Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Analysis of Mycelium Biocomposites as Potential Next-Generation Green Building Materials

Yıl 2024, Cilt: 15 Sayı: Özel Sayı, 7 - 17, 30.12.2024
https://doi.org/10.30708/mantar.1569974

Öz

The construction industry is responsible for approximately 40% of the environmental damage due to carbon emissions resulting from high energy consumption, production processes, product logistics, and application methods. The production and use processes of traditional building materials contribute to the depletion of natural resources and the disruption of ecological balance. The search for sustainable and eco-friendly materials is becoming increasingly important in this context. This study emphasises the potential and significance of fungal mycelium for the construction industry.
Mycelium biocomposites offer environmental benefits and exhibit important performance criteria such as thermal performance, acoustic performance, compressive strength, flexural strength, and radioactive shielding properties. In this research, the characteristics of the developed mycelium composites are compared with conventional environmentally harmful alternatives in the construction industry. The comparison is based on thermal conductivity, acoustic performance, compressive strength, and flexural strength tests, and the values of widely used products such as MDF, rock wool, and gypsum board in the literature are considered.
The findings demonstrate that mycelium biocomposites are a sustainable alternative and superior in some performance metrics. Specifically, they can compete with existing products in thermal and acoustic performance and exhibit superior compressive strength and flexural strength compared to certain products. Given the current environmental impacts of the construction industry, mycelium-based materials stand out as an innovative solution that preserves ecological balance and offers long-term sustainable building practice.

Etik Beyan

It is declared that scientific and ethical principles have been followed while carrying out and writing this study and that all the sources used have been properly cited. Onur KIRDÖK, Sultan Kübra TOKER, Orkun KIVRAK, Tutku Didem ALTUN, Elif Esin HAMEŞ

Teşekkür

Special thanks to BIOP Biotech research team for their continuous effort and faith for a better future bound with mycelium.

Kaynakça

  • Adamatzky, A., Ayres, P., Belotti. G. and Wösten, H. (2020). Fungal architecture. arXiv:1912.13262v1 [cs.ET], 1-19.
  • Appels, V.W., Camere, S., Montalti, M., Karana, E. Jansen, K.M.B., Dijksterhus, J., Krijgsheld, P. and Wösten, H.A.B. (2018). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites, Mater. Des., 161, 64–71.
  • Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., and Grobman, Y. J. (2020). Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. J. Cleaner Product. 246.
  • Attias, N., Danai, O., Tarazi, E., Pereman, I. and Grobman, Y.J. (2019) Implementing bio-design tools to develop mycelium-based products. Design J. 22 (1): 1647-1657.
  • Beesley, P., and Armstrong, R. (2011). Soil and protoplasm: The hylozoic ground project. Architectural Design, 81(2), 78-89.
  • Budiwati, I. A. M. (2009). Experimental compressive strength and modulus of elasticity of masonry. J. Llmiah Teknik Sipil. 13 (1).
  • Camere, S., and Karana, E. (2018). Fabricating materials from living organisms: An emerging design practice. Journal of Cleaner Production, 186, 570-584.
  • Dollens, D. (2009) Architecture as nature: A biodigital hypothesis. Leonardo, 42(5), 412–420
  • Ghazvinian, A, Farrokhsiar, P, Vieira, F, Pecchia, J and Gursoy, B (2019). Myceliumbased biocomposites for architecture: assessing the effects of cultivation factors on compressive strength. The eCAADe and SIGraDi Conference, 11-13 September 2019, University of Porto, Portugal,2, 505-513.
  • Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini and Savino, E. (2019). Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability, 11(1), 281
  • Gündoğdu, T. K., Deniz, I., Aric, A., Yılmazsoy, B. T., Cakir, O. A., Erdogan, A.,.and Kokturk, G. (2019). Development of ecological biodesign products by bacterial biocalcification. J. EJENS-Eur. J. Eng. Nat. Sci. 3 (1): 17.
  • Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., and Athanassiou, A. (2017). Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7 (1): 1-11.
  • Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L. and Picu, R.C (2018). Stochastic continuum model for mycelium-based bio-foam. Mater. Des. 160, 549– 556.
  • Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L. and Picu, R.C., (2017). Morphology and mechanics of fungal mycelium. Sci. Rep. 7, 1–12.
  • Jones, M. P., Lawrie, A. C., Huynh, T. T., Morrison, P. D., Mautner, A., Bismarck,A., and John, S. (2019). Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochem., 80, 95-102.
  • Jones, M., Bhat, T., Wang, C. H., Moinuddin, K., and John, S. (2017a). Thermal degradation and fire reaction properties of mycelium composites. In Proceedings of the 21st International Conference on Composite Materials, Xi‟an, China, 20- 25.
  • Jones, M., Chun, H., Yuen, R. and John, S., (2018). Waste ‐ derived low ‐ cost mycelium composite construction materials with improved fire safety. Fire Mater, 42(7) 1–10.
  • Jones, M., Huynh, T., Dekiwadia, C., Daver, F. and John, S., (2017b). Mycelium Composites: A Review of Engineering Characteristics and Growth Kinetics. J. Bionanosci., 11, 241–257.
  • Jones, M., Mautner, A., Luenco, S., Bismarck, A., and John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des., 187, 108397.
  • Karana, E., Blauwhoff, D., Hultink, E. J., and Camere, S. (2018). When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des., 12(2), 119-136.
  • Kırdök, O., Akyol Altun, T.D., Dokgöz, D. and Tokuç, A. (2019). Biodesign as aninnovative tool to decrease construction induced carbon emissions in the environment. IJGW, 19(1-2), 127-144.
  • Kırdök, O., Altun, D. A., Dahy, H., Strobel, L., Tuna, E. E. H., Köktürk, G., Çakır, Ö. A., Tokuç, A., Özkaban, F., Şendemir, A. (2022). Design studies and applications of mycelium biocomposites in architecture. Biomimicry for materials, design and habitats (pp. 489-527). Elsevier.
  • Kırdök, O., Sertkaya, S.N., Yaman, Y., Kale, İ., Hameş Tuna, E., Tokuç, A. AkyolAltun, T.D. (2020) Biodesign with mycelium in architecture, ATI 2020 “Smart Buildings, Smart Cities” 27-30 April 2020, İzmir, Turkey.
  • Lelivelt, R. J. J., Lindner, G., Teuffel, P., and Lamers, H. (2015). The productionprocess and compressive strength of mycelium-based materials. In First 156 International Conference on Bio-based Building Materials, 1-6.
  • Mokhtar, A., Hassan, K., Aziz, A. A., and May, C. Y. (2012). Oil palm biomass for various wood-based products. In Palm Oil (pp. 625-652). AOCS Press.
  • Nindiyasari, F., Griesshaber, E., Zimmermann, T., Manian, A. P., Randow, C., Zehbe, R., ... and Schmahl, W. W. (2016). Characterization and mechanical properties investigation of the cellulose/gypsum composite. J. Compos. Mater., 50(5), 657-672.
  • Pacheco-Torgal, F. (2015). Introduction to biotechnologies and biomimetics for civil engineering. Biotechnologies and Biomimetics for Civil Engineering. 1-19.
  • Shah, S. A. R., Arshad, H., Farhan, M., Raza, S. S., Khan, M. M., Imtiaz, S., ... and Waseem, M. (2019). Sustainable brick masonry bond design and analysis: An application of a decision-making technique. App. Sci., 9(20), 4313.
  • Solomon, A., and Latha, H. (2017). Inspection of properties of Expanded Polystyrene (EPS), Compressive behaviour, bond and analytical examination of Insulated Concrete Form (ICF) blocks using different densities of EPS. IJCIET, 8(81), 209-221.
  • Troppová, E., Tippner, J., and Hrčka, R. (2017). Thermophysical properties of medium density fiberboards measured by quasi-stationary method: experimental and numerical evaluation. Heat and Mass Transfer, 53, 115-125.
  • URL 1 (2018) http://www.biodesignteam.com/ Date of Access 8.10.2024
  • URL 10 (2024) https://www.buildsite.com/pdf/rockwool/ROCKWOOL-Comfortbatt-Insulation-Batts-Guide-Specifications-2116466.pdf Date of Access 8.10.2024
  • URL 11 (2024) https://www.rockwool.com/uk/products-and-applications/product-overview/roll-products/rockwool-roll-en-gb/ Date of Access 8.10.2024
  • URL 12 (2024) http://www.biopbiotech.com/ Date of Access 8.10.2024
  • URL 2 (2024) https://www.makeitfrom.com/material-properties/Medium-Density-Fiberboard-MDF Date of Access 8.10.2024
  • URL 3 (2024) https://www.acoustic-supplies.com/absorption-coefficient-chart/ Date of Access 8.10.2024
  • URL 4 (2024) https://www.actiu.com/en/lacquered-mdf/ Date of Access 8.10.2024
  • URL 5 (2024) https://www.british-gypsum.com/documents/product-data-sheet-pds/british-gypsum-pds-gyproc-wallboard-12-5mm.pdf Date of Access 8.10.2024
  • URL 6 (2024) https://insulationgo.co.uk/blog/best-insulation-board/ Date of Access 8.10.2024
  • URL 7 (2024) https://www.stonecontact.com/what-is-the-average-flexural-strength-of-turkey-s-alpine-white-marble/k1182382 Date of Access 8.10.2024
  • URL 8 (2009) https://www.engineeringtoolbox.com/acoustics-noise-decibels-t_27.html Date of Access 8.10.2024
  • URL 9 (2021) https://thermtest.com/how-the-thermal-conductivity-of-clay-bricks-contributes-to-their-success-as-a-building-material#:~:text=Bricks%20possess%20a%20low%20thermal,W%2F(m%2FK) Date of Access 8.10.2024
  • You, M. (2011). Strength and damage of marble in ductile failure. J. Rock Mech. Geotech. Eng., 3(2), 161-166.

Yeni Nesil Yeşil Yapı Malzemesi Olarak Miselyum Biokompozitlerin Karşılaştırmalı Analizi

Yıl 2024, Cilt: 15 Sayı: Özel Sayı, 7 - 17, 30.12.2024
https://doi.org/10.30708/mantar.1569974

Öz

İnşaat sektörü, yüksek enerji tüketimi, üretim süreçleri, ürün lojistiği ve uygulama yöntemlerinden kaynaklanan karbon emisyonları nedeniyle oluşan çevresel hasarın yaklaşık %40'dan sorumludur. Geleneksel yapı malzemelerinin üretim ve kullanım süreçleri doğal kaynakların tükenmesine ve ekolojik dengenin bozulmasına katkıda bulunmaktadır. Bu bağlamda sürdürülebilir ve çevre dostu malzeme arayışı giderek önem kazanmaktadır. Bu çalışma, mantar miselyumunun inşaat sektörü için potansiyelini ve önemini vurgulamaktadır.
Miselyum biyokompozitleri yalnızca çevresel faydalar sağlamakla kalmaz, aynı zamanda termal performans, akustik performans, basınç dayanımı, eğilme dayanımı ve radyoaktif kalkanlama özellikleri gibi önemli performans kriterleri de sergiler. Bu araştırmada, geliştirilen miselyum kompozitlerinin özellikleri inşaat sektöründe yaygın olarak kullanılan ve çevreye zararlı alternatiflerle karşılaştırılmıştır. Karşılaştırma, termal iletkenlik, akustik performans, basınç dayanımı ve eğilme dayanımı testlerine dayanmaktadır ve literatürde yaygın olarak kullanılan MDF, taş yünü ve alçıpan gibi ürünlerin değerleri dikkate alınmıştır.
Bulgular, miselyum biyokompozitlerinin yalnızca sürdürülebilir bir alternatif olmadığını, aynı zamanda bazı performans ölçütlerinde de üstün olduğunu göstermektedir. Özellikle, termal performans ve akustik performansta mevcut ürünlerle rekabet edebilirler ve belirli ürünlere kıyasla üstün basınç dayanımı ve eğilme dayanımı sergilerler. İnşaat sektörünün mevcut çevresel etkileri göz önüne alındığında, miselyum bazlı malzemeler ekolojik dengeyi koruyan ve uzun vadede sürdürülebilir bir yapı uygulaması sunan yenilikçi bir çözüm olarak öne çıkmaktadır.

Kaynakça

  • Adamatzky, A., Ayres, P., Belotti. G. and Wösten, H. (2020). Fungal architecture. arXiv:1912.13262v1 [cs.ET], 1-19.
  • Appels, V.W., Camere, S., Montalti, M., Karana, E. Jansen, K.M.B., Dijksterhus, J., Krijgsheld, P. and Wösten, H.A.B. (2018). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites, Mater. Des., 161, 64–71.
  • Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., and Grobman, Y. J. (2020). Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. J. Cleaner Product. 246.
  • Attias, N., Danai, O., Tarazi, E., Pereman, I. and Grobman, Y.J. (2019) Implementing bio-design tools to develop mycelium-based products. Design J. 22 (1): 1647-1657.
  • Beesley, P., and Armstrong, R. (2011). Soil and protoplasm: The hylozoic ground project. Architectural Design, 81(2), 78-89.
  • Budiwati, I. A. M. (2009). Experimental compressive strength and modulus of elasticity of masonry. J. Llmiah Teknik Sipil. 13 (1).
  • Camere, S., and Karana, E. (2018). Fabricating materials from living organisms: An emerging design practice. Journal of Cleaner Production, 186, 570-584.
  • Dollens, D. (2009) Architecture as nature: A biodigital hypothesis. Leonardo, 42(5), 412–420
  • Ghazvinian, A, Farrokhsiar, P, Vieira, F, Pecchia, J and Gursoy, B (2019). Myceliumbased biocomposites for architecture: assessing the effects of cultivation factors on compressive strength. The eCAADe and SIGraDi Conference, 11-13 September 2019, University of Porto, Portugal,2, 505-513.
  • Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini and Savino, E. (2019). Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability, 11(1), 281
  • Gündoğdu, T. K., Deniz, I., Aric, A., Yılmazsoy, B. T., Cakir, O. A., Erdogan, A.,.and Kokturk, G. (2019). Development of ecological biodesign products by bacterial biocalcification. J. EJENS-Eur. J. Eng. Nat. Sci. 3 (1): 17.
  • Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., and Athanassiou, A. (2017). Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7 (1): 1-11.
  • Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L. and Picu, R.C (2018). Stochastic continuum model for mycelium-based bio-foam. Mater. Des. 160, 549– 556.
  • Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L. and Picu, R.C., (2017). Morphology and mechanics of fungal mycelium. Sci. Rep. 7, 1–12.
  • Jones, M. P., Lawrie, A. C., Huynh, T. T., Morrison, P. D., Mautner, A., Bismarck,A., and John, S. (2019). Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochem., 80, 95-102.
  • Jones, M., Bhat, T., Wang, C. H., Moinuddin, K., and John, S. (2017a). Thermal degradation and fire reaction properties of mycelium composites. In Proceedings of the 21st International Conference on Composite Materials, Xi‟an, China, 20- 25.
  • Jones, M., Chun, H., Yuen, R. and John, S., (2018). Waste ‐ derived low ‐ cost mycelium composite construction materials with improved fire safety. Fire Mater, 42(7) 1–10.
  • Jones, M., Huynh, T., Dekiwadia, C., Daver, F. and John, S., (2017b). Mycelium Composites: A Review of Engineering Characteristics and Growth Kinetics. J. Bionanosci., 11, 241–257.
  • Jones, M., Mautner, A., Luenco, S., Bismarck, A., and John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des., 187, 108397.
  • Karana, E., Blauwhoff, D., Hultink, E. J., and Camere, S. (2018). When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des., 12(2), 119-136.
  • Kırdök, O., Akyol Altun, T.D., Dokgöz, D. and Tokuç, A. (2019). Biodesign as aninnovative tool to decrease construction induced carbon emissions in the environment. IJGW, 19(1-2), 127-144.
  • Kırdök, O., Altun, D. A., Dahy, H., Strobel, L., Tuna, E. E. H., Köktürk, G., Çakır, Ö. A., Tokuç, A., Özkaban, F., Şendemir, A. (2022). Design studies and applications of mycelium biocomposites in architecture. Biomimicry for materials, design and habitats (pp. 489-527). Elsevier.
  • Kırdök, O., Sertkaya, S.N., Yaman, Y., Kale, İ., Hameş Tuna, E., Tokuç, A. AkyolAltun, T.D. (2020) Biodesign with mycelium in architecture, ATI 2020 “Smart Buildings, Smart Cities” 27-30 April 2020, İzmir, Turkey.
  • Lelivelt, R. J. J., Lindner, G., Teuffel, P., and Lamers, H. (2015). The productionprocess and compressive strength of mycelium-based materials. In First 156 International Conference on Bio-based Building Materials, 1-6.
  • Mokhtar, A., Hassan, K., Aziz, A. A., and May, C. Y. (2012). Oil palm biomass for various wood-based products. In Palm Oil (pp. 625-652). AOCS Press.
  • Nindiyasari, F., Griesshaber, E., Zimmermann, T., Manian, A. P., Randow, C., Zehbe, R., ... and Schmahl, W. W. (2016). Characterization and mechanical properties investigation of the cellulose/gypsum composite. J. Compos. Mater., 50(5), 657-672.
  • Pacheco-Torgal, F. (2015). Introduction to biotechnologies and biomimetics for civil engineering. Biotechnologies and Biomimetics for Civil Engineering. 1-19.
  • Shah, S. A. R., Arshad, H., Farhan, M., Raza, S. S., Khan, M. M., Imtiaz, S., ... and Waseem, M. (2019). Sustainable brick masonry bond design and analysis: An application of a decision-making technique. App. Sci., 9(20), 4313.
  • Solomon, A., and Latha, H. (2017). Inspection of properties of Expanded Polystyrene (EPS), Compressive behaviour, bond and analytical examination of Insulated Concrete Form (ICF) blocks using different densities of EPS. IJCIET, 8(81), 209-221.
  • Troppová, E., Tippner, J., and Hrčka, R. (2017). Thermophysical properties of medium density fiberboards measured by quasi-stationary method: experimental and numerical evaluation. Heat and Mass Transfer, 53, 115-125.
  • URL 1 (2018) http://www.biodesignteam.com/ Date of Access 8.10.2024
  • URL 10 (2024) https://www.buildsite.com/pdf/rockwool/ROCKWOOL-Comfortbatt-Insulation-Batts-Guide-Specifications-2116466.pdf Date of Access 8.10.2024
  • URL 11 (2024) https://www.rockwool.com/uk/products-and-applications/product-overview/roll-products/rockwool-roll-en-gb/ Date of Access 8.10.2024
  • URL 12 (2024) http://www.biopbiotech.com/ Date of Access 8.10.2024
  • URL 2 (2024) https://www.makeitfrom.com/material-properties/Medium-Density-Fiberboard-MDF Date of Access 8.10.2024
  • URL 3 (2024) https://www.acoustic-supplies.com/absorption-coefficient-chart/ Date of Access 8.10.2024
  • URL 4 (2024) https://www.actiu.com/en/lacquered-mdf/ Date of Access 8.10.2024
  • URL 5 (2024) https://www.british-gypsum.com/documents/product-data-sheet-pds/british-gypsum-pds-gyproc-wallboard-12-5mm.pdf Date of Access 8.10.2024
  • URL 6 (2024) https://insulationgo.co.uk/blog/best-insulation-board/ Date of Access 8.10.2024
  • URL 7 (2024) https://www.stonecontact.com/what-is-the-average-flexural-strength-of-turkey-s-alpine-white-marble/k1182382 Date of Access 8.10.2024
  • URL 8 (2009) https://www.engineeringtoolbox.com/acoustics-noise-decibels-t_27.html Date of Access 8.10.2024
  • URL 9 (2021) https://thermtest.com/how-the-thermal-conductivity-of-clay-bricks-contributes-to-their-success-as-a-building-material#:~:text=Bricks%20possess%20a%20low%20thermal,W%2F(m%2FK) Date of Access 8.10.2024
  • You, M. (2011). Strength and damage of marble in ductile failure. J. Rock Mech. Geotech. Eng., 3(2), 161-166.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikoloji
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Onur Kirdök 0000-0003-3773-2486

Sultan Kübra Toker 0000-0002-7088-6690

Orkun Kıvrak 0009-0007-5732-6756

Didem Akyol Altun 0000-0001-7938-3961

Elif Esin Hameş 0000-0001-7302-4781

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 18 Ekim 2024
Kabul Tarihi 7 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: Özel Sayı

Kaynak Göster

APA Kirdök, O., Toker, S. K., Kıvrak, O., Akyol Altun, D., vd. (2024). Comparative Analysis of Mycelium Biocomposites as Potential Next-Generation Green Building Materials. Mantar Dergisi, 15(Özel Sayı), 7-17. https://doi.org/10.30708/mantar.1569974

Uluslararası Hakemli Dergi

Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır 

Creative Commons Lisansı

Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.