Araştırma Makalesi
BibTex RIS Kaynak Göster

Damage Detection in Bolted Joint by Lamb Wave Technique

Yıl 2015, Cilt: 27 Sayı: 3, 76 - 82, 29.04.2015
https://doi.org/10.7240/mufbed.66865

Öz

Lamb waves are a type of ultrasonic waves has a wide range of applications in non-destructive testing. Most of the studies used simple and flat structures for breaking, cracking or corrosion damages. In this study, the detection of damage in the welding is examined. Two 4.5mm thickness AL2024 plates joined by overlay welding method. Damage was applied to the weld region gradually. Three piezoelectric (PZT) discs were used to create surface waves and to monitor their propagation. For better examination, the envelopes of the monitored signals were calculated by using the Hilbert transform. Damages occurring in the weld region, has led to reflections and attenuation in waves. The study indicated that degradation occurring in the weld can be identified with the Lamb wave technique

Kaynakça

  • P. Verboven, E. Parloo, P. Guillaume and M. Van Overmeire. (2002). Autonomous structural health monitoring part I: modal parameter estimation and tracking. Mechanical Systems and Signal Processing, 16 (4), 637–657.
  • Balageas, D., Fritzen, C. P., & Güemes, A. (Eds.). (2006). Structural health monitoring (Vol. 493). London: ISTE
  • Inman, D. J., Farrar, C. R., Lopes, V., & Steffen, V. (2005). Damage Prognosis for Aerospace, Civil, and Mechanical Systems. 2005. ISBN 0-470-86907-0. John Wiley & Sons Ltd.
  • Su, Z., Ye, L., & Lu, Y. (2006). Guided Lamb waves for identification of damage in composite structures: A review. Journal of sound and vibration, 295(3), 753-780.
  • Morassi, A., & Vestroni, F. (2008). Dynamic methods for damage detection in structures (Vol. 499). Springer Science & Business Media.
  • Ostachowicz, W., Kudela, P., Malinowski, P., & Wandowski, T. (2009). Damage localisation in plate- like structures based on PZT sensors. Mechanical Systems and Signal Processing, 23(6), 1805-1829.
  • Diamanti, K., Soutis, C., & Hodgkinson, J. M. (2005). Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams. Composites Part A: Applied science and manufacturing, 36(2), 189- 195.
  • Xu, B., & Giurgiutiu, V. (2007). Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring. Journal of Nondestructive Evaluation, 26(2-4), 123-134.
  • Giurgiutiu, V. (2007). Structural health monitoring: with piezoelectric wafer active sensors. Academic Press.
  • Lee, S. J., Sohn, H., & Hong, J. W. (2010). Time reversal based piezoelectric transducer self-diagnosis under varying temperature. Journal of Nondestructive Evaluation, 29(2), 75-91.
  • Moniz, L., Nichols, J. M., Nichols, C. J., Seaver, M., Trickey, S. T., Todd, M. D., & Virgin, L. N. (2005). A multivariate, attractor-based approach to structural health monitoring. Journal of Sound and Vibration, 283(1), 295-310.
  • Nichols, J. M., Virgin, L. N., Todd, M. D., & Nichols, J. D. (2003). On the use of attractor dimension as a feature in structural health monitoring. Mechanical Systems and Signal Processing, 17(6), 1305-1320.
  • Banerjee, S., Ricci, F., Monaco, E., & Mal, A. (2009). A wave propagation and vibration-based approach for damage identification in structural components. Journal of Sound and Vibration, 322(1), 167-183.
  • Katsikeros, C. E., & Labeas, G. N. (2009). Development and validation of a strain-based structural health monitoring system. Mechanical Systems and Signal Processing, 23(2), 372-383.
  • Acciani, G., Brunetti, G., Fornarelli, G., & Giaquinto, A. (2010). Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification. Ultrasonics, 50(1), 13-25.
  • Su, Z., Ye, L., & Bu, X. (2002). A damage identification technique for CF/EP composite laminates using distributed piezoelectric transducers. Composite structures, 57(1), 465-471.
  • Kim, Y. H., Kim, D. H., Han, J. H., & Kim, C. G. (2007). Damage assessment in layered composites using spectral analysis and Lamb wave. Composites Part B: Engineering, 38(7), 800-809.
  • Leng, J., & Asundi, A. (2003). Structural health monitoring of smart composite materials by using EFPI and FBG sensors. Sensors and Actuators A: Physical, 103(3), 330-340.
  • Rucka, M. (2010). Experimental and numerical study on damage detection in an L-joint using guided wave propagation. Journal of Sound and Vibration, 329(10), 1760-1779.
  • Lu, Y., Ye, L., Su, Z., & Yang, C. (2008). Quantitative assessment of through-thickness crack size based on Lamb wave scattering in aluminium plates. Ndt & E International, 41(1), 59-68.
  • Fasel, T. R., & Todd, M. D. (2010). Chaotic insonification for health monitoring of an adhesively bonded composite stiffened panel. Mechanical Systems and Signal Processing, 24(5), 1420-1430.
  • J. S. Popovics, G. E. Gallo, P.L. Chapman. (2009). Corrosion Monitoring of Metals with an Active Magnetic Sensing Scheme, Structural Health Monitoring Conference, Stanfort University, California, USA.
  • Yu, L., & Giurgiutiu, V. (2008). In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection. Ultrasonics, 48(2), 117-134.
  • Zhao, X., Yuan, S., Yu, Z., Ye, W., & Cao, J. (2008). Designing strategy for multi-agent system based large structural health monitoring. Expert Systems with Applications, 34(2), 1154-1168.
  • Gunther, M. F., Wang, A., Fogg, B. R., Starr, S. E., Murphy, K. A., & Claus, R. O. (1993). Fiber optic impact detection and location system embedded in a composite material. In Fibers’ 92. International Society for Optics and Photonics. 262-269.
  • Park, J. (2005). Impact identification in structures using a sensor network: The system identification approach. Dissertation, Department of Aeronautics and Astronautics, Stanford University.
  • Markmiller, J. (2007). Quantification and optimization of a structural health monitorin system for impact detection in composite structures. Dissertation, Department of Aeronautics and Astronautics, Stanford University.

Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması

Yıl 2015, Cilt: 27 Sayı: 3, 76 - 82, 29.04.2015
https://doi.org/10.7240/mufbed.66865

Öz

Bu çalışmada, cıvatalı birleştirmeye sahip yapılardaki cıvata hasarlarının gerçek zamanlı bulunması hedeflenmektedir. Yapılan çalışma ile Alüminyum 2024 plakaları birleştiren cıvatalardaki gevşemeler bulunabilmektedir.  Cıvatalı birleştirmelerde Lamb dalgaları türlerinden olan düşük frekanslı asimetrik A0 ve yüksek frekanslı simetrik S0 modlarının karşılaştırılması yapılmıştır. Sonuç olarak S0 modunun bu tip birleştirmelerde hasar belirlenmesinde kullanılamayacağını görülmüştür. S0 modunda cıvataların İletilen enerji çok zayıflattığı ve cıvatalardan enerji çok büyük kısmına geri yansıttığı ortaya konulmuştur. A0 modunun ise daha uygun olduğu görülmüştür. Sinyallerin birleştirme bölgesinin diğer kısmına daha az kayıpla geçtiği, hem de yansıma özelliği barındırdığı görülmüştür.

Kaynakça

  • P. Verboven, E. Parloo, P. Guillaume and M. Van Overmeire. (2002). Autonomous structural health monitoring part I: modal parameter estimation and tracking. Mechanical Systems and Signal Processing, 16 (4), 637–657.
  • Balageas, D., Fritzen, C. P., & Güemes, A. (Eds.). (2006). Structural health monitoring (Vol. 493). London: ISTE
  • Inman, D. J., Farrar, C. R., Lopes, V., & Steffen, V. (2005). Damage Prognosis for Aerospace, Civil, and Mechanical Systems. 2005. ISBN 0-470-86907-0. John Wiley & Sons Ltd.
  • Su, Z., Ye, L., & Lu, Y. (2006). Guided Lamb waves for identification of damage in composite structures: A review. Journal of sound and vibration, 295(3), 753-780.
  • Morassi, A., & Vestroni, F. (2008). Dynamic methods for damage detection in structures (Vol. 499). Springer Science & Business Media.
  • Ostachowicz, W., Kudela, P., Malinowski, P., & Wandowski, T. (2009). Damage localisation in plate- like structures based on PZT sensors. Mechanical Systems and Signal Processing, 23(6), 1805-1829.
  • Diamanti, K., Soutis, C., & Hodgkinson, J. M. (2005). Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams. Composites Part A: Applied science and manufacturing, 36(2), 189- 195.
  • Xu, B., & Giurgiutiu, V. (2007). Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring. Journal of Nondestructive Evaluation, 26(2-4), 123-134.
  • Giurgiutiu, V. (2007). Structural health monitoring: with piezoelectric wafer active sensors. Academic Press.
  • Lee, S. J., Sohn, H., & Hong, J. W. (2010). Time reversal based piezoelectric transducer self-diagnosis under varying temperature. Journal of Nondestructive Evaluation, 29(2), 75-91.
  • Moniz, L., Nichols, J. M., Nichols, C. J., Seaver, M., Trickey, S. T., Todd, M. D., & Virgin, L. N. (2005). A multivariate, attractor-based approach to structural health monitoring. Journal of Sound and Vibration, 283(1), 295-310.
  • Nichols, J. M., Virgin, L. N., Todd, M. D., & Nichols, J. D. (2003). On the use of attractor dimension as a feature in structural health monitoring. Mechanical Systems and Signal Processing, 17(6), 1305-1320.
  • Banerjee, S., Ricci, F., Monaco, E., & Mal, A. (2009). A wave propagation and vibration-based approach for damage identification in structural components. Journal of Sound and Vibration, 322(1), 167-183.
  • Katsikeros, C. E., & Labeas, G. N. (2009). Development and validation of a strain-based structural health monitoring system. Mechanical Systems and Signal Processing, 23(2), 372-383.
  • Acciani, G., Brunetti, G., Fornarelli, G., & Giaquinto, A. (2010). Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification. Ultrasonics, 50(1), 13-25.
  • Su, Z., Ye, L., & Bu, X. (2002). A damage identification technique for CF/EP composite laminates using distributed piezoelectric transducers. Composite structures, 57(1), 465-471.
  • Kim, Y. H., Kim, D. H., Han, J. H., & Kim, C. G. (2007). Damage assessment in layered composites using spectral analysis and Lamb wave. Composites Part B: Engineering, 38(7), 800-809.
  • Leng, J., & Asundi, A. (2003). Structural health monitoring of smart composite materials by using EFPI and FBG sensors. Sensors and Actuators A: Physical, 103(3), 330-340.
  • Rucka, M. (2010). Experimental and numerical study on damage detection in an L-joint using guided wave propagation. Journal of Sound and Vibration, 329(10), 1760-1779.
  • Lu, Y., Ye, L., Su, Z., & Yang, C. (2008). Quantitative assessment of through-thickness crack size based on Lamb wave scattering in aluminium plates. Ndt & E International, 41(1), 59-68.
  • Fasel, T. R., & Todd, M. D. (2010). Chaotic insonification for health monitoring of an adhesively bonded composite stiffened panel. Mechanical Systems and Signal Processing, 24(5), 1420-1430.
  • J. S. Popovics, G. E. Gallo, P.L. Chapman. (2009). Corrosion Monitoring of Metals with an Active Magnetic Sensing Scheme, Structural Health Monitoring Conference, Stanfort University, California, USA.
  • Yu, L., & Giurgiutiu, V. (2008). In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection. Ultrasonics, 48(2), 117-134.
  • Zhao, X., Yuan, S., Yu, Z., Ye, W., & Cao, J. (2008). Designing strategy for multi-agent system based large structural health monitoring. Expert Systems with Applications, 34(2), 1154-1168.
  • Gunther, M. F., Wang, A., Fogg, B. R., Starr, S. E., Murphy, K. A., & Claus, R. O. (1993). Fiber optic impact detection and location system embedded in a composite material. In Fibers’ 92. International Society for Optics and Photonics. 262-269.
  • Park, J. (2005). Impact identification in structures using a sensor network: The system identification approach. Dissertation, Department of Aeronautics and Astronautics, Stanford University.
  • Markmiller, J. (2007). Quantification and optimization of a structural health monitorin system for impact detection in composite structures. Dissertation, Department of Aeronautics and Astronautics, Stanford University.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Volkan Şenyürek

Mustafa Demetgül

Hüseyin Yüce

Yayımlanma Tarihi 29 Nisan 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 27 Sayı: 3

Kaynak Göster

APA Şenyürek, V., Demetgül, M., & Yüce, H. (2015). Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması. Marmara Fen Bilimleri Dergisi, 27(3), 76-82. https://doi.org/10.7240/mufbed.66865
AMA Şenyürek V, Demetgül M, Yüce H. Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması. MFBD. Ekim 2015;27(3):76-82. doi:10.7240/mufbed.66865
Chicago Şenyürek, Volkan, Mustafa Demetgül, ve Hüseyin Yüce. “Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması”. Marmara Fen Bilimleri Dergisi 27, sy. 3 (Ekim 2015): 76-82. https://doi.org/10.7240/mufbed.66865.
EndNote Şenyürek V, Demetgül M, Yüce H (01 Ekim 2015) Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması. Marmara Fen Bilimleri Dergisi 27 3 76–82.
IEEE V. Şenyürek, M. Demetgül, ve H. Yüce, “Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması”, MFBD, c. 27, sy. 3, ss. 76–82, 2015, doi: 10.7240/mufbed.66865.
ISNAD Şenyürek, Volkan vd. “Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması”. Marmara Fen Bilimleri Dergisi 27/3 (Ekim 2015), 76-82. https://doi.org/10.7240/mufbed.66865.
JAMA Şenyürek V, Demetgül M, Yüce H. Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması. MFBD. 2015;27:76–82.
MLA Şenyürek, Volkan vd. “Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması”. Marmara Fen Bilimleri Dergisi, c. 27, sy. 3, 2015, ss. 76-82, doi:10.7240/mufbed.66865.
Vancouver Şenyürek V, Demetgül M, Yüce H. Cıvatalı Birleştirmelerdeki Hasarların Lamb Dalgası Tekniğiyle Bulunması. MFBD. 2015;27(3):76-82.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr