Konferans Bildirisi
BibTex RIS Kaynak Göster

İnsektisit Grupları ve Sucul Çevre Üzerine Etkileri

Yıl 2013, Cilt: 25 Sayı: 4, 167 - 183, 10.01.2014

Öz

Son yıllarda sucul çevredeki insektisitler oldukça önem kazanmıştır. Sucul çevrede insektisitlerin artışından beri insektisitlerin çevresel konsantrasyonlarına sürekli maruz kalan
sucul organizmalardaki subkronik etkiler önemli çalışma konularıdır. Bu derleme çalışmasının amacı, farklı insektisit gruplarının sucul çevreye ve sucul organizmalar üzerine etkilerinin araştırılmasıdır.

Son yıllarda sucul çevredeki insektisitler oldukça önem kazanmıştır. Sucul çevrede insektisitlerin artışından beri insektisitlerin çevresel konsantrasyonlarına sürekli maruz kalan
sucul organizmalardaki subkronik etkiler önemli çalışma konularıdır. Bu derleme çalışmasının amacı, farklı insektisit gruplarının sucul çevreye ve sucul organizmalar üzerine etkilerinin araştırılmasıdır.


Kaynakça

  • Valavanidis, A., Vlahogianni, T., Dassenakis, M. and Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64: 178–189. doi.org/10.1016/j.ecoenv.2005.03.013.
  • Candioti, JV., Soloneski, S., Larramendy, ML. (2010). Genotoxic and cytotic effects of the formulated insecticide Aficida on Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces: Poeciliidae). Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 703: 180-1 doi: 10.1016/j.mrgentox.2010.08.018.
  • Choung, C.B., Hyne, R.V., Stevens, M.M., and Hose, G.C. (2013). The ecological effects of a herbicide insecticide mixture on an experimental freshwater ecosystem.
  • Environmental Pollution, 172: 264-274. doi: 10.1016/j.envpol.2012.09.002.
  • Cox, C. and Surgan, M. (2006). Unidentified inert ingredients in pesticides: implications for human and environmental health. Environmental Health Perspectives, 114: 1803–1806. doi: 1289/ehp.9374.
  • Hayasaka, D., Korenaga, T., Suzuki, K., Saito, F., Sánchez-Bayo, F., Goka. K. (2012).
  • Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicology and Environmental Safety, 80, 355-362. doi.org/10.1016/j.ecoenv.2012.04.004.
  • Boone M.D., Hammond S.A., Veldhoen N., Youngquist M., Helbing C.C. (2013).
  • Specific time of exposure during tadpole development influences biological effects of the insecticide carbaryl in green frogs (Lithobates clamitans) . Aquatic Toxicology, 130–131,1391 doi: 10.1016/j.aquatox.2012.12.022.
  • Yeh, S.P., Sung, T.G., Chang, C.C., Cheng, W. and Kuo, C.M. (2005). Effects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture, 243: 383–392. doi:1016/j.aquaculture.2004.10.017.
  • Li, H., Mehler, W.T., Lydy, M.J., You, J. (2011). Occurrence and distribution of sediment associated insecticides in urban waterways in the Pearl River Delta, China. Chemosphere, 82: 10, 1373-1379. doi: 10.1016/j.
  • Güneş, E. and Yerli, S.V. (2011). Effects of deltamethrin on lipase activity in Guppies
  • (Poecilia reticulata). Turkish Journal of Fisheries and Aquatic Sciences, 11: 473-476. DOI: 104194/1303-2712-v11_3_19
  • Chandrasekara, H.U. and Pathiratne, A. (2005). Influence of low concentrations of trichlorfon on haematological parameters and brain acetylcholinesterase activity in common carp, Cyprinus carpio. Aquaculture Research, 36: 144–149. DOI: 1111/j.136522004.01197.x.
  • Deng, J., Yu, L., Liu, C., Yu, K., Shi, X., Yeung, L.W., Lam P.K., Wu R.S. and Zhou B. (2009). Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquatic Toxicology, 93: 29–36. doi: 10.1016/j.aquatox.2009.03.001.
  • Forsgren, K.L., Riar, N., Schlenk, D. (2013). The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions. General and Comparative Endocrinology, 186, 101doi.org/10.1016/j.ygcen.2013.02.047.
  • Livingstone, D.R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42: 656–666. PMID:11525283.
  • Rivadeneira, P.R., Agrelo, M., Otero, S., Kristoff, G. (2013). Different effects of subchronic exposure to low concentrations of the organophosphate insecticide chlorpyrifos in a freshwater gastropod. Ecotoxicology and Environmental Safety, 90:82-88. doi.org/10.1016/j.ecoenv.2012.12.013.
  • Kristoff, G., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C. (2011). Effects of the organophosphate insecticide azinphos-methyl on the reproduction and cholinesterase activity of Biomphalaria glabrata. Chemosphere, 84: 585-591. doi: 10.1016/j.
  • Rao JV. (2006). Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pesticide
  • Biochemistry and Physiology, 86:(2), 78-84. doi.org/10.1016/j.pestbp.2006.01.008.
  • WHO (2003). Food based dietary guidelines in the World Health Organization European
  • Region. Report EUR/03/5045414athttp://who.org>2003. Cenevre, İsviçre.
  • Patil, V.K. and David, M. (2008). Behavior and respiratory dysfunction as an index of malathion toxicity in the freshwater fish, Labeo rohita (Hamilton). Turkish Journal of
  • Fisheries and Aquatic Sciences, 8: 233-237. Stalin, S.I., Kiruba, S., and Monohar Das, S.M. (2008). A comparative study on the toxicity of a synthetic pyrethroid, deltamethrin and a neem based pesticide, Azadirachtin to
  • Poecilia reticulata Peters 1859 (Cyprinodontiformes: Poeciliidae). Turkish Journal of
  • Fisheries and Aquatic Sciences, 8:01-05. Salaberria, I., Hansen, B.H., Asensio, V., Olsvik, P., A Rolf., Andersen, P.R. and Jenssen, B.M. (2009). Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss). Toxicology and Applied Pharmacology, 234: 98–106. doi.org/10.1016/j.taap.2008.09.023.
  • EPA (1999). Environmental Protection Agency, Office of Pesticide Programs Health
  • Effects Division (7509C) Washington, USA.
  • Könen, S. and Cavaş, T. (2008). Genotoxicity testing of the herbicide trifluralin and its commercial formulation Treflan using the piscine micronucleus test. Environmental and Molecular Mutagenesis, 49: 434–438. DOI: 10.1002/em.20401.
  • Sultatos, L.G. (2008). Interactions of organophosphorous and carbamate compounds with cholinesterases. In: R.C. Gupta, Editor, Toxicology of Organophosphorus and Carbamate
  • Compounds, Elsevier Academic Press, Burlington. 209–218. Mishra, D., Tripathi, S., Srivastav, S., Suzuki, N., Srivastav, A.K. (2010). Corpuscles of stannius of a teleost Heteropneustes fossilis following intoxication with a pyretroid
  • (cypermethrin). North-Western Journal of Zoology, 6:2, 203-208. P-ISSN: 1584-9074, EISSN:1843-5629.
  • Stark, J.D. and Walthall, W.K. (2003). Agricultural adjuvants: acute mortality and effects on population growth rate of Daphnia pulex after chronic exposure. Environmental
  • Toxicology and Chemistry, 22: 3056–3061. DOI: 10.1897/02-504.
  • Dutta, H.M. and Arends, D.A. (2003). Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environmental Research. 91: 157– 1 PMID:12648478.
  • Oakes, K.D. and Van Der Kraak, G.J. (2003). Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63: 447–463. PMID:12758008.
  • Alvarez, R.M., Morales, A.E. and Sanz, A. (2005). Antioxidant Defences in Fish: Biotic and Abiotic Factors. Reviews in Fish Biology and Fisheries, 15: 75–88. doi.org/10.1016/j.aquaculture.2005.11.020.
  • Scandalios, J.G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38: 995–1014.ISSN-0100-879X.
  • Zhang, X., Xie, P., Li, D., Tang, R., Lei, H. and Zhao, Y. 2009. Time-Dependent
  • Oxidative Stress Responses of Carassius auratus to Intraperitoneal Injection of Extracted Microcystins. Bulletin Of Environmental Contamination and Toxicology, 82: 574–578.DOI. 1007/s00128-009-9671-2.
  • Cavaş T. and Könen S. (2007). Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis, 22: 263–268. doi:1093/mutage/gem012.
  • Cavaş, T. and Ergene-Gözükara, S. (2005). Micronucleus test in fish cells: a bioassay for in situ monitoring of genotoxic pollution in the marine environment. Environmental and Molecular Mutagenesis, 46: 64–70. PMID:15880416.
  • Joy, V.C., Pramanik, R. and Sarkar, K. (2005). Biomonitoring insecticide pollution using non-target soil microarthropods. Journal of Environmental Biology, 26: 571–577. PMID: 16334299.
  • Nkya, T.E., Akhouayri, I., Kisinza, W., David, J.P. (2013). Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect
  • Biochemistry and Molecular Biology, 43:4,407-416. DOI:10.1016/j.ibmb.2012.10.006
  • Araki D., Takase I. and Motoyama N. (2003). Leaching of pesticides applied to an experimental putting green and their fate in a reservoir, Journal of Pesticides Sciences, 28: 76–ISSN:0385-1559.
  • Ferreira, M., Moradas-Ferreira, P. and Reis-Henriques, M.A. (2005). Oxidative stress biomarkers in two resident species, mullet (Mugil cephalus) and flounder (Platichtkys flesus), from a polluted site in River Douro Estuary, Portugal. Aquatic Toxicology, 71: 39–48. PMID:15642630.
  • Burr S.A. and Ray D.E. (2004). Structure–activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels, Toxicological Sciences, 77: 341–346. PMID:14657519.
  • Kayhan, F.E. and Süsleyici Duman, B. (2010). Heat shock protein genes in fish. Turkish
  • Journal of Fisheries and Aquatic Sciences, 10:287-293. DOI: 10.4194/trjfas.2010.0218.

Insecticide Groups and Their Effects in Aquatic Environment

Yıl 2013, Cilt: 25 Sayı: 4, 167 - 183, 10.01.2014

Öz

Over the past decade aquatic environments have become more contaminated by insecticides. Insecticides have a toxic effect on aquatic organisms and they become a part of the food chain by accumulation. Therefore it is very important to study the effects of subchronic exposure to environmental concentrations of insecticides on aquatic organisms. The aim of this review is to investigate different effects of insecticide groups on aquatic organisms in aquatic environment.Pesticides are chemical substances that are used to reduce the destructive effects of living
forms such as insects, rodents and herbs. Organisms that dwell in human and animal body and on or around the plants, reduce the nutritional value of the food sources or cause damage during production, storage and consumption [1,2,3]. Pesticides are named as insecticides, fungicides, herbicides, rodenticides, acaricides, nematocides according to the organism groups on which they have an effect. Nowadays, conscious nourishment trends, biological values of aquatic products and the fact that they have high protein qualities increase the significance of aquatic environments [1,4,6]. 

Kaynakça

  • Valavanidis, A., Vlahogianni, T., Dassenakis, M. and Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64: 178–189. doi.org/10.1016/j.ecoenv.2005.03.013.
  • Candioti, JV., Soloneski, S., Larramendy, ML. (2010). Genotoxic and cytotic effects of the formulated insecticide Aficida on Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces: Poeciliidae). Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 703: 180-1 doi: 10.1016/j.mrgentox.2010.08.018.
  • Choung, C.B., Hyne, R.V., Stevens, M.M., and Hose, G.C. (2013). The ecological effects of a herbicide insecticide mixture on an experimental freshwater ecosystem.
  • Environmental Pollution, 172: 264-274. doi: 10.1016/j.envpol.2012.09.002.
  • Cox, C. and Surgan, M. (2006). Unidentified inert ingredients in pesticides: implications for human and environmental health. Environmental Health Perspectives, 114: 1803–1806. doi: 1289/ehp.9374.
  • Hayasaka, D., Korenaga, T., Suzuki, K., Saito, F., Sánchez-Bayo, F., Goka. K. (2012).
  • Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicology and Environmental Safety, 80, 355-362. doi.org/10.1016/j.ecoenv.2012.04.004.
  • Boone M.D., Hammond S.A., Veldhoen N., Youngquist M., Helbing C.C. (2013).
  • Specific time of exposure during tadpole development influences biological effects of the insecticide carbaryl in green frogs (Lithobates clamitans) . Aquatic Toxicology, 130–131,1391 doi: 10.1016/j.aquatox.2012.12.022.
  • Yeh, S.P., Sung, T.G., Chang, C.C., Cheng, W. and Kuo, C.M. (2005). Effects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture, 243: 383–392. doi:1016/j.aquaculture.2004.10.017.
  • Li, H., Mehler, W.T., Lydy, M.J., You, J. (2011). Occurrence and distribution of sediment associated insecticides in urban waterways in the Pearl River Delta, China. Chemosphere, 82: 10, 1373-1379. doi: 10.1016/j.
  • Güneş, E. and Yerli, S.V. (2011). Effects of deltamethrin on lipase activity in Guppies
  • (Poecilia reticulata). Turkish Journal of Fisheries and Aquatic Sciences, 11: 473-476. DOI: 104194/1303-2712-v11_3_19
  • Chandrasekara, H.U. and Pathiratne, A. (2005). Influence of low concentrations of trichlorfon on haematological parameters and brain acetylcholinesterase activity in common carp, Cyprinus carpio. Aquaculture Research, 36: 144–149. DOI: 1111/j.136522004.01197.x.
  • Deng, J., Yu, L., Liu, C., Yu, K., Shi, X., Yeung, L.W., Lam P.K., Wu R.S. and Zhou B. (2009). Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquatic Toxicology, 93: 29–36. doi: 10.1016/j.aquatox.2009.03.001.
  • Forsgren, K.L., Riar, N., Schlenk, D. (2013). The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions. General and Comparative Endocrinology, 186, 101doi.org/10.1016/j.ygcen.2013.02.047.
  • Livingstone, D.R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42: 656–666. PMID:11525283.
  • Rivadeneira, P.R., Agrelo, M., Otero, S., Kristoff, G. (2013). Different effects of subchronic exposure to low concentrations of the organophosphate insecticide chlorpyrifos in a freshwater gastropod. Ecotoxicology and Environmental Safety, 90:82-88. doi.org/10.1016/j.ecoenv.2012.12.013.
  • Kristoff, G., Cacciatore, L.C., Verrengia Guerrero, N.R., Cochón, A.C. (2011). Effects of the organophosphate insecticide azinphos-methyl on the reproduction and cholinesterase activity of Biomphalaria glabrata. Chemosphere, 84: 585-591. doi: 10.1016/j.
  • Rao JV. (2006). Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pesticide
  • Biochemistry and Physiology, 86:(2), 78-84. doi.org/10.1016/j.pestbp.2006.01.008.
  • WHO (2003). Food based dietary guidelines in the World Health Organization European
  • Region. Report EUR/03/5045414athttp://who.org>2003. Cenevre, İsviçre.
  • Patil, V.K. and David, M. (2008). Behavior and respiratory dysfunction as an index of malathion toxicity in the freshwater fish, Labeo rohita (Hamilton). Turkish Journal of
  • Fisheries and Aquatic Sciences, 8: 233-237. Stalin, S.I., Kiruba, S., and Monohar Das, S.M. (2008). A comparative study on the toxicity of a synthetic pyrethroid, deltamethrin and a neem based pesticide, Azadirachtin to
  • Poecilia reticulata Peters 1859 (Cyprinodontiformes: Poeciliidae). Turkish Journal of
  • Fisheries and Aquatic Sciences, 8:01-05. Salaberria, I., Hansen, B.H., Asensio, V., Olsvik, P., A Rolf., Andersen, P.R. and Jenssen, B.M. (2009). Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss). Toxicology and Applied Pharmacology, 234: 98–106. doi.org/10.1016/j.taap.2008.09.023.
  • EPA (1999). Environmental Protection Agency, Office of Pesticide Programs Health
  • Effects Division (7509C) Washington, USA.
  • Könen, S. and Cavaş, T. (2008). Genotoxicity testing of the herbicide trifluralin and its commercial formulation Treflan using the piscine micronucleus test. Environmental and Molecular Mutagenesis, 49: 434–438. DOI: 10.1002/em.20401.
  • Sultatos, L.G. (2008). Interactions of organophosphorous and carbamate compounds with cholinesterases. In: R.C. Gupta, Editor, Toxicology of Organophosphorus and Carbamate
  • Compounds, Elsevier Academic Press, Burlington. 209–218. Mishra, D., Tripathi, S., Srivastav, S., Suzuki, N., Srivastav, A.K. (2010). Corpuscles of stannius of a teleost Heteropneustes fossilis following intoxication with a pyretroid
  • (cypermethrin). North-Western Journal of Zoology, 6:2, 203-208. P-ISSN: 1584-9074, EISSN:1843-5629.
  • Stark, J.D. and Walthall, W.K. (2003). Agricultural adjuvants: acute mortality and effects on population growth rate of Daphnia pulex after chronic exposure. Environmental
  • Toxicology and Chemistry, 22: 3056–3061. DOI: 10.1897/02-504.
  • Dutta, H.M. and Arends, D.A. (2003). Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environmental Research. 91: 157– 1 PMID:12648478.
  • Oakes, K.D. and Van Der Kraak, G.J. (2003). Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63: 447–463. PMID:12758008.
  • Alvarez, R.M., Morales, A.E. and Sanz, A. (2005). Antioxidant Defences in Fish: Biotic and Abiotic Factors. Reviews in Fish Biology and Fisheries, 15: 75–88. doi.org/10.1016/j.aquaculture.2005.11.020.
  • Scandalios, J.G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38: 995–1014.ISSN-0100-879X.
  • Zhang, X., Xie, P., Li, D., Tang, R., Lei, H. and Zhao, Y. 2009. Time-Dependent
  • Oxidative Stress Responses of Carassius auratus to Intraperitoneal Injection of Extracted Microcystins. Bulletin Of Environmental Contamination and Toxicology, 82: 574–578.DOI. 1007/s00128-009-9671-2.
  • Cavaş T. and Könen S. (2007). Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis, 22: 263–268. doi:1093/mutage/gem012.
  • Cavaş, T. and Ergene-Gözükara, S. (2005). Micronucleus test in fish cells: a bioassay for in situ monitoring of genotoxic pollution in the marine environment. Environmental and Molecular Mutagenesis, 46: 64–70. PMID:15880416.
  • Joy, V.C., Pramanik, R. and Sarkar, K. (2005). Biomonitoring insecticide pollution using non-target soil microarthropods. Journal of Environmental Biology, 26: 571–577. PMID: 16334299.
  • Nkya, T.E., Akhouayri, I., Kisinza, W., David, J.P. (2013). Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect
  • Biochemistry and Molecular Biology, 43:4,407-416. DOI:10.1016/j.ibmb.2012.10.006
  • Araki D., Takase I. and Motoyama N. (2003). Leaching of pesticides applied to an experimental putting green and their fate in a reservoir, Journal of Pesticides Sciences, 28: 76–ISSN:0385-1559.
  • Ferreira, M., Moradas-Ferreira, P. and Reis-Henriques, M.A. (2005). Oxidative stress biomarkers in two resident species, mullet (Mugil cephalus) and flounder (Platichtkys flesus), from a polluted site in River Douro Estuary, Portugal. Aquatic Toxicology, 71: 39–48. PMID:15642630.
  • Burr S.A. and Ray D.E. (2004). Structure–activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels, Toxicological Sciences, 77: 341–346. PMID:14657519.
  • Kayhan, F.E. and Süsleyici Duman, B. (2010). Heat shock protein genes in fish. Turkish
  • Journal of Fisheries and Aquatic Sciences, 10:287-293. DOI: 10.4194/trjfas.2010.0218.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Figen Esin Kayhan

Güllü Kaymak Bu kişi benim

Nazan Deniz Yön Bu kişi benim

Yayımlanma Tarihi 10 Ocak 2014
Yayımlandığı Sayı Yıl 2013 Cilt: 25 Sayı: 4

Kaynak Göster

APA Kayhan, F. E., Kaymak, G., & Yön, N. D. (2014). Insecticide Groups and Their Effects in Aquatic Environment. Marmara Fen Bilimleri Dergisi, 25(4), 167-183.
AMA Kayhan FE, Kaymak G, Yön ND. Insecticide Groups and Their Effects in Aquatic Environment. MFBD. Ocak 2014;25(4):167-183.
Chicago Kayhan, Figen Esin, Güllü Kaymak, ve Nazan Deniz Yön. “Insecticide Groups and Their Effects in Aquatic Environment”. Marmara Fen Bilimleri Dergisi 25, sy. 4 (Ocak 2014): 167-83.
EndNote Kayhan FE, Kaymak G, Yön ND (01 Ocak 2014) Insecticide Groups and Their Effects in Aquatic Environment. Marmara Fen Bilimleri Dergisi 25 4 167–183.
IEEE F. E. Kayhan, G. Kaymak, ve N. D. Yön, “Insecticide Groups and Their Effects in Aquatic Environment”, MFBD, c. 25, sy. 4, ss. 167–183, 2014.
ISNAD Kayhan, Figen Esin vd. “Insecticide Groups and Their Effects in Aquatic Environment”. Marmara Fen Bilimleri Dergisi 25/4 (Ocak 2014), 167-183.
JAMA Kayhan FE, Kaymak G, Yön ND. Insecticide Groups and Their Effects in Aquatic Environment. MFBD. 2014;25:167–183.
MLA Kayhan, Figen Esin vd. “Insecticide Groups and Their Effects in Aquatic Environment”. Marmara Fen Bilimleri Dergisi, c. 25, sy. 4, 2014, ss. 167-83.
Vancouver Kayhan FE, Kaymak G, Yön ND. Insecticide Groups and Their Effects in Aquatic Environment. MFBD. 2014;25(4):167-83.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr