Araştırma Makalesi
BibTex RIS Kaynak Göster

Nonpoint Source Pollutant Transport in Watersheds: Modelling Approaches for Antibiotics, Heavy Metals and Nutrients

Yıl 2015, Cilt: 27 Sayı: 1, 21 - 31, 28.04.2016
https://doi.org/10.7240/mufbed.99724

Öz

Modelling studies predicting the fate and transport of non-point-source pollutants, especially from agricultural and pasture lands, have gained increasing attention during the recent years. Veterinary antibiotics are one of the most widely preferred drugs for animal husbandry. Since a considerable fraction of antibiotics is excreted in animal waste; following to application of animal waste as manure on agricultural lands, antibiotics can affect both soil and water quality by leaching from manure to soil, and by being transported to surface waters via runoff, respectively. This necessitates the development of modeling approaches for planning and management of catchments that play a significant role on water supply. Geographical Information Systems (GIS) has become an important methodological tool in catchment modeling, with the facilities to obtain spatial data, and advanced visualization of numerous data types as different map layers. GIS-based modeling approaches concerned with nutrient transport and water quality are encountered in literature; however, similar studies are scarce for heavy metals and antibiotics. The aim of this study is to provide a summary and evaluation of the existing modelling approaches from the literature that are used for modelling the fate and transport of emerging pollutants, particularly antibiotics, heavy metals and nutrients, in watersheds

Kaynakça

  • Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton- Smith, C. ve Chambers, B.J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ., 311, 205–219.
  • Vadas, P.A., Owens, L.B. ve Sharpley, A.N. (2008). An empirical model for dissolved phosphorus in runoff from surface-applied fertilizers. Agr. Ecosyst. Environ., 127, 59–65.
  • Brennan, R.B., Fenton, O., Grant, J. ve Healy, M.G. (2011). Impact of chemical amendment of dairy cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a grassland soil. Sci. Total Environ., 409, 5111-5118.
  • Huber, A., Bach, M. ve Frede, H.G. (1998). Modelling pesticide losses with surface runoff in Germany. Sci. Total Environ., 223, 177-91.
  • Montforts, M.H.M.M. (1999). Environmental Risk Assessment for Veterinary Medicinal Products Part 1. Other than GMO-containing and Immulogical Products First Update, Report 601300, National Institute of Public Health and the Environment (RIVM), Bilthoven, Hollanda.
  • Kumar, K., Gupta, S.C., Chander, Y. ve Singh A.K. (2005). Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron., 87, 1-53.
  • Park, S.J. (2007). Hazard assessment of major veterinary antibiotics in aquatic ecosystem using microbe, macroinvertebrates and fish. Yüksek Lisans Tezi, Seoul National University, Güney Kore.
  • Lenzi, M.A. ve Di Luzio, M. (1997). Surface runoff, soil erosion and water quality modeling in the Alpone catchment using AGNPS integrated with a Geographic Information System. Eur. J. Agron., 6, 1-14.
  • Parry, R. (1998). Agricultural phosphorus and water quality: A US Environmental Protection Agency perspective. J. Environ. Qual., 27, 258–260.
  • Lal, R., Miller, F.P. ve Logan, T.J. (1998). Are intensive agricultural practices environmentally and ethically sound? J. Agr. Environ. Ethic., 1, 193–210.
  • Delpla, I., Baurès, E., Jung, A.V. ve Thomas, O. (2011). Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas. Sci. Total Environ., 409, 1683–1688.
  • Blenkinsop, S., Fowler, H.J., Dubusi, I.G., Nolan, B.T. ve Hollis, J.M. (2008). Developing climatic scenarios for pesticide fate modeling in Europe. Environ. Pollut., 154, 219-231.
  • Rao, M.N., Waits, D.A. ve Neilsen, M.L. (2000). A GIS-based modeling approach for implementation of sustainable farm management practices. Environ. Model. Softw., 15, 745–753.
  • Maidment, D.R. (1993). Environmental modeling within GIS. Proceedings of the Second International Conference/ Workshop on Integrating GIS and Environmental modeling, Breckridge, Colorado, USA, 2 Eylül.
  • Ragan, R.M. ve Kosicki, A.J. (1993). An operational GIS to support statewide hydrologic and nonpoint pollution modeling. Proceedings, International Symposium of Engineering Hydrology, San Francisco, USA, 26–30 Temmuz, ASCE.
  • Fedra, K. (1999). Urban environmental management: monitoring, GIS, and modeling. Comput. Environ. Urban Syst.,23, 443-457.
  • Lertpaitoonpan, W., Ong, S.K. ve Moorman, T.B. (2009). Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 76, 558–64.
  • Kim, S.C., Davis, J.G., Truman, C.C., Ascough, J.C. ve Carlson, K. (2010). Simulated rainfall study for transport of veterinary antibiotics – Mass balance analysis. J. Hazard. Mater., 175, 836–43.
  • Cengiz, M., Balcıoğlu, I., Oruc, H.H. ve Cengiz, T.G. (2010). Evaluation of the interaction between soil and antibiotics. J. Environ. Sci. Health B., 45, 183-189.
  • Cengiz, M., Balcıoğlu, I., ve Oruç, H.H. (2010). Detection of oxytetracycline and chlorotetracycline residues in agricultural fields in Turkey. J. Biol. Environ. Sci., 4(10), 23-27.
  • Uslu, M.O. ve Balcıoğlu, I. (2009). Comparison of the ozonation and fenton process performances for the treatment of antibiotic containing manure. Sci. Total Environ., 407(11), 3450-3458.
  • Uslu, M.O. ve Balcıoğlu, I. (2009). Simultaneous removal of oxytetracycline and sulfamethazine antibacterials from animal waste by chemical oxidation processes. J. Agr. Food Chem., 57(23), 11284-11291.
  • Yalap, K.S. ve Balcıoğlu, I. (2009). Effects of inorganic anions and humic on the photocatalytic and ozone oxidation of oxytetracycline in aqueous solution. J. Adv. Oxid. Technol., 12(1), 1-10.
  • Karcı, A. ve Balcıoğlu, I. (2009). Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci. Total Environ., 407, 4652–4664.
  • Sarmah, A.K., Meyer, M.T. ve Boxall, A.B.A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–59.
  • Rekolainen, S., Mitikka, S., Vuorenmaa, J. ve Johansson, M. (2005). Rapid decline of dissolved nitrogen in Finnish lakes. J. Hydrol., 304, 94–102.
  • Buckingham, S., Tipping, E. ve Taylor, J.H. (2008). Concentrations and fluxes of dissolved organic carbon in UK topsoils. Sci. Total Environ., 407, 460 - 470.
  • Spark, K.M. ve Swift, R.S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Sci. Total Environ., 298, 147–61.
  • Ikem, A. ve Adisa, S. (2011). Runoff effect on eutrophic lake water quality and heavy metal distribution in recent littoral sediment. Chemosphere, 82, 259–267.
  • Joyce, B.A., Wallender, W.W. ve Mailapalli, D.R. (2010). Application of pesticide transport model for simulating diazinon runoff in California’s Central Valley. J. Hydrol., 395, 79–90.
  • Horton, R.E. (1933). The role of infiltration in the hydrologic cycle. EOS, Trans. Am. Geophys. Union, 14, 446–460.
  • Yuan, Y., Hall K. ve Oldham, C. (2001). A preliminary model for predicting heavy metal contaminant loading from an urban catchment. Sci. Total Environ., 266, 299-307.
  • Shigaki, F., Sharpley, A. ve Prochnow, L.I. (2007). Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays. Sci. Total Environ., 373, 334–343.
  • Visser, A., Kroes, J., van Vliet, M.T.H., Blenkinsop, S., Fowler, H.J. ve Broers, H. P. (2012). Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment. J. Contam. Hydrol., 127, 47–64.
  • Walton, R.S., Volker, R.E., Bristowc, K.L. ve Smettem, K.R.J. (2000). Experimental examination of solute transport by surface runoff from low-angle slopes. J. Hydrol., 233, 19-36.
  • Baes, C.F. ve Sharp, R.D. (1983). A proposal for estimation of soil leaching and leaching constants for use in assessment models. J. Environ. Qual., 12, 17-28.
  • Sharpley, A.N. (1983). Effect of soil properties on the kinetics of phosphorus desorption. Soil Sci. Soc. Am. J., 47, 462-467.
  • Sauve, S., Hendershot, W. ve Allen, H.E. (2000). Solid- solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol., 34, 1125-1131.
  • Basnyat, P., Teeter, L.D., Lockaby, B.G. ve Flynn, K.M. (2000). The use of remote sensing and GIS in watershed level analyses of non-point source pollution problems. For. Ecol. Manage., 128, 65-73.
  • Tsihrintzis, V.A. ve Hamid, R. (1998). Runoff Quality Prediction from Small Urban Catchments Using SWMM. Hydrol. Process., 12, 311-329.
  • Temprano, J., Arango, O., Cagiao, J., Suárez, J. ve Tejero, I. (2006). Stormwater quality calibration by SWMM: A case study in Northern Spain. Wat. SA, 32, 54-63.
  • Ouyang, W., Guo, B., Hao, F., Huang, H., Li, J. ve Gong, Y. (2012). Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing. J. Environ. Manage., 113, 467-473.
  • Liu, A., Egodawatta, P., Guan, Y. ve Goonetilleke, A. (2013). Influence of rainfall and catchment characteristics on urban stormwater quality. Sci. Total Environ., 444, 255–262.
  • US Environmental Protection Agency (US EPA) (1983). Results of the Nationwide Urban Runoff Program, Report WH-554, Water Planning Division, Washington DC, USA.
  • Bhaduri, B., Harbor, J., Engel, B. ve Grove, M. (2000). Assessing catchment scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environ. Manage., 26, 643–658.
  • Casalí, J., Gastesi, R., Álvarez-Mozos, J.A., De Santisteban, L.M., Del Valle de Lersundi, J., Giménez, R., Larrañaga, A. , Goñi, M., Agirre, U., Campo, M.A., López, J.J. ve Donézar, M. (2008). Runoff, erosion, and water quality of agricultural catchments in central Navarre (Spain). Agric. Water Manage., 95, 1111 – 1128.
  • Blackwell, P.A., Kay, P. ve Boxall, A.B.A. (2007). The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere, 67, 292-299.
  • Kay, P., Blackwell, P.A. ve Boxall, A.B.A. (2005). Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere, 59, 951–959.
  • Branger, F., Tournebize, J., Carluer, N., Kao, C., Braud, I. ve Vauclin, M. (2009). A simplified modelling approach for pesticide transport in a tile-drained field: The PESTDRAIN model. Agric. Water Manage., 96, 415-28.
  • Chu, X. ve Marino, M.A. (2007). IPTM-CS: A windows-based integrated pesticide transport model for a canopyesoil system. Environ. Model. Softw., 22, 1316-1327.
  • Schriever, C.A. ve Liess, M. (2007). Mapping ecological risk of agricultural pesticide runoff. Sci. Total Environ., 384, 264–279.
  • Setegn, S.G., Srinivasan, R., Dargahi, B. ve Melesse, A.M. (2009). Spatial delineation of soil vulnerability in the Lake Tana Basin, Ethiopia. Hydrol. Process., 23, 3738–3750.
  • Zoppou, C. (2001). Review of urban storm water models. Environ. Modell. Softw., 16, 195–231.
  • Beasley, D.B. ve Huggins, L.F. (1981). ANSWERS Users’ Manual, EPA–905/9–82–001, US EPA, Chicago, Illinois, USA.
  • Frere, M.H., Onstad, C.A. ve Holtan, N.H. (1975). ACTMO – An Agricultural Chemical Transport Model, Report ARS-H–3, Agricultural Research Service, USDA, Washington DC, USA.
  • Young, R.A. (1986). Agricultural nonpoint source pollution model: A watershed analysis tool. Conservation Report 35, Agricultural Research Service, USDA, Morris, Minnesota, USA.
  • Donigian, A.S. ve Davis, H.H. (1978). Agricultural Runoff Management (ARM): Users Manual, Report EPA–600/3–78–080, US EPA, Athens, Georgia, USA.
  • Knisel, W.G. (1980). CREAMS: A Fieldscale Model for Chemical, Runoff, and Erosion from Agricultural Management Systems, Conservation Report 26, Science and Education Administration, USDA, Washington DC, USA.
  • Leonard, R.A., Knisel, W.G. ve Still, D.A. (1987). GLEAMS: Groundwater loading effects of agricultural management systems. T. ASAE, 30, 1403-1418.
  • Suárez, L.A. (2005). PRZM-3, A Model for Predicting Pesticide and Nitrogen Fate in the Crop Root and Unsaturated Soil Zones: User’s Manual for Release 3.12.2, Report EPA/600/R-05/111, EPA, Washington, USA.
  • Arnold, J.G., Srinivasan, R., Muttiah, R.S. ve Williams, J.R. (1998). Large area hydrologic modeling and assessment part I: Model development.J. Am. Water Resour. Assoc., 34, 73–89.
  • Johanson, R.C., Imhoff, J.C., Kittle, J.L. ve Donigian, A.S. (1984). Hydrologic Simulation Program- FORTRAN (HSPF): User’s Manual for Release 8.0, Report EPA–600/3–84–066, US EPA, Athens, Georgia, USA.
  • Woolhiser, D.A., Smith, R.E. ve Goodrich, D.C. (1990). KINEROS, A Kinematic Runoff and Erosion Model: Documentation and User Manual, Report ARS- 77. Agricultural Research Service, USDA, Minnesota, USA.
  • US Army Corps of Engineers (USACE) (1977). Storage, Treatment, Overflow, Runoff Model “STORM”: Users’ Manual, Report CPD-7, Hydrologic Engineering Center, Davis, CA, USA.
  • Huber, W.C. ve Dickinson, R.E. (1988). Storm Water Management Model, Version 4: User’s Manual, Report EPA 600/3-88/001a, Environmental Research Laboratory, US EPA, Georgia, USA.
  • Varanou, E., Gkouvatsou, E., Baltas, E. ve Mimikou, M. (2002). Quantity and quality integrated catchment modeling under climate change with use of Soil and Water Assessment Tool Model. J. Hydrol. Eng., 7, 228–244.
  • Baginska, B., Milne-Home, W. ve Cornish, P.S. (2003). Modeling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST. Environ. Model. Softw., 18, 801–808.
  • Oeurng, C., Sauvage, S. ve Pérez, J.M.S. (2011). Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol., 401, 145-153.
  • Haregeweyn, N. ve Yohannes, F. (2003). Testing and evaluation of the agricultural non-point source pollution model (AGNPS) on Augucho Catchment, Western Hararghe, Ethiopia. Agric. Ecosyst. Environ., 99, 201–212.
  • Shamshad, A., Leow, C.S., Ramlah, A., Wan Hussin, W.M.A. ve Sanusi, S.A.M. (2008). Applications of AnnAGNPS model for soil loss estimation and nutrient loading for Malaysian conditions. Int. J. Appl. Earth Obs. Geoinf., 10, 239–252.
  • Xie, H. ve Lian, Y. (2013). Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River Basin. J. Hydrol., 481, 119–131.
  • Kuo, Y.M. ve Carpena, M.R. (2009). Simplified modeling of phosphorus removal by vegetative filter strips to control runoff pollution from phosphate mining areas. J. Hydrol., 378, 343–354.
  • Weng, L.P., Temminghoff, E.J.M., Lofts, S., Tipping, E. ve Van Riemsdijk, W.H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol., 36, 4804–4810.
  • Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M.R., Lofts, S., Hill, M.T.R., Farago, M.E. ve Thornton, I. (2003). The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut., 125, 213–225.
  • Michel, K., Roose, M. ve Ludwig, B. (2007). Comparison of different approaches for modeling heavy metal transport in acidic soils. Geoderma, 140, 207–214.
  • Schmitt D., Saravia F., Frimmel F.H. ve Schuessler W. (2003). NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation. Water Res., 37, 3541–50.
  • Facchinelli, A., Sacchi, E. ve Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut., 114, 313-324.
  • Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ. Pollut., 142, 501-511.
  • Huang, J. ve Hong, H. (2010). Comparative study of two models to simulate diffuse nitrogen and phosphorus pollution in a medium-sized catchment, southeast China. Estuar. Coast Shelf S., 86, 387–394.
  • Strager, M.P., Fletcher, J.J., Strager, J.M., Yuill, C.B., Eli, R.N., Petty, J.T. ve Lamont, S.J. (2010). Catchment analysis with GIS: The catchment characterization and modeling system software application. Comput. Geosci., 36, 970–976.
  • Zhou, F., Guo, H. ve Hao, Z. (2007). Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: A GIS-based chemometric approach. Mar. Pollut. Bull., 54, 1372–1384.
  • Delgado, J., Nieto, J.M. ve Boski, T. (2010). Analysis of the spatial variation of heavy metals in the Guadiana Estuary sediments (SW Iberian Peninsula) based on GIS-mapping techniques. Estuar. Coast Shelf S., 88, 71- 83.
  • Ng, S.M.Y. , Wai, O.W.H., Shueng Li, Y., Lin Li, Z. ve Jiang, Y. (2009). Integration of a GIS and a complex three-dimensional hydrodynamic, sediment and heavy metal transport numerical model. Adv. Eng. Softw., 40, 391–401.
  • Matêjîcêk, L., Engst, P. ve Jaňour Z. (2006). A GIS- based approach to spatio-temporal analysis of environmental pollution in urban areas: a case study of Prague’s environment extended by LIDAR data. Ecol. Model., 199, 261-77.
  • Türkiye Ulusal Coğrafi Bilgi Sistemi (TUCBS) Projesi, http://www.tkgm.gov.tr/tr/icerik/turkiye-ulusal- cografi-bilgi-sistemi-tucbs-projesi (Şubat 2015)

Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller ve Besi Maddeleri Üzerine Modelleme Yaklaşımları

Yıl 2015, Cilt: 27 Sayı: 1, 21 - 31, 28.04.2016
https://doi.org/10.7240/mufbed.99724

Öz

Özellikle tarım ve hayvancılık kaynaklı yayılı kirleticilerin su havzalarındaki davranışlarına yönelik çalışmalar, son yıllarda önem ve hız kazanmıştır. Çoğu zaman sadece önlem amaçlı kullanılan antibiyotikler, hayvan yetiştiriciliğince en yaygın tercih edilen ilaç türlerinden bir tanesidir. Antibiyotiklerin kayda değer fraksiyonları hayvan atığında ortaya çıktığı için; tarımsal arazilere hayvan atıklarının gübre olarak uygulanmasını takiben, antibiyotikler gübreden toprağa geçerek toprak kalitesini, aynı zamanda yüzeysel akışla yüzey sularına taşınarak su kalitesini olumsuz etkileyebilmektedirler. Bu durum su temininde önemli rol oynayan havzaların planlanması ve yönetimi için modelleme çalışmalarının geliştirilmesini gerekli kılmıştır. Coğrafi Bilgi Sistemleri (CBS), mekansal verileri elde etmede sağladığı kolaylık ve çok sayıda farklı türdeki veriyi haritalandırma özelliği ile havza modelleme çalışmalarında başvurulan önemli araçlardan bir tanesi olmuştur. Besi maddelerinin taşınımı ve su kalitesi üzerine etkilerini inceleyen CBS tabanlı modelleme yaklaşımları bulunmaktadır; ancak benzer çalışmalar ağır metaller ve antibiyotikler için sınırlı sayıdadır. Bu çalışmanın amacı literatürde yer alan, başta antibiyotikler olmak üzere ağır metal ve besi maddeleri gibi önem arz eden kirleticilerin su ortamlarında ve havzalarındaki taşınımındaki modelleme yaklaşımlarını özetlemek ve değerlendirmektir.

Kaynakça

  • Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton- Smith, C. ve Chambers, B.J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ., 311, 205–219.
  • Vadas, P.A., Owens, L.B. ve Sharpley, A.N. (2008). An empirical model for dissolved phosphorus in runoff from surface-applied fertilizers. Agr. Ecosyst. Environ., 127, 59–65.
  • Brennan, R.B., Fenton, O., Grant, J. ve Healy, M.G. (2011). Impact of chemical amendment of dairy cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a grassland soil. Sci. Total Environ., 409, 5111-5118.
  • Huber, A., Bach, M. ve Frede, H.G. (1998). Modelling pesticide losses with surface runoff in Germany. Sci. Total Environ., 223, 177-91.
  • Montforts, M.H.M.M. (1999). Environmental Risk Assessment for Veterinary Medicinal Products Part 1. Other than GMO-containing and Immulogical Products First Update, Report 601300, National Institute of Public Health and the Environment (RIVM), Bilthoven, Hollanda.
  • Kumar, K., Gupta, S.C., Chander, Y. ve Singh A.K. (2005). Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron., 87, 1-53.
  • Park, S.J. (2007). Hazard assessment of major veterinary antibiotics in aquatic ecosystem using microbe, macroinvertebrates and fish. Yüksek Lisans Tezi, Seoul National University, Güney Kore.
  • Lenzi, M.A. ve Di Luzio, M. (1997). Surface runoff, soil erosion and water quality modeling in the Alpone catchment using AGNPS integrated with a Geographic Information System. Eur. J. Agron., 6, 1-14.
  • Parry, R. (1998). Agricultural phosphorus and water quality: A US Environmental Protection Agency perspective. J. Environ. Qual., 27, 258–260.
  • Lal, R., Miller, F.P. ve Logan, T.J. (1998). Are intensive agricultural practices environmentally and ethically sound? J. Agr. Environ. Ethic., 1, 193–210.
  • Delpla, I., Baurès, E., Jung, A.V. ve Thomas, O. (2011). Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas. Sci. Total Environ., 409, 1683–1688.
  • Blenkinsop, S., Fowler, H.J., Dubusi, I.G., Nolan, B.T. ve Hollis, J.M. (2008). Developing climatic scenarios for pesticide fate modeling in Europe. Environ. Pollut., 154, 219-231.
  • Rao, M.N., Waits, D.A. ve Neilsen, M.L. (2000). A GIS-based modeling approach for implementation of sustainable farm management practices. Environ. Model. Softw., 15, 745–753.
  • Maidment, D.R. (1993). Environmental modeling within GIS. Proceedings of the Second International Conference/ Workshop on Integrating GIS and Environmental modeling, Breckridge, Colorado, USA, 2 Eylül.
  • Ragan, R.M. ve Kosicki, A.J. (1993). An operational GIS to support statewide hydrologic and nonpoint pollution modeling. Proceedings, International Symposium of Engineering Hydrology, San Francisco, USA, 26–30 Temmuz, ASCE.
  • Fedra, K. (1999). Urban environmental management: monitoring, GIS, and modeling. Comput. Environ. Urban Syst.,23, 443-457.
  • Lertpaitoonpan, W., Ong, S.K. ve Moorman, T.B. (2009). Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 76, 558–64.
  • Kim, S.C., Davis, J.G., Truman, C.C., Ascough, J.C. ve Carlson, K. (2010). Simulated rainfall study for transport of veterinary antibiotics – Mass balance analysis. J. Hazard. Mater., 175, 836–43.
  • Cengiz, M., Balcıoğlu, I., Oruc, H.H. ve Cengiz, T.G. (2010). Evaluation of the interaction between soil and antibiotics. J. Environ. Sci. Health B., 45, 183-189.
  • Cengiz, M., Balcıoğlu, I., ve Oruç, H.H. (2010). Detection of oxytetracycline and chlorotetracycline residues in agricultural fields in Turkey. J. Biol. Environ. Sci., 4(10), 23-27.
  • Uslu, M.O. ve Balcıoğlu, I. (2009). Comparison of the ozonation and fenton process performances for the treatment of antibiotic containing manure. Sci. Total Environ., 407(11), 3450-3458.
  • Uslu, M.O. ve Balcıoğlu, I. (2009). Simultaneous removal of oxytetracycline and sulfamethazine antibacterials from animal waste by chemical oxidation processes. J. Agr. Food Chem., 57(23), 11284-11291.
  • Yalap, K.S. ve Balcıoğlu, I. (2009). Effects of inorganic anions and humic on the photocatalytic and ozone oxidation of oxytetracycline in aqueous solution. J. Adv. Oxid. Technol., 12(1), 1-10.
  • Karcı, A. ve Balcıoğlu, I. (2009). Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci. Total Environ., 407, 4652–4664.
  • Sarmah, A.K., Meyer, M.T. ve Boxall, A.B.A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–59.
  • Rekolainen, S., Mitikka, S., Vuorenmaa, J. ve Johansson, M. (2005). Rapid decline of dissolved nitrogen in Finnish lakes. J. Hydrol., 304, 94–102.
  • Buckingham, S., Tipping, E. ve Taylor, J.H. (2008). Concentrations and fluxes of dissolved organic carbon in UK topsoils. Sci. Total Environ., 407, 460 - 470.
  • Spark, K.M. ve Swift, R.S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Sci. Total Environ., 298, 147–61.
  • Ikem, A. ve Adisa, S. (2011). Runoff effect on eutrophic lake water quality and heavy metal distribution in recent littoral sediment. Chemosphere, 82, 259–267.
  • Joyce, B.A., Wallender, W.W. ve Mailapalli, D.R. (2010). Application of pesticide transport model for simulating diazinon runoff in California’s Central Valley. J. Hydrol., 395, 79–90.
  • Horton, R.E. (1933). The role of infiltration in the hydrologic cycle. EOS, Trans. Am. Geophys. Union, 14, 446–460.
  • Yuan, Y., Hall K. ve Oldham, C. (2001). A preliminary model for predicting heavy metal contaminant loading from an urban catchment. Sci. Total Environ., 266, 299-307.
  • Shigaki, F., Sharpley, A. ve Prochnow, L.I. (2007). Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays. Sci. Total Environ., 373, 334–343.
  • Visser, A., Kroes, J., van Vliet, M.T.H., Blenkinsop, S., Fowler, H.J. ve Broers, H. P. (2012). Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment. J. Contam. Hydrol., 127, 47–64.
  • Walton, R.S., Volker, R.E., Bristowc, K.L. ve Smettem, K.R.J. (2000). Experimental examination of solute transport by surface runoff from low-angle slopes. J. Hydrol., 233, 19-36.
  • Baes, C.F. ve Sharp, R.D. (1983). A proposal for estimation of soil leaching and leaching constants for use in assessment models. J. Environ. Qual., 12, 17-28.
  • Sharpley, A.N. (1983). Effect of soil properties on the kinetics of phosphorus desorption. Soil Sci. Soc. Am. J., 47, 462-467.
  • Sauve, S., Hendershot, W. ve Allen, H.E. (2000). Solid- solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol., 34, 1125-1131.
  • Basnyat, P., Teeter, L.D., Lockaby, B.G. ve Flynn, K.M. (2000). The use of remote sensing and GIS in watershed level analyses of non-point source pollution problems. For. Ecol. Manage., 128, 65-73.
  • Tsihrintzis, V.A. ve Hamid, R. (1998). Runoff Quality Prediction from Small Urban Catchments Using SWMM. Hydrol. Process., 12, 311-329.
  • Temprano, J., Arango, O., Cagiao, J., Suárez, J. ve Tejero, I. (2006). Stormwater quality calibration by SWMM: A case study in Northern Spain. Wat. SA, 32, 54-63.
  • Ouyang, W., Guo, B., Hao, F., Huang, H., Li, J. ve Gong, Y. (2012). Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing. J. Environ. Manage., 113, 467-473.
  • Liu, A., Egodawatta, P., Guan, Y. ve Goonetilleke, A. (2013). Influence of rainfall and catchment characteristics on urban stormwater quality. Sci. Total Environ., 444, 255–262.
  • US Environmental Protection Agency (US EPA) (1983). Results of the Nationwide Urban Runoff Program, Report WH-554, Water Planning Division, Washington DC, USA.
  • Bhaduri, B., Harbor, J., Engel, B. ve Grove, M. (2000). Assessing catchment scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environ. Manage., 26, 643–658.
  • Casalí, J., Gastesi, R., Álvarez-Mozos, J.A., De Santisteban, L.M., Del Valle de Lersundi, J., Giménez, R., Larrañaga, A. , Goñi, M., Agirre, U., Campo, M.A., López, J.J. ve Donézar, M. (2008). Runoff, erosion, and water quality of agricultural catchments in central Navarre (Spain). Agric. Water Manage., 95, 1111 – 1128.
  • Blackwell, P.A., Kay, P. ve Boxall, A.B.A. (2007). The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere, 67, 292-299.
  • Kay, P., Blackwell, P.A. ve Boxall, A.B.A. (2005). Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere, 59, 951–959.
  • Branger, F., Tournebize, J., Carluer, N., Kao, C., Braud, I. ve Vauclin, M. (2009). A simplified modelling approach for pesticide transport in a tile-drained field: The PESTDRAIN model. Agric. Water Manage., 96, 415-28.
  • Chu, X. ve Marino, M.A. (2007). IPTM-CS: A windows-based integrated pesticide transport model for a canopyesoil system. Environ. Model. Softw., 22, 1316-1327.
  • Schriever, C.A. ve Liess, M. (2007). Mapping ecological risk of agricultural pesticide runoff. Sci. Total Environ., 384, 264–279.
  • Setegn, S.G., Srinivasan, R., Dargahi, B. ve Melesse, A.M. (2009). Spatial delineation of soil vulnerability in the Lake Tana Basin, Ethiopia. Hydrol. Process., 23, 3738–3750.
  • Zoppou, C. (2001). Review of urban storm water models. Environ. Modell. Softw., 16, 195–231.
  • Beasley, D.B. ve Huggins, L.F. (1981). ANSWERS Users’ Manual, EPA–905/9–82–001, US EPA, Chicago, Illinois, USA.
  • Frere, M.H., Onstad, C.A. ve Holtan, N.H. (1975). ACTMO – An Agricultural Chemical Transport Model, Report ARS-H–3, Agricultural Research Service, USDA, Washington DC, USA.
  • Young, R.A. (1986). Agricultural nonpoint source pollution model: A watershed analysis tool. Conservation Report 35, Agricultural Research Service, USDA, Morris, Minnesota, USA.
  • Donigian, A.S. ve Davis, H.H. (1978). Agricultural Runoff Management (ARM): Users Manual, Report EPA–600/3–78–080, US EPA, Athens, Georgia, USA.
  • Knisel, W.G. (1980). CREAMS: A Fieldscale Model for Chemical, Runoff, and Erosion from Agricultural Management Systems, Conservation Report 26, Science and Education Administration, USDA, Washington DC, USA.
  • Leonard, R.A., Knisel, W.G. ve Still, D.A. (1987). GLEAMS: Groundwater loading effects of agricultural management systems. T. ASAE, 30, 1403-1418.
  • Suárez, L.A. (2005). PRZM-3, A Model for Predicting Pesticide and Nitrogen Fate in the Crop Root and Unsaturated Soil Zones: User’s Manual for Release 3.12.2, Report EPA/600/R-05/111, EPA, Washington, USA.
  • Arnold, J.G., Srinivasan, R., Muttiah, R.S. ve Williams, J.R. (1998). Large area hydrologic modeling and assessment part I: Model development.J. Am. Water Resour. Assoc., 34, 73–89.
  • Johanson, R.C., Imhoff, J.C., Kittle, J.L. ve Donigian, A.S. (1984). Hydrologic Simulation Program- FORTRAN (HSPF): User’s Manual for Release 8.0, Report EPA–600/3–84–066, US EPA, Athens, Georgia, USA.
  • Woolhiser, D.A., Smith, R.E. ve Goodrich, D.C. (1990). KINEROS, A Kinematic Runoff and Erosion Model: Documentation and User Manual, Report ARS- 77. Agricultural Research Service, USDA, Minnesota, USA.
  • US Army Corps of Engineers (USACE) (1977). Storage, Treatment, Overflow, Runoff Model “STORM”: Users’ Manual, Report CPD-7, Hydrologic Engineering Center, Davis, CA, USA.
  • Huber, W.C. ve Dickinson, R.E. (1988). Storm Water Management Model, Version 4: User’s Manual, Report EPA 600/3-88/001a, Environmental Research Laboratory, US EPA, Georgia, USA.
  • Varanou, E., Gkouvatsou, E., Baltas, E. ve Mimikou, M. (2002). Quantity and quality integrated catchment modeling under climate change with use of Soil and Water Assessment Tool Model. J. Hydrol. Eng., 7, 228–244.
  • Baginska, B., Milne-Home, W. ve Cornish, P.S. (2003). Modeling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST. Environ. Model. Softw., 18, 801–808.
  • Oeurng, C., Sauvage, S. ve Pérez, J.M.S. (2011). Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol., 401, 145-153.
  • Haregeweyn, N. ve Yohannes, F. (2003). Testing and evaluation of the agricultural non-point source pollution model (AGNPS) on Augucho Catchment, Western Hararghe, Ethiopia. Agric. Ecosyst. Environ., 99, 201–212.
  • Shamshad, A., Leow, C.S., Ramlah, A., Wan Hussin, W.M.A. ve Sanusi, S.A.M. (2008). Applications of AnnAGNPS model for soil loss estimation and nutrient loading for Malaysian conditions. Int. J. Appl. Earth Obs. Geoinf., 10, 239–252.
  • Xie, H. ve Lian, Y. (2013). Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River Basin. J. Hydrol., 481, 119–131.
  • Kuo, Y.M. ve Carpena, M.R. (2009). Simplified modeling of phosphorus removal by vegetative filter strips to control runoff pollution from phosphate mining areas. J. Hydrol., 378, 343–354.
  • Weng, L.P., Temminghoff, E.J.M., Lofts, S., Tipping, E. ve Van Riemsdijk, W.H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol., 36, 4804–4810.
  • Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M.R., Lofts, S., Hill, M.T.R., Farago, M.E. ve Thornton, I. (2003). The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut., 125, 213–225.
  • Michel, K., Roose, M. ve Ludwig, B. (2007). Comparison of different approaches for modeling heavy metal transport in acidic soils. Geoderma, 140, 207–214.
  • Schmitt D., Saravia F., Frimmel F.H. ve Schuessler W. (2003). NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation. Water Res., 37, 3541–50.
  • Facchinelli, A., Sacchi, E. ve Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut., 114, 313-324.
  • Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ. Pollut., 142, 501-511.
  • Huang, J. ve Hong, H. (2010). Comparative study of two models to simulate diffuse nitrogen and phosphorus pollution in a medium-sized catchment, southeast China. Estuar. Coast Shelf S., 86, 387–394.
  • Strager, M.P., Fletcher, J.J., Strager, J.M., Yuill, C.B., Eli, R.N., Petty, J.T. ve Lamont, S.J. (2010). Catchment analysis with GIS: The catchment characterization and modeling system software application. Comput. Geosci., 36, 970–976.
  • Zhou, F., Guo, H. ve Hao, Z. (2007). Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: A GIS-based chemometric approach. Mar. Pollut. Bull., 54, 1372–1384.
  • Delgado, J., Nieto, J.M. ve Boski, T. (2010). Analysis of the spatial variation of heavy metals in the Guadiana Estuary sediments (SW Iberian Peninsula) based on GIS-mapping techniques. Estuar. Coast Shelf S., 88, 71- 83.
  • Ng, S.M.Y. , Wai, O.W.H., Shueng Li, Y., Lin Li, Z. ve Jiang, Y. (2009). Integration of a GIS and a complex three-dimensional hydrodynamic, sediment and heavy metal transport numerical model. Adv. Eng. Softw., 40, 391–401.
  • Matêjîcêk, L., Engst, P. ve Jaňour Z. (2006). A GIS- based approach to spatio-temporal analysis of environmental pollution in urban areas: a case study of Prague’s environment extended by LIDAR data. Ecol. Model., 199, 261-77.
  • Türkiye Ulusal Coğrafi Bilgi Sistemi (TUCBS) Projesi, http://www.tkgm.gov.tr/tr/icerik/turkiye-ulusal- cografi-bilgi-sistemi-tucbs-projesi (Şubat 2015)
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Zeynep Akdoğan Bu kişi benim

Arın Küçükdoğan Bu kişi benim

Başak Güven

Yayımlanma Tarihi 28 Nisan 2016
Yayımlandığı Sayı Yıl 2015 Cilt: 27 Sayı: 1

Kaynak Göster

APA Akdoğan, Z., Küçükdoğan, A., & Güven, B. (2016). Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller ve Besi Maddeleri Üzerine Modelleme Yaklaşımları. Marmara Fen Bilimleri Dergisi, 27(1), 21-31. https://doi.org/10.7240/mufbed.99724
AMA Akdoğan Z, Küçükdoğan A, Güven B. Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller ve Besi Maddeleri Üzerine Modelleme Yaklaşımları. MFBD. Nisan 2016;27(1):21-31. doi:10.7240/mufbed.99724
Chicago Akdoğan, Zeynep, Arın Küçükdoğan, ve Başak Güven. “Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller Ve Besi Maddeleri Üzerine Modelleme Yaklaşımları”. Marmara Fen Bilimleri Dergisi 27, sy. 1 (Nisan 2016): 21-31. https://doi.org/10.7240/mufbed.99724.
EndNote Akdoğan Z, Küçükdoğan A, Güven B (01 Nisan 2016) Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller ve Besi Maddeleri Üzerine Modelleme Yaklaşımları. Marmara Fen Bilimleri Dergisi 27 1 21–31.
IEEE Z. Akdoğan, A. Küçükdoğan, ve B. Güven, “Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller ve Besi Maddeleri Üzerine Modelleme Yaklaşımları”, MFBD, c. 27, sy. 1, ss. 21–31, 2016, doi: 10.7240/mufbed.99724.
ISNAD Akdoğan, Zeynep vd. “Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller Ve Besi Maddeleri Üzerine Modelleme Yaklaşımları”. Marmara Fen Bilimleri Dergisi 27/1 (Nisan 2016), 21-31. https://doi.org/10.7240/mufbed.99724.
JAMA Akdoğan Z, Küçükdoğan A, Güven B. Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller ve Besi Maddeleri Üzerine Modelleme Yaklaşımları. MFBD. 2016;27:21–31.
MLA Akdoğan, Zeynep vd. “Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller Ve Besi Maddeleri Üzerine Modelleme Yaklaşımları”. Marmara Fen Bilimleri Dergisi, c. 27, sy. 1, 2016, ss. 21-31, doi:10.7240/mufbed.99724.
Vancouver Akdoğan Z, Küçükdoğan A, Güven B. Yayılı Kirleticilerin Havzalardaki Taşınım Süreçleri:Antibiyotikler, Ağır Metaller ve Besi Maddeleri Üzerine Modelleme Yaklaşımları. MFBD. 2016;27(1):21-3.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr