, Journal of environmental biology 37: 7-12.
  • Jones, M., Bhat, T., Huynh, T., Kandare, E., Yuen, R., Wang, C. H., ve John, S. (2018). Waste derived low cost mycelium composite construction materials with improved fire safety. Fire and Materials, 42(7), 816-825.
  • Lelivelt, R. J. J. (2015). The mechanical possibilities of mycelium materials. Eindhoven university of technology (TU/e), 682.
  • Nashiruddin, N. I., Chua, K. S., Mansor, A. F., A Rahman, R., Lai, J. C., Wan Azelee, N. I., ve El Enshasy, H. (2022). Effect of growth factors on the production of mycelium-based biofoam. Clean Technologies and Environmental Policy, 24(1), 351-361.
  • Ozkan, D., Morrow, R., Zhang, M., ve Dade-Robertson, M. (2022). Are Mushrooms Parametric?. Biomimetics, 7(2), 60.
  • Rafiee, K., Schritt, H., Pleissner, D., Kaur, G., ve Brar, S. K. (2021). Biodegradable green composites: It's never too late to mend. Current Opinion in Green and Sustainable Chemistry, 30, 100482.
  • Scott, J., Ozkan, D., Hoenerloh, A., Birch, E., Kaiser, R., Agraviador, A., Bridgens, B., ve Elsacker, E. (2021). Bioknit Building: Strategies for living textile architectures. In CEES 2021 International Conference Construction, Energy Environment and Sustainability, Portugal, 1-4.
  • Sesli, E., Asan, A., Selçuk, F., (eds.) Abacı Günyar, Ö., Akata, I., Akgül, H., Aktaş, S., Alkan, S., Allı, H., Aydoğdu, H., Berikten, D., Demirel, K., Demirel, R., Doğan, H.H., Erdoğdu, M., Ergül, C,, Eroğlu, G., Giray, G., Halikî Uztan, A., Kabaktepe, Ş., Kadaifçiler, D., Kalyoncu, F., Karaltı, İ., Kaşık, G., Kaya, A., Keleş, A., Kırbağ, S., Kıvanç, M., Ocak, İ., Ökten, S., Özkale, E., Öztürk, C., Sevindik, M., Şen, B., Şen, İ., Türkekul, İ., Ulukapı, M., Uzun, Ya., Uzun, Yu. ve Yoltaş, A. (2020). Türkiye mantarları listesi (The checklist of fungi of Turkey). Ali Nihat Gökyiğit Vakfı Yayını. İstanbul
  • Tacer-Caba, Z., Varis, J. J.,Lankinen, P., ve Mikkonen, K. S. (2020). Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials & Design, 192, 108728.
  • Van Wylick, A., Elsacker, E., Yap, L. L., Peeters, E., ve De Laet, L. (2022). Mycelium Composites and their Biodegradability: An Exploration on the Disintegration of Mycelium-Based Materials in Soil. In Construction Technologies and Architecture, Vol. 1, 652-659.
  • United States. Congress. Office of Technology Assessment. (1993). Biopolymers: Making Materials Nature's Way. Congress.
  • URL_1 TMMOB. (2023) Ankara Makina Mühendisleri Odası, https://www.mmo.org.tr/sites/default/files/gonderi_dosya_ekleri/0f0c65cbf947d1c_ek.pdf [Erişim Tarihi:13/03/2023] Webster, J., & Weber, R. (2007). Introduction to fungi. Cambridge university press.
  • Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., & Jones, P. (2018, February). Growing and testing mycelium bricks as building insulation materials. In IOP conference series: earth and environmental science (Vol. 121, p. 022032). IOP Publishing.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mikoloji
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Hacı Halil Bıyık 0000-0003-0258-054X

Aykan Özgür 0000-0001-9686-2809

Proje Numarası ADÜ-BAP FEF21022
Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 14 Ekim 2024
Kabul Tarihi 28 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: Özel Sayı

Kaynak Göster

APA Bıyık, H. H., & Özgür, A. (2024). Bazı Mantar Miselyumlarından Yalıtım Malzemesi Üretimi Üzerine Bir Araştırma. Mantar Dergisi, 15(Özel Sayı), 73-82. https://doi.org/10.30708/mantar.1566720

Uluslararası Hakemli Dergi

Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır 

Creative Commons Lisansı

Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.