Derleme
BibTex RIS Kaynak Göster

Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar

Yıl 2018, Cilt: 30 Sayı: 1, 94 - 104, 31.03.2018
https://doi.org/10.7240/marufbd.336015

Öz

Dünyada kadınlarda kanser sebepli ölümlerde meme kanseri en
üst sıralarda yer almaktadır. Kemoterapi, radyoterapi, hormonal tedavi gibi
yöntemler meme kanserinin tedavisi için kullanılmasına rağmen metastaz ve nüks
sıkça karşılaşılan durumlardır. Meme kanseri tedavisinin etkin olarak
sağlanamamasında en çarpıcı etken tümör dokusundaki ufak bir popülasyonu
oluşturan kanser kök hücreleridir. Meme kanser kök hücrelerinin eliminasyonu
konusundaki çalışmalar kök hücre özelliklerinin ortaya çıkmasında kritik rol oynayan
gelişimsel sinyal yolakları üzerinde etkili olabilecek yaklaşımları
içermektedir. Gelişimsel sinyal yolaklarından en önemlilerinden biri olan Notch
sinyal yolağı meme kanser kök hücrelerinde apoptoz, proliferasyon, anjiyojenez
ve farklılaşma mekanizmaları üzerinde oldukça etkilidir. Güncel çalışmalar
kanser kök hücrelerinin karakteristiğinde kritik rol oynayan Notch sinyal
yolağının inhibisyonun etkili tedavi yaklaşımları için önemli olduğunu
göstermektedir. Bu derlemede meme kanserinin
tedavisinde Notch sinyal yolağının inhibisyonu için getirilmiş farklı
yaklaşımlar ele alınacak ve gelecekte etkin kanser tedavisinin
geliştirilmesinde faydalı olabilecek yöntemler tartışılacaktır.

Kaynakça

  • American Cancer Society. (2016). Cancer Facts & Figures. Retrieved from https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html
  • Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 100(7), 3983-3988. doi:10.1073/pnas.0530291100
  • Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., Hur, M.H., Diebel, M.E., Monville, F., Dutcher, J., Brown, M., Viens, P., Xerri, L., Bertucci, F., Stassi, G., Dontu, G., Birnbaum, D.,. Wicha, M. S. (2009). Breast Cancer Cell Lines Contain Functional Cancer Stem Cells with Metastatic Capacity and a Distinct Molecular Signature. Cancer Res, 69(4), 1302.
  • Croker, A. K., Goodale, D., Chu, J., Postenka, C., Hedley, B. D., Hess, D. A., & Allan, A. L. (2009). High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med, 13(8b), 2236-2252. doi:10.1111/j.1582-4934.2008.00455.x
  • Fillmore, C. M., & Kuperwasser, C. (2008). Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res, 10(2), R25-R25. doi:10.1186/bcr1982
  • McCubrey, J. A., Davis, N. M., Abrams, S. L., Montalto, G., Cervello, M., Libra, M., Nicoletti, F., D'Assoro, A.B., Cocco, L., Martelli, A.M., Steelman, L. S. (2014). Targeting breast cancer initiating cells: advances in breast cancer research and therapy. Adv Biol Regul, 56, 81-107. doi:10.1016/j.jbior.2014.05.003
  • Wang, R., Lv, Q., Meng, W., Tan, Q., Zhang, S., Mo, X., & Yang, X. (2014). Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors. J Thorac Dis, 6(6), 829-837. doi:10.3978/j.issn.2072-1439.2014.03.38
  • Takebe, N., Warren, R. Q., & Ivy, S. P. (2011). Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res, 13(3), 211. doi:10.1186/bcr2876
  • Yu, Z., Pestell, T. G., Lisanti, M. P., & Pestell, R. G. (2012). Cancer stem cells. Int J Biochem Cell Biol, 44(12), 2144-2151. doi:10.1016/j.biocel.2012.08.022
  • Dragu, D. L., Necula, L. G., Bleotu, C., Diaconu, C. C., & Chivu-Economescu, M. (2015). Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells, 7(9), 1185-1201. doi:10.4252/wjsc.v7.i9.1185
  • Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843-850.
  • Iqbal, W., Alkarim, S., AlHejin, A., Mukhtar, H., & Saini, K. S. (2016). Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget, 7(46), 76337-76353. doi:10.18632/oncotarget.10942
  • Espinoza, I., Pochampally, R., Xing, F., Watabe, K., & Miele, L. (2013). Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. OncoTargets & Therapy, 6.
  • Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6(6), R605. doi:10.1186/bcr920
  • Pannuti, A., Foreman, K., Rizzo, P., Osipo, C., Golde, T., Osborne, B., & Miele, L. (2010). Targeting Notch to target cancer stem cells. Clin Cancer Res, 16(12), 3141-3152. doi:10.1158/1078-0432.CCR-09-2823
  • Bray, S. J. (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol, 7(9), 678-689. doi:10.1038/nrm2009
  • Yang, F., Xu, J., Tang, L., & Guan, X. (2017). Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci, 74(6), 951-966. doi:10.1007/s00018-016-2334-7
  • Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132-5137. doi:10.1038/onc.2008.227
  • Harrison, H., Simões, B. M., Rogerson, L., Howell, S. J., Landberg, G., & Clarke, R. B. (2013). Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling. Breast Cancer Research, 15(2), R21. doi:10.1186/bcr3396
  • Liu, J., Shen, J. X., Wen, X. F., Guo, Y. X., & Zhang, G. J. (2016). Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit Rev Oncol Hematol, 104, 21-29. doi:10.1016/j.critrevonc.2016.05.010
  • Atapattu, L., Saha, N., Chheang, C., Eissman, M. F., Xu, K., Vail, M. E., Hii, L., Llerena, C., Liu, Z., Horvay, K., Abud, H.E., Kusebauch, U., Moritz, R.L., Ding, B.S., Cao, Z., Rafii, S., Ernst, M., Scott, A.M., Nikolov, D.B., Lackmann, M., Janes, P. W. (2016). An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth. J Exp Med, 213(9), 1741-1757. doi:10.1084/jem.2015109
  • Al-Hussaini, H., Subramanyam, D., Reedijk, M., & Sridhar, S. S. (2011). Notch signaling pathway as a therapeutic target in breast cancer. Mol Cancer Ther, 10(1), 9-15. doi:10.1158/1535-7163.MCT-10-0677
  • Andersson, E. R., & Lendahl, U. (2014). Therapeutic modulation of Notch signalling--are we there yet? Nat Rev Drug Discov, 13(5), 357-378. doi:10.1038/nrd4252
  • Takebe, N., Miele, L., Harris, P. J., Jeong, W., Bando, H., Kahn, M., Yang, S. X., Ivy, S. P. (2015). Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol, 12(8), 445-464. doi:10.1038/nrclinonc.2015.61
  • Zhang, J., Kuang, Y., Wang, Y., Xu, Q., & Ren, Q. (2017). Notch-4 silencing inhibits prostate cancer growth and EMT via the NF-κB pathway. Apoptosis, 22(6), 877-884. doi:10.1007/s10495-017-1368-0
  • Harrison, H., Farnie, G., Howell, S. J., Rock, R. E., Stylianou, S., Brennan, K. R., Brundred, N.J., Clarke, R. B. (2010). Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res, 70(2), 709-718. doi:10.1158/0008-5472.CAN-09-1681
  • Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., & Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol, 277(2), 443-456. doi:10.1016/j.ydbio.2004.07.044
  • Andrieu, G., Tran, A. H., Strissel, K. J., & Denis, G. V. (2016). BRD4 Regulates Breast Cancer Dissemination through Jagged1/Notch1 Signaling. Cancer Res, 76(22), 6555-6567. doi:10.1158/0008-5472.can-16-0559
  • Li, Y., Burns, J. A., Cheney, C. A., Zhang, N., Vitelli, S., Wang, F., Bett, A., Chastain, M., Audoly, L.P., Zhang, Z.-Q. (2010). Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies. Biologics : Targets & Therapy, 4, 163-171.
  • Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer, 9(4), 265-273.
  • Sethi, N., Dai, X., Winter, C. G., & Kang, Y. (2011). Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell, 19(2), 192-205. doi:10.1016/j.ccr.2010.12.022
  • Kwon, C., Cheng, P., King, I. N., Andersen, P., Shenje, L., Nigam, V., & Srivastava, D. (2011). Notch Post-Translationally Regulates β-Catenin Protein in Stem and Progenitor Cells. Nature cell biology, 13(10), 1244-1251. doi:10.1038/ncb2313
  • Won, H. Y., Lee, J. Y., Shin, D. H., Park, J. H., Nam, J. S., Kim, H. C., & Kong, G. (2012). Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. Faseb j, 26(12), 5002-5013. doi:10.1096/fj.12-209247
  • Steg, A. D., Burke, M. R., Amm, H. M., Katre, A. A., Dobbin, Z. C., Jeong, D. H., & Landen, C. N. (2014). Proteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer. Oncotarget, 5(16), 7065-7080.
  • Kondratyev, M., Kreso, A., Hallett, R. M., Girgis-Gabardo, A., Barcelon, M. E., Ilieva, D., Ilieva, D., Ware, C., Majumder, P.K., Hassell, J. A. (2012). Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene, 31(1), 93-103. doi:http://www.nature.com/onc/journal/v31/n1/suppinfo/onc2011212s1.html
  • Li, S., & Li, Q. (2014). Cancer stem cells and tumor metastasis (Review). Int J Oncol, 44(6), 1806-1812. doi:10.3892/ijo.2014.2362
  • Zhang, P., He, D., Chen, Z., Pan, Q., Du, F., Zang, X., Wang, Y., Tang, C., Li, H., Lu, H., Yao, X., Jin, J. Ma, X. (2016). Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol, 118, 18-30. doi:10.1016/j.bcp.2016.08.008
  • Collignon, J., Lousberg, L., Schroeder, H., & Jerusalem, G. (2016). Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer : Targets and Therapy, 8, 93-107. doi:10.2147/BCTT.S69488
  • Guestini, F., McNamara, K. M., Ishida, T., & Sasano, H. (2016). Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification. Expert Opin Ther Targets, 20(6), 705-720. doi:10.1517/14728222.2016.1125469
  • Pant, S., Jones, S. F., Kurkjian, C. D., Infante, J. R., Moore, K. N., Burris, H. A., McMeekin, D.S., Benhadji, K.A., Patel, B.K., Frenzel, M.J., Kursar, J.D., Zamek-Gliszczynski, M.J., Yuen, E.S., Chan, E.M., Bendell, J. C. (2016). A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer, 56, 1-9. doi:10.1016/j.ejca.2015.11.021
  • Locatelli, M. A., Aftimos, P., Dees, E. C., LoRusso, P. M., Pegram, M. D., Awada, A., Huang, B., Cesari, R., Jiang, Y., Shaik, M.N., Kern, K.A., Curigliano, G. (2017). Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triple-negative breast cancer. Oncotarget, 8(2), 2320-2328. doi:10.18632/oncotarget.13727
  • Nickoloff, B. J., Osborne, B. A., & Miele, L. (2003). Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene, 22(42), 6598-6608. doi:10.1038/sj.onc.1206758
  • Shih Ie, M., & Wang, T. L. (2007). Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res, 67(5), 1879-1882. doi:10.1158/0008-5472.CAN-06-3958
  • Wu, Y., Cain-Hom, C., Choy, L., Hagenbeek, T. J., de Leon, G. P., Chen, Y., Finkle, D., Venook, R., u, X., Fidgway, J., Schahin-Reed, D., Dow, G.J., Shelton, A., Stawicki, S., Watts, R.J., Zhang, J., Choy, R., Howard, P., Kadyk, L., Yan, M., Zha, J., Callahan, C. A., Hymowitz, S. G., Siebel, C. W. (2010). Therapeutic antibody targeting of individual Notch receptors. Nature, 464(7291), 1052-1057. doi:http://www.nature.com/nature/journal/v464/n7291/suppinfo/nature08878_S1.html
  • Sharma, A., Paranjape, A. N., Rangarajan, A., & Dighe, R. R. (2012). A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther, 11(1), 77-86. doi:10.1158/1535-7163.mct-11-0508
  • Ridgway, J., Zhang, G., Wu, Y., Stawicki, S., Liang, W.-C., Chanthery, Y., Kowalski, J., Watts, R.J., Callahan, C., Kasman, I., Singh, M., Chien, M., Tan, C., Hongo, J.S., de Sauvage, F., Plowman, G., Yan, M. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444(7122), 1083-1087. doi:http://www.nature.com/nature/journal/v444/n7122/suppinfo/nature05313_S1.html
  • Chiorean, E. G., LoRusso, P., Strother, R. M., Diamond, J. R., Younger, A., Messersmith, W. A., Adriaens, L., Liu, L., Kao, R.J., DiCioccio, A.T., Kostic, A., Leek, R., Harris, A., Jimeno, A. (2015). A Phase I First-in-Human Study of Enoticumab (REGN421), a Fully Human Delta-like Ligand 4 (Dll4) Monoclonal Antibody in Patients with Advanced Solid Tumors. Clin Cancer Res, 21(12), 2695-2703. doi:10.1158/1078-0432.ccr-14-2797
  • Xu, Z., Wang, Z., Jia, X., Wang, L., Chen, Z., Wang, S., . . . Wu, M. (2016). MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumor growth. Cancer Lett, 372(1), 118-127. doi:10.1016/j.canlet.2015.12.025
  • Purow, B. (2012). Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol, 727, 305-319. doi:10.1007/978-1-4614-0899-4_23
  • Smalley, M. J., Reis-Filho, J. S., & Ashworth, A. (2008). BRCA1 and stem cells: tumour typecasting. Nat Cell Biol, 10(4), 377-379.
  • Buckley, N. E., Nic An tSaoir, C. B., Blayney, J. K., Oram, L. C., Crawford, N. T., D'Costa, Z. C., Quinn, J.E., Kennedy, R.D., Harkin, D.P., Mullan, P. B. (2013). BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers. Nucleic Acids Res, 41(18), 8601-8614. doi:10.1093/nar/gkt626
  • Chang, S., & Sharan, S. K. (2012). BRCA1 and MicroRNAs: Emerging Networks and Potential Therapeutic Targets. Molecules and Cells, 34(5), 425-432. doi:10.1007/s10059-012-0118-y
  • Moskwa, P., Buffa, F. M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R. J., Beech, J., Kulshrestha, R., Abdelmohsen, K., Weinstock, D.M., Gorospe, M., Harris, A.L., Helleday, T., Chowdhury, D. (2011). miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell, 41(2), 210-220. doi:10.1016/j.molcel.2010.12.005
  • Wang, Z., Li, Y., Kong, D., Ahmad, A., Banerjee, S., & Sarkar, F. H. (2010). Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett, 292(2), 141-148. doi:10.1016/j.canlet.2009.11.012
  • Brabletz, S., Bajdak, K., Meidhof, S., Burk, U., Niedermann, G., Firat, E., Wellner, U., Dimmler, A., Faller, G., Schubert, J., Brabletz, T. (2011). The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. Embo j, 30(4), 770-782. doi:10.1038/emboj.2010.349
  • Li, X.-j., Ji, M.-h., Zhong, S.-l., Zha, Q.-b., Xu, J.-j., Zhao, J.-h., & Tang, J.-h. (2012). MicroRNA-34a Modulates Chemosensitivity of Breast Cancer Cells to Adriamycin by Targeting Notch1. Archives of Medical Research, 43(7), 514-521. doi:http://dx.doi.org/10.1016/j.arcmed.2012.09.007
  • Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov, 9(10), 775-789. doi:10.1038/nrd3179
  • Suman, S., Das, T. P., & Damodaran, C. (2013). Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer, 109(10), 2587-2596. doi:10.1038/bjc.2013.642
  • Pal, D., Kolluru, V., Chandrasekaran, B., Baby, B. V., Aman, M., Suman, S., Sirimulla, S., Sanders, M.A., Alatassi, H., Ankem, M.K., Damodaran, C. (2017). Targeting aberrant expression of Notch-1 in ALDH+ cancer stem cells in breast cancer. Mol Carcinog, 56(3), 1127-1136. doi:10.1002/mc.22579
  • So, J. Y., Wahler, J., Das Gupta, S., Salerno, D. M., Maehr, H., Uskokovic, M., & Suh, N. (2015). HES1-mediated inhibition of Notch1 signaling by a Gemini vitamin D analog leads to decreased CD44(+)/CD24(-/low) tumor-initiating subpopulation in basal-like breast cancer. J Steroid Biochem Mol Biol, 148, 111-121. doi:10.1016/j.jsbmb.2014.12.013
  • Shan, N. L., Wahler, J., Lee, H. J., Bak, M. J., Gupta, S. D., Maehr, H., & Suh, N. (2016). Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer. J Steroid Biochem Mol Biol. doi:10.1016/j.jsbmb.2016.12.001
  • Shim, Y., & Song, J. M. (2015). Quantum dot nanoprobe-based high-content monitoring of notch pathway inhibition of breast cancer stem cell by capsaicin. Mol Cell Probes, 29(6), 376-381. doi:10.1016/j.mcp.2015.09.004
  • Sun, D. W., Zhang, H. D., Mao, L., Mao, C. F., Chen, W., Cui, M., Ma, R., Cao, H.X., Jing, C.W., Wang, Z., Wu, J.Z., Tang, J. H. (2015). Luteolin Inhibits Breast Cancer Development and Progression In Vitro and In Vivo by Suppressing Notch Signaling and Regulating MiRNAs. Cell Physiol Biochem, 37(5), 1693-1711. doi:10.1159/000438535
  • Moselhy, J., Srinivasan, S., Ankem, M. K., & Damodaran, C. (2015). Natural Products That Target Cancer Stem Cells. Anticancer Res, 35(11), 5773-5788.
  • Brannon-Peppas, L., & Blanchette, J. O. (2012). Nanoparticle and targeted systems for cancer therapy. Advanced drug delivery reviews, 64, 206-212.
  • Hartmann, L. C., Keeney, G. L., Lingle, W. L., Christianson, T. J., Varghese, B., Hillman, D., Oberg, A. L., Low, P. S. (2007). Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer, 121(5), 938-942.
  • Wittig, R., Rosenholm, J. M., von Haartman, E., Hemming, J., Genze, F., Bergman, L., Simmet, T., Lindén, M., Sahlgren, C. (2014). Active targeting of mesoporous silica drug carriers enhances gamma-secretase inhibitor efficacy in an in vivo model for breast cancer. Nanomedicine (Lond), 9(7), 971-987. doi:10.2217/nnm.13.62
  • Mamaeva, V., Rosenholm, J. M., Bate-Eya, L. T., Bergman, L., Peuhu, E., Duchanoy, A., Fortelius, L.E., Landor, S., Toivola, D.M., Lindén, M. (2011). Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Molecular Therapy, 19(8), 1538-1546.
  • Mamaeva, V., Niemi, R., Beck, M., Ozliseli, E., Desai, D., Landor, S., Gronroos, T., Kroqvist, P., Pettersen, I.K.N., McCormack, E., Rosenholm, J.M., Linden, M., Sahlgren, C. (2016). Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying gamma-secretase Inhibitors. Mol Ther, 24(5), 926-936. doi:10.1038/mt.2016.42
  • Yang, H., Li, Y., Li, T., Xu, M., Chen, Y., Wu, C., Dang, X., Liu, Y. (2014). Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci Rep, 4, 7072. doi:10.1038/srep07072

Recent Applications in Inhibition of Notch Signalling Pathway on Breast Cancer Stem Cell

Yıl 2018, Cilt: 30 Sayı: 1, 94 - 104, 31.03.2018
https://doi.org/10.7240/marufbd.336015

Öz

In the world, breast cancer is at the top of the list in deaths due to cancer in women. Although treatments such as chemotherapy, radiotherapy, hormonal therapy are used for the treatment of breast cancer, metastasis and recurrence are frequent cases. The most striking factor in the inability to effectively breast cancer treatment is cancer stem cells, which form a small population of tumor tissue. Studies on the elimination of breast cancer stem cells involve approaches that may be effective on developmental signaling pathways that play a critical role in the forming of stem cell characteristics. One of the most important developmental signaling pathways, the Notch signaling pathway is highly effective on apoptosis, proliferation, angiogenesis and differentiation mechanisms in breast cancer stem cells. Recent studies indicate that inhibition of the Notch signaling pathway, which plays a critical role in the characterization of cancer stem cells, is important for effective treatment approaches. In this review, different approaches will be discussed for inhibition of Notch signalling pathway in breast cancer treatment and methods that may be useful for efficient cancer treatment.

Kaynakça

  • American Cancer Society. (2016). Cancer Facts & Figures. Retrieved from https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html
  • Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 100(7), 3983-3988. doi:10.1073/pnas.0530291100
  • Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., Hur, M.H., Diebel, M.E., Monville, F., Dutcher, J., Brown, M., Viens, P., Xerri, L., Bertucci, F., Stassi, G., Dontu, G., Birnbaum, D.,. Wicha, M. S. (2009). Breast Cancer Cell Lines Contain Functional Cancer Stem Cells with Metastatic Capacity and a Distinct Molecular Signature. Cancer Res, 69(4), 1302.
  • Croker, A. K., Goodale, D., Chu, J., Postenka, C., Hedley, B. D., Hess, D. A., & Allan, A. L. (2009). High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med, 13(8b), 2236-2252. doi:10.1111/j.1582-4934.2008.00455.x
  • Fillmore, C. M., & Kuperwasser, C. (2008). Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res, 10(2), R25-R25. doi:10.1186/bcr1982
  • McCubrey, J. A., Davis, N. M., Abrams, S. L., Montalto, G., Cervello, M., Libra, M., Nicoletti, F., D'Assoro, A.B., Cocco, L., Martelli, A.M., Steelman, L. S. (2014). Targeting breast cancer initiating cells: advances in breast cancer research and therapy. Adv Biol Regul, 56, 81-107. doi:10.1016/j.jbior.2014.05.003
  • Wang, R., Lv, Q., Meng, W., Tan, Q., Zhang, S., Mo, X., & Yang, X. (2014). Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors. J Thorac Dis, 6(6), 829-837. doi:10.3978/j.issn.2072-1439.2014.03.38
  • Takebe, N., Warren, R. Q., & Ivy, S. P. (2011). Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res, 13(3), 211. doi:10.1186/bcr2876
  • Yu, Z., Pestell, T. G., Lisanti, M. P., & Pestell, R. G. (2012). Cancer stem cells. Int J Biochem Cell Biol, 44(12), 2144-2151. doi:10.1016/j.biocel.2012.08.022
  • Dragu, D. L., Necula, L. G., Bleotu, C., Diaconu, C. C., & Chivu-Economescu, M. (2015). Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells, 7(9), 1185-1201. doi:10.4252/wjsc.v7.i9.1185
  • Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843-850.
  • Iqbal, W., Alkarim, S., AlHejin, A., Mukhtar, H., & Saini, K. S. (2016). Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget, 7(46), 76337-76353. doi:10.18632/oncotarget.10942
  • Espinoza, I., Pochampally, R., Xing, F., Watabe, K., & Miele, L. (2013). Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. OncoTargets & Therapy, 6.
  • Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6(6), R605. doi:10.1186/bcr920
  • Pannuti, A., Foreman, K., Rizzo, P., Osipo, C., Golde, T., Osborne, B., & Miele, L. (2010). Targeting Notch to target cancer stem cells. Clin Cancer Res, 16(12), 3141-3152. doi:10.1158/1078-0432.CCR-09-2823
  • Bray, S. J. (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol, 7(9), 678-689. doi:10.1038/nrm2009
  • Yang, F., Xu, J., Tang, L., & Guan, X. (2017). Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci, 74(6), 951-966. doi:10.1007/s00018-016-2334-7
  • Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132-5137. doi:10.1038/onc.2008.227
  • Harrison, H., Simões, B. M., Rogerson, L., Howell, S. J., Landberg, G., & Clarke, R. B. (2013). Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling. Breast Cancer Research, 15(2), R21. doi:10.1186/bcr3396
  • Liu, J., Shen, J. X., Wen, X. F., Guo, Y. X., & Zhang, G. J. (2016). Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit Rev Oncol Hematol, 104, 21-29. doi:10.1016/j.critrevonc.2016.05.010
  • Atapattu, L., Saha, N., Chheang, C., Eissman, M. F., Xu, K., Vail, M. E., Hii, L., Llerena, C., Liu, Z., Horvay, K., Abud, H.E., Kusebauch, U., Moritz, R.L., Ding, B.S., Cao, Z., Rafii, S., Ernst, M., Scott, A.M., Nikolov, D.B., Lackmann, M., Janes, P. W. (2016). An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth. J Exp Med, 213(9), 1741-1757. doi:10.1084/jem.2015109
  • Al-Hussaini, H., Subramanyam, D., Reedijk, M., & Sridhar, S. S. (2011). Notch signaling pathway as a therapeutic target in breast cancer. Mol Cancer Ther, 10(1), 9-15. doi:10.1158/1535-7163.MCT-10-0677
  • Andersson, E. R., & Lendahl, U. (2014). Therapeutic modulation of Notch signalling--are we there yet? Nat Rev Drug Discov, 13(5), 357-378. doi:10.1038/nrd4252
  • Takebe, N., Miele, L., Harris, P. J., Jeong, W., Bando, H., Kahn, M., Yang, S. X., Ivy, S. P. (2015). Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol, 12(8), 445-464. doi:10.1038/nrclinonc.2015.61
  • Zhang, J., Kuang, Y., Wang, Y., Xu, Q., & Ren, Q. (2017). Notch-4 silencing inhibits prostate cancer growth and EMT via the NF-κB pathway. Apoptosis, 22(6), 877-884. doi:10.1007/s10495-017-1368-0
  • Harrison, H., Farnie, G., Howell, S. J., Rock, R. E., Stylianou, S., Brennan, K. R., Brundred, N.J., Clarke, R. B. (2010). Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res, 70(2), 709-718. doi:10.1158/0008-5472.CAN-09-1681
  • Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., & Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol, 277(2), 443-456. doi:10.1016/j.ydbio.2004.07.044
  • Andrieu, G., Tran, A. H., Strissel, K. J., & Denis, G. V. (2016). BRD4 Regulates Breast Cancer Dissemination through Jagged1/Notch1 Signaling. Cancer Res, 76(22), 6555-6567. doi:10.1158/0008-5472.can-16-0559
  • Li, Y., Burns, J. A., Cheney, C. A., Zhang, N., Vitelli, S., Wang, F., Bett, A., Chastain, M., Audoly, L.P., Zhang, Z.-Q. (2010). Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies. Biologics : Targets & Therapy, 4, 163-171.
  • Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer, 9(4), 265-273.
  • Sethi, N., Dai, X., Winter, C. G., & Kang, Y. (2011). Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell, 19(2), 192-205. doi:10.1016/j.ccr.2010.12.022
  • Kwon, C., Cheng, P., King, I. N., Andersen, P., Shenje, L., Nigam, V., & Srivastava, D. (2011). Notch Post-Translationally Regulates β-Catenin Protein in Stem and Progenitor Cells. Nature cell biology, 13(10), 1244-1251. doi:10.1038/ncb2313
  • Won, H. Y., Lee, J. Y., Shin, D. H., Park, J. H., Nam, J. S., Kim, H. C., & Kong, G. (2012). Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. Faseb j, 26(12), 5002-5013. doi:10.1096/fj.12-209247
  • Steg, A. D., Burke, M. R., Amm, H. M., Katre, A. A., Dobbin, Z. C., Jeong, D. H., & Landen, C. N. (2014). Proteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer. Oncotarget, 5(16), 7065-7080.
  • Kondratyev, M., Kreso, A., Hallett, R. M., Girgis-Gabardo, A., Barcelon, M. E., Ilieva, D., Ilieva, D., Ware, C., Majumder, P.K., Hassell, J. A. (2012). Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene, 31(1), 93-103. doi:http://www.nature.com/onc/journal/v31/n1/suppinfo/onc2011212s1.html
  • Li, S., & Li, Q. (2014). Cancer stem cells and tumor metastasis (Review). Int J Oncol, 44(6), 1806-1812. doi:10.3892/ijo.2014.2362
  • Zhang, P., He, D., Chen, Z., Pan, Q., Du, F., Zang, X., Wang, Y., Tang, C., Li, H., Lu, H., Yao, X., Jin, J. Ma, X. (2016). Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol, 118, 18-30. doi:10.1016/j.bcp.2016.08.008
  • Collignon, J., Lousberg, L., Schroeder, H., & Jerusalem, G. (2016). Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer : Targets and Therapy, 8, 93-107. doi:10.2147/BCTT.S69488
  • Guestini, F., McNamara, K. M., Ishida, T., & Sasano, H. (2016). Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification. Expert Opin Ther Targets, 20(6), 705-720. doi:10.1517/14728222.2016.1125469
  • Pant, S., Jones, S. F., Kurkjian, C. D., Infante, J. R., Moore, K. N., Burris, H. A., McMeekin, D.S., Benhadji, K.A., Patel, B.K., Frenzel, M.J., Kursar, J.D., Zamek-Gliszczynski, M.J., Yuen, E.S., Chan, E.M., Bendell, J. C. (2016). A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer, 56, 1-9. doi:10.1016/j.ejca.2015.11.021
  • Locatelli, M. A., Aftimos, P., Dees, E. C., LoRusso, P. M., Pegram, M. D., Awada, A., Huang, B., Cesari, R., Jiang, Y., Shaik, M.N., Kern, K.A., Curigliano, G. (2017). Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triple-negative breast cancer. Oncotarget, 8(2), 2320-2328. doi:10.18632/oncotarget.13727
  • Nickoloff, B. J., Osborne, B. A., & Miele, L. (2003). Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene, 22(42), 6598-6608. doi:10.1038/sj.onc.1206758
  • Shih Ie, M., & Wang, T. L. (2007). Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res, 67(5), 1879-1882. doi:10.1158/0008-5472.CAN-06-3958
  • Wu, Y., Cain-Hom, C., Choy, L., Hagenbeek, T. J., de Leon, G. P., Chen, Y., Finkle, D., Venook, R., u, X., Fidgway, J., Schahin-Reed, D., Dow, G.J., Shelton, A., Stawicki, S., Watts, R.J., Zhang, J., Choy, R., Howard, P., Kadyk, L., Yan, M., Zha, J., Callahan, C. A., Hymowitz, S. G., Siebel, C. W. (2010). Therapeutic antibody targeting of individual Notch receptors. Nature, 464(7291), 1052-1057. doi:http://www.nature.com/nature/journal/v464/n7291/suppinfo/nature08878_S1.html
  • Sharma, A., Paranjape, A. N., Rangarajan, A., & Dighe, R. R. (2012). A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther, 11(1), 77-86. doi:10.1158/1535-7163.mct-11-0508
  • Ridgway, J., Zhang, G., Wu, Y., Stawicki, S., Liang, W.-C., Chanthery, Y., Kowalski, J., Watts, R.J., Callahan, C., Kasman, I., Singh, M., Chien, M., Tan, C., Hongo, J.S., de Sauvage, F., Plowman, G., Yan, M. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444(7122), 1083-1087. doi:http://www.nature.com/nature/journal/v444/n7122/suppinfo/nature05313_S1.html
  • Chiorean, E. G., LoRusso, P., Strother, R. M., Diamond, J. R., Younger, A., Messersmith, W. A., Adriaens, L., Liu, L., Kao, R.J., DiCioccio, A.T., Kostic, A., Leek, R., Harris, A., Jimeno, A. (2015). A Phase I First-in-Human Study of Enoticumab (REGN421), a Fully Human Delta-like Ligand 4 (Dll4) Monoclonal Antibody in Patients with Advanced Solid Tumors. Clin Cancer Res, 21(12), 2695-2703. doi:10.1158/1078-0432.ccr-14-2797
  • Xu, Z., Wang, Z., Jia, X., Wang, L., Chen, Z., Wang, S., . . . Wu, M. (2016). MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumor growth. Cancer Lett, 372(1), 118-127. doi:10.1016/j.canlet.2015.12.025
  • Purow, B. (2012). Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol, 727, 305-319. doi:10.1007/978-1-4614-0899-4_23
  • Smalley, M. J., Reis-Filho, J. S., & Ashworth, A. (2008). BRCA1 and stem cells: tumour typecasting. Nat Cell Biol, 10(4), 377-379.
  • Buckley, N. E., Nic An tSaoir, C. B., Blayney, J. K., Oram, L. C., Crawford, N. T., D'Costa, Z. C., Quinn, J.E., Kennedy, R.D., Harkin, D.P., Mullan, P. B. (2013). BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers. Nucleic Acids Res, 41(18), 8601-8614. doi:10.1093/nar/gkt626
  • Chang, S., & Sharan, S. K. (2012). BRCA1 and MicroRNAs: Emerging Networks and Potential Therapeutic Targets. Molecules and Cells, 34(5), 425-432. doi:10.1007/s10059-012-0118-y
  • Moskwa, P., Buffa, F. M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R. J., Beech, J., Kulshrestha, R., Abdelmohsen, K., Weinstock, D.M., Gorospe, M., Harris, A.L., Helleday, T., Chowdhury, D. (2011). miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell, 41(2), 210-220. doi:10.1016/j.molcel.2010.12.005
  • Wang, Z., Li, Y., Kong, D., Ahmad, A., Banerjee, S., & Sarkar, F. H. (2010). Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett, 292(2), 141-148. doi:10.1016/j.canlet.2009.11.012
  • Brabletz, S., Bajdak, K., Meidhof, S., Burk, U., Niedermann, G., Firat, E., Wellner, U., Dimmler, A., Faller, G., Schubert, J., Brabletz, T. (2011). The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. Embo j, 30(4), 770-782. doi:10.1038/emboj.2010.349
  • Li, X.-j., Ji, M.-h., Zhong, S.-l., Zha, Q.-b., Xu, J.-j., Zhao, J.-h., & Tang, J.-h. (2012). MicroRNA-34a Modulates Chemosensitivity of Breast Cancer Cells to Adriamycin by Targeting Notch1. Archives of Medical Research, 43(7), 514-521. doi:http://dx.doi.org/10.1016/j.arcmed.2012.09.007
  • Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov, 9(10), 775-789. doi:10.1038/nrd3179
  • Suman, S., Das, T. P., & Damodaran, C. (2013). Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer, 109(10), 2587-2596. doi:10.1038/bjc.2013.642
  • Pal, D., Kolluru, V., Chandrasekaran, B., Baby, B. V., Aman, M., Suman, S., Sirimulla, S., Sanders, M.A., Alatassi, H., Ankem, M.K., Damodaran, C. (2017). Targeting aberrant expression of Notch-1 in ALDH+ cancer stem cells in breast cancer. Mol Carcinog, 56(3), 1127-1136. doi:10.1002/mc.22579
  • So, J. Y., Wahler, J., Das Gupta, S., Salerno, D. M., Maehr, H., Uskokovic, M., & Suh, N. (2015). HES1-mediated inhibition of Notch1 signaling by a Gemini vitamin D analog leads to decreased CD44(+)/CD24(-/low) tumor-initiating subpopulation in basal-like breast cancer. J Steroid Biochem Mol Biol, 148, 111-121. doi:10.1016/j.jsbmb.2014.12.013
  • Shan, N. L., Wahler, J., Lee, H. J., Bak, M. J., Gupta, S. D., Maehr, H., & Suh, N. (2016). Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer. J Steroid Biochem Mol Biol. doi:10.1016/j.jsbmb.2016.12.001
  • Shim, Y., & Song, J. M. (2015). Quantum dot nanoprobe-based high-content monitoring of notch pathway inhibition of breast cancer stem cell by capsaicin. Mol Cell Probes, 29(6), 376-381. doi:10.1016/j.mcp.2015.09.004
  • Sun, D. W., Zhang, H. D., Mao, L., Mao, C. F., Chen, W., Cui, M., Ma, R., Cao, H.X., Jing, C.W., Wang, Z., Wu, J.Z., Tang, J. H. (2015). Luteolin Inhibits Breast Cancer Development and Progression In Vitro and In Vivo by Suppressing Notch Signaling and Regulating MiRNAs. Cell Physiol Biochem, 37(5), 1693-1711. doi:10.1159/000438535
  • Moselhy, J., Srinivasan, S., Ankem, M. K., & Damodaran, C. (2015). Natural Products That Target Cancer Stem Cells. Anticancer Res, 35(11), 5773-5788.
  • Brannon-Peppas, L., & Blanchette, J. O. (2012). Nanoparticle and targeted systems for cancer therapy. Advanced drug delivery reviews, 64, 206-212.
  • Hartmann, L. C., Keeney, G. L., Lingle, W. L., Christianson, T. J., Varghese, B., Hillman, D., Oberg, A. L., Low, P. S. (2007). Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer, 121(5), 938-942.
  • Wittig, R., Rosenholm, J. M., von Haartman, E., Hemming, J., Genze, F., Bergman, L., Simmet, T., Lindén, M., Sahlgren, C. (2014). Active targeting of mesoporous silica drug carriers enhances gamma-secretase inhibitor efficacy in an in vivo model for breast cancer. Nanomedicine (Lond), 9(7), 971-987. doi:10.2217/nnm.13.62
  • Mamaeva, V., Rosenholm, J. M., Bate-Eya, L. T., Bergman, L., Peuhu, E., Duchanoy, A., Fortelius, L.E., Landor, S., Toivola, D.M., Lindén, M. (2011). Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Molecular Therapy, 19(8), 1538-1546.
  • Mamaeva, V., Niemi, R., Beck, M., Ozliseli, E., Desai, D., Landor, S., Gronroos, T., Kroqvist, P., Pettersen, I.K.N., McCormack, E., Rosenholm, J.M., Linden, M., Sahlgren, C. (2016). Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying gamma-secretase Inhibitors. Mol Ther, 24(5), 926-936. doi:10.1038/mt.2016.42
  • Yang, H., Li, Y., Li, T., Xu, M., Chen, Y., Wu, C., Dang, X., Liu, Y. (2014). Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci Rep, 4, 7072. doi:10.1038/srep07072
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme
Yazarlar

Selcen Arı

Yayımlanma Tarihi 31 Mart 2018
Kabul Tarihi 30 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 1

Kaynak Göster

APA Arı, S. (2018). Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar. Marmara Fen Bilimleri Dergisi, 30(1), 94-104. https://doi.org/10.7240/marufbd.336015
AMA Arı S. Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar. MFBD. Mart 2018;30(1):94-104. doi:10.7240/marufbd.336015
Chicago Arı, Selcen. “Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar”. Marmara Fen Bilimleri Dergisi 30, sy. 1 (Mart 2018): 94-104. https://doi.org/10.7240/marufbd.336015.
EndNote Arı S (01 Mart 2018) Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar. Marmara Fen Bilimleri Dergisi 30 1 94–104.
IEEE S. Arı, “Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar”, MFBD, c. 30, sy. 1, ss. 94–104, 2018, doi: 10.7240/marufbd.336015.
ISNAD Arı, Selcen. “Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar”. Marmara Fen Bilimleri Dergisi 30/1 (Mart 2018), 94-104. https://doi.org/10.7240/marufbd.336015.
JAMA Arı S. Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar. MFBD. 2018;30:94–104.
MLA Arı, Selcen. “Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar”. Marmara Fen Bilimleri Dergisi, c. 30, sy. 1, 2018, ss. 94-104, doi:10.7240/marufbd.336015.
Vancouver Arı S. Meme Kanser Kök Hücrelerinde Notch Sinyal Yolağının İnhibisyonunda Güncel Yaklaşımlar. MFBD. 2018;30(1):94-104.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr