Araştırma Makalesi
BibTex RIS Kaynak Göster

Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi ve Karakterizasyonu

Yıl 2018, Cilt: 30 Sayı: 4, 422 - 428, 31.12.2018
https://doi.org/10.7240/marufbd.418201

Öz

Günümüzde,
üç boyutlu köpük benzeri grafen yapıları, benzersiz özellikleri nedeniyle yeni
nesil malzemeler olarak büyük ilgi görmektedir. Özellikle bu malzemelerin iyi
tanımlanmış birbirine bağlı yapıları nedeniyle bu malzemeler, özel uygulamalar
için metal oksit, polimergibi  başka
malzemelerle kolaylıkla birleştirilebilinmektedir. Bu çalışmada MnO2 katkılı
üç boyutlu köpük benzeri grafen yapıları. CVD yöntemi ve hidrotermal yöntem kullanılarak
üretilmiştir. Raman ve XRD sonuçları MnO2 / grafen kompozitlerin
morfolojisini göstermiştir. Ayrıca, SEM görüntüleri katkılanan MnO2 parçacıklarının
iğne benzeri bir yapıya  sahip olduğunu
ve grafen iskeleti üzerinde kümelenerek ortaya çıktığını göstermiştir. Elde
edilen bu sonuçlar,  için MnO2
/ grafen kompozitlerinin elektrokimyasal uygulamalar için elektrot olarak
potansiyel kullanımının olduğunu göstermiştir

Kaynakça

  • [1] Novaselov, K.S., Jiang, D., Schedin, F., Booth T.J., Khotkevich,V.V., Morozov, S.V., Geim, A.K. (2005). Two dimensional atomic crystals. PNAS, 102, 10451-10453[2] Allen, M.J., Tung, V.C., Kaner, R.B. (2010). Honeycomb Carbon: A Review of Graphene. Chem. Rev., 110, 132-135. [3] Gomez, De Arco L., Zhang ,Y., Schlenker, C.W., Ryu K., Thompson, M.E, Zhou, C. (2010). Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 4, 2865–2873.
  • [4] Kim, B.J., Jang, H., Lee, S.K., Hong, B.H., Ahn, J.H., Cho, J.H. (2010). High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano letters, 10 (9),3464-3466.
  • [5] Mattevi, C., Kim, H., Chhowalla, M. (2011). A Review of chemical vapor deposition of graphene on copper, Journal of Materials Chemistry, 21, 3324-3334.
  • [6] Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard A.F. (2012). High efficiency graphene solar cells by chemical doping. Nano Lett., 12, 6–11.
  • [7] Chen, Z., Ren,W., Gao, L., Li, B., Pei, S., Cheng, H.M. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 10, 424–428.
  • [8] Fang, Q., Shen, Y., Chen, B. (2015). Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review. Chemical Engineering Journal, 264, 753-771.
  • [9] Li, C. ve Shi, G. (2012). Three-dimensional graphene architectures. Nanoscale, 4, 5549.
  • [10] Mao, S., Lu, G., Chen, J. (2015). Three-dimensional graphene-based composite for energy application. Nanoscale, 7(16), 6924-6943.
  • [11] Zhang, L. ve Shi, G. (2011). Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. Journal of Physical Chemistry C, 115, 17206-17212.
  • [12] Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W., Liu, B. (2011). Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. Journal of Materials Chemistry, 21, 6494-6497.
  • [13] Yong, Y.C, Dong, Xi.C, Chan-Park, M. B., Song, H., Chen P. (2012). Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACSNano, 6(3), 2394–2400.
  • [14] Cao, X., Shi, Y., Shi, W, Lu G. , Huang, X. , Yan, Q., Zhang, Q. , Hua, Z. (2011). Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 7(22), 3163–3168.
  • [15] Pettes, M. T., Ji, H., Ruoff, R.S., Shi ,L. (2012). Thermal Transport in Three-Dimensional Foam Architectures of Few- Layer Graphene and Ultrathin Graphite. Nano Lett., 12, 2959−2964.
  • [16] Lin, H., Xu, S., Wang ,X., Mei, N. (2013). Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam. Nanotechnology, 24, 415706.
  • [17] Nguyen, D.D., Tai, N.H., Lee, S.B., Kuo,W.S. (2012). Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci.,5, 7908.
  • [18] Dong, X., Cao, Y., Wang, J., Chan-Park , M.B., Wang , L., Huang, W., Chen, P .(2012). Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Advances, 2, 4364–4369. [19] Xue, Y., Yu, D., Da,i L.,Wang, R., Li, D., Roy, A., Lu F., Chen, H., Liu, Y., Qu, J. (2013). Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Physical chemistry chemical physics,. 15, 12220-12226. [20] Yavari, F., Chen, Z., Thomas, A.V., Ren, W., Cheng, H.M., Karatkar, N. (2011). High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network. Scientific Reports, 1, 1-5.
  • [21] Lee, J.S., Ahn, H.J., Yoon, Y.C., Jang, J.H. (2012). Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Physical Chemistry Chemical Physics, 14, 7938-7943.
  • [22] Zhao Y, Meng Y, Jiang P (2014) Carbon@MnO2 core-shell nanospheres for flexible high-performance supercapacitor electrode materials. J Power Sources, 259:219–226 19.
  • [23] Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C, 112:4406–4417 20.
  • [24] Chen J, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta, 55:1–5 21.
  • [25] Park SK, Hoon SD, Park HS (2016) Electrochemical assembly of reduced graphene oxide/manganese dioxide nanocomposites into hierarchical sea urchin-like structures for supercapacitive electrodes. J Alloy Compd ,668:146–151
  • [26] Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57.
  • [27] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., 2006. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18), 187401.
  • [28] Ferrari, A. C., and Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61(20), 14095.
  • [29] Gao T., Fjellvag H., Norby P. (2009). A comparison study on Raman scattering properties of α, and β-MnO2, Analytical Chim.Act., 648,2, 235-239.
  • [30] Liu Z., Tu Z., L, Y., Yang F., Han S., Yang W., Zhang L., Wang G., Xu C., Gao J. (2012).Synthesis of three-dimensional graphene foam from petroleum asphalt by chemical vapor deposition. Mater. Lett., 122, 285-288.
Yıl 2018, Cilt: 30 Sayı: 4, 422 - 428, 31.12.2018
https://doi.org/10.7240/marufbd.418201

Öz

Kaynakça

  • [1] Novaselov, K.S., Jiang, D., Schedin, F., Booth T.J., Khotkevich,V.V., Morozov, S.V., Geim, A.K. (2005). Two dimensional atomic crystals. PNAS, 102, 10451-10453[2] Allen, M.J., Tung, V.C., Kaner, R.B. (2010). Honeycomb Carbon: A Review of Graphene. Chem. Rev., 110, 132-135. [3] Gomez, De Arco L., Zhang ,Y., Schlenker, C.W., Ryu K., Thompson, M.E, Zhou, C. (2010). Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 4, 2865–2873.
  • [4] Kim, B.J., Jang, H., Lee, S.K., Hong, B.H., Ahn, J.H., Cho, J.H. (2010). High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano letters, 10 (9),3464-3466.
  • [5] Mattevi, C., Kim, H., Chhowalla, M. (2011). A Review of chemical vapor deposition of graphene on copper, Journal of Materials Chemistry, 21, 3324-3334.
  • [6] Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard A.F. (2012). High efficiency graphene solar cells by chemical doping. Nano Lett., 12, 6–11.
  • [7] Chen, Z., Ren,W., Gao, L., Li, B., Pei, S., Cheng, H.M. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 10, 424–428.
  • [8] Fang, Q., Shen, Y., Chen, B. (2015). Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review. Chemical Engineering Journal, 264, 753-771.
  • [9] Li, C. ve Shi, G. (2012). Three-dimensional graphene architectures. Nanoscale, 4, 5549.
  • [10] Mao, S., Lu, G., Chen, J. (2015). Three-dimensional graphene-based composite for energy application. Nanoscale, 7(16), 6924-6943.
  • [11] Zhang, L. ve Shi, G. (2011). Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. Journal of Physical Chemistry C, 115, 17206-17212.
  • [12] Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W., Liu, B. (2011). Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. Journal of Materials Chemistry, 21, 6494-6497.
  • [13] Yong, Y.C, Dong, Xi.C, Chan-Park, M. B., Song, H., Chen P. (2012). Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACSNano, 6(3), 2394–2400.
  • [14] Cao, X., Shi, Y., Shi, W, Lu G. , Huang, X. , Yan, Q., Zhang, Q. , Hua, Z. (2011). Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 7(22), 3163–3168.
  • [15] Pettes, M. T., Ji, H., Ruoff, R.S., Shi ,L. (2012). Thermal Transport in Three-Dimensional Foam Architectures of Few- Layer Graphene and Ultrathin Graphite. Nano Lett., 12, 2959−2964.
  • [16] Lin, H., Xu, S., Wang ,X., Mei, N. (2013). Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam. Nanotechnology, 24, 415706.
  • [17] Nguyen, D.D., Tai, N.H., Lee, S.B., Kuo,W.S. (2012). Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci.,5, 7908.
  • [18] Dong, X., Cao, Y., Wang, J., Chan-Park , M.B., Wang , L., Huang, W., Chen, P .(2012). Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Advances, 2, 4364–4369. [19] Xue, Y., Yu, D., Da,i L.,Wang, R., Li, D., Roy, A., Lu F., Chen, H., Liu, Y., Qu, J. (2013). Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Physical chemistry chemical physics,. 15, 12220-12226. [20] Yavari, F., Chen, Z., Thomas, A.V., Ren, W., Cheng, H.M., Karatkar, N. (2011). High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network. Scientific Reports, 1, 1-5.
  • [21] Lee, J.S., Ahn, H.J., Yoon, Y.C., Jang, J.H. (2012). Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Physical Chemistry Chemical Physics, 14, 7938-7943.
  • [22] Zhao Y, Meng Y, Jiang P (2014) Carbon@MnO2 core-shell nanospheres for flexible high-performance supercapacitor electrode materials. J Power Sources, 259:219–226 19.
  • [23] Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C, 112:4406–4417 20.
  • [24] Chen J, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta, 55:1–5 21.
  • [25] Park SK, Hoon SD, Park HS (2016) Electrochemical assembly of reduced graphene oxide/manganese dioxide nanocomposites into hierarchical sea urchin-like structures for supercapacitive electrodes. J Alloy Compd ,668:146–151
  • [26] Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57.
  • [27] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., 2006. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18), 187401.
  • [28] Ferrari, A. C., and Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61(20), 14095.
  • [29] Gao T., Fjellvag H., Norby P. (2009). A comparison study on Raman scattering properties of α, and β-MnO2, Analytical Chim.Act., 648,2, 235-239.
  • [30] Liu Z., Tu Z., L, Y., Yang F., Han S., Yang W., Zhang L., Wang G., Xu C., Gao J. (2012).Synthesis of three-dimensional graphene foam from petroleum asphalt by chemical vapor deposition. Mater. Lett., 122, 285-288.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Sibel Kasap 0000-0002-3856-6937

Yayımlanma Tarihi 31 Aralık 2018
Kabul Tarihi 7 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 4

Kaynak Göster

APA Kasap, S. (2018). Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi ve Karakterizasyonu. Marmara Fen Bilimleri Dergisi, 30(4), 422-428. https://doi.org/10.7240/marufbd.418201
AMA Kasap S. Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi ve Karakterizasyonu. MFBD. Aralık 2018;30(4):422-428. doi:10.7240/marufbd.418201
Chicago Kasap, Sibel. “Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi Ve Karakterizasyonu”. Marmara Fen Bilimleri Dergisi 30, sy. 4 (Aralık 2018): 422-28. https://doi.org/10.7240/marufbd.418201.
EndNote Kasap S (01 Aralık 2018) Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi ve Karakterizasyonu. Marmara Fen Bilimleri Dergisi 30 4 422–428.
IEEE S. Kasap, “Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi ve Karakterizasyonu”, MFBD, c. 30, sy. 4, ss. 422–428, 2018, doi: 10.7240/marufbd.418201.
ISNAD Kasap, Sibel. “Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi Ve Karakterizasyonu”. Marmara Fen Bilimleri Dergisi 30/4 (Aralık 2018), 422-428. https://doi.org/10.7240/marufbd.418201.
JAMA Kasap S. Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi ve Karakterizasyonu. MFBD. 2018;30:422–428.
MLA Kasap, Sibel. “Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi Ve Karakterizasyonu”. Marmara Fen Bilimleri Dergisi, c. 30, sy. 4, 2018, ss. 422-8, doi:10.7240/marufbd.418201.
Vancouver Kasap S. Mangan Dioksit (MnO2) Katkılı Üç Boyutlu Köpüksü Yapıda Grafen Yapılarının Üretilmesi ve Karakterizasyonu. MFBD. 2018;30(4):422-8.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr