Derleme
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 11 Sayı: 1, 9 - 31, 28.03.2022
https://doi.org/10.33714/masteb.1021121

Öz

Kaynakça

  • Aakre, I., Evensen, L. T., Kjellevold, M., Dahl, L., Henjum, S., Alexander, J., Madsen, L., & Markhus, M. W. (2020). Iodine status and thyroid function in a group of seaweed consumers in norway. Nutrients, 12(11), 1–14. https://doi.org/10.3390/nu12113483
  • Abdul Khalil, H. P. S., Lai, T. K., Tye, Y. Y., Rizal, S., Chong, E. W. N., Yap, S. W., Hamzah, A. A., Nurul Fazita, M. R., & Paridah, M. T. (2018). A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polymer Letters, 12(4), 296–317. https://doi.org/10.3144/expresspolymlett.2018.27
  • Admassu, H., Gasmalla, M. A. A., Yang, R., & Zhao, W. (2018). Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. Journal of Food Science, 83(1), 6–16. https://doi.org/10.1111/1750-3841.14011
  • Agarwal, P. K., Dangariya, M., & Agarwal, P. (2021). Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Research, 58(October 2020), 102363. https://doi.org/10.1016/j.algal.2021.102363
  • Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., & Nasri, N. S. (2018). Treatment of wastewater using seaweed: A review. International Journal of Environmental Research and Public Health, 15(12). 2851. https://doi.org/10.3390/ijerph15122851
  • Aryee, A. N., Agyei, D., & Akanbi, T. O. (2018). Recovery and utilization of seaweed pigments in food processing. Current Opinion in Food Science, 19, 113–119. https://doi.org/10.1016/j.cofs.2018.03.013
  • Ashraf, M. T., Fang, C., Bochenski, T., Cybulska, I., Alassali, A., Sowunmi, A., Farzanah, R., Brudecki, G. P., Chaturvedi, T., Haris, S., Schmidt, J. E., & Thomsen, M. H. (2016). Estimation of bioenergy potential for local biomass in the United Arab Emirates. Emirates Journal of Food and Agriculture, 28(2), 99–106. https://doi.org/10.9755/ejfa.2015-04-060
  • Baleta, F. N., & Nalleb, J. P. (2016). Species composition, abundance and diversity of seaweeds along the intertidal zone of Nangaramoan, San Vicente, Sta. Ana, Cagayan, Philippines. AACL Bioflux, 9(2), 250–259.
  • Batool, A., & Menaa, F. (2020). Concentration and purification of seaweed components by chromatography methods. In Torres, M. D., Kraan, S., & Dominguez, H. (Eds.), Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications (pp. 315-370). Elsevier. https://doi.org/10.1016/b978-0-12-817943-7.00013-5
  • Baweja, P., Kumar, S., Sahoo, D., & Levine, I. (2016). Biology of seaweeds. In Fleurence, J., & Ira Levine, I. (Eds.), Seaweed in Health and Disease Prevention (pp. 41-106). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802772-1.00003-8
  • Becerra, M., Boutefnouchet, S., Córdoba, O., Vitorino, G. P., Brehu, L., Lamour, I., Laimay, F., Efstathiou, A., Smirlis, D., Michel, S., Kritsanida, M., Flores, M. L., & Grougnet, R. (2015). Antileishmanial activity of fucosterol recovered from Lessonia vadosa Searles (Lessoniaceae) by SFE, PSE and CPC. Phytochemistry Letters, 11, 418–423. https://doi.org/10.1016/j.phytol.2014.12.019
  • Bedoux, G., Hardouin, K., Burlot, A. S., & Bourgougnon, N. (2014). Bioactive components from seaweeds: Cosmetic applications and future development. In Bourgougnon, E. (Ed.), Advances in Botanical Research Volume 71 (pp. 345-378). Elsevier. https://doi.org/10.1016/B978-0-12-408062-1.00012-3
  • Biancarosa, I., Belghit, I., Bruckner, C. G., Liland, N. S., Waagbø, R., Amlund, H., Heesch, S., & Lock, E. J. (2018). Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed. Journal of the Science of Food and Agriculture, 98(5), 2035–2042. https://doi.org/10.1002/jsfa.8798
  • Bouga, M., & Combet, E. (2015). Emergence of seaweed and seaweed-containing foods in the uk: Focus on labeling, iodine content, toxicity and nutrition. Foods, 4(2), 240–253. https://doi.org/10.3390/foods4020240
  • Cecile, L. G., Justine, D., Claire, D.-M., Sandrine, B., Jean-Yves, R., Joel, F., & Jean-Pascal, B. (2015). Achimer Ultrasound-assisted extraction of R-phycoerythrin from Grateloupia turuturu with and without enzyme addition. Algal Research, 12(November), 522–528.
  • Černá, M. (2011). Seaweed proteins and amino acids as nutraceuticals. In Kim, S. -K.(Ed.), Advances in Food and Nutrition Research Volume 64 (pp. 297-312) (1st ed., Vol. 64). Elsevier Inc. https://doi.org/10.1016/B978-0-12-387669-0.00024-7
  • Charoensiddhi, S., Franco, C., Su, P., & Zhang, W. (2015). Improved antioxidant activities of brown seaweed Ecklonia radiata extracts prepared by microwave-assisted enzymatic extraction. Journal of Applied Phycology, 27(5), 2049–2058. https://doi.org/10.1007/s10811-014-0476-2
  • Charrier, B., Abreu, M. H., Araujo, R., Bruhn, A., Coates, J. C., De Clerck, O., Katsaros, C., Robaina, R. R., & Wichard, T. (2017). Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytologist, 216(4), 967–975. https://doi.org/10.1111/nph.14728
  • Chen, K., Ríos, J. J., Pérez-Gálvez, A., & Roca, M. (2017). Comprehensive chlorophyll composition in the main edible seaweeds. Food Chemistry, 228(February), 625–633. https://doi.org/10.1016/j.foodchem.2017.02.036
  • Cheney, D. (2016). Toxic and Harmful Seaweeds. In Fleurence, J., & Levine, I. (Eds.), Seaweed in Health and Disease Prevention (pp. 407-421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802772-1.00013-0
  • Cherry, P., O’hara, C., Magee, P. J., Mcsorley, E. M., & Allsopp, P. J. (2019). Risks and benefits of consuming edible seaweeds. Nutrition Reviews, 77(5), 307–329. https://doi.org/10.1093/nutrit/nuy066
  • Chopin, T., & Tacon, A. G. J. (2021). Importance of Seaweeds and Extractive Species in Global Aquaculture Production. Reviews in Fisheries Science and Aquaculture, 29(2), 139–148. https://doi.org/10.1080/23308249.2020.1810626
  • Cikoš, A. M., Jokić, S., Šubarić, D., & Jerković, I. (2018). Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Marine Drugs, 16(10), 348. https://doi.org/10.3390/md16100348
  • Circuncisão, A. R., Catarino, M. D., Cardoso, S. M., & Silva, A. M. S. (2018). Minerals from macroalgae origin: Health benefits and risks for consumers. Marine Drugs, 16(11), 400. https://doi.org/10.3390/md16110400
  • Cofrades, S., Benedí, J., Garcimartin, A., Sánchez-Muniz, F. J., & Jimenez-Colmenero, F. (2017). A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Research International, 99, 1084–1094. https://doi.org/10.1016/j.foodres.2016.06.029
  • Collins, K. G., Fitzgerald, G. F., Stanton, C., & Ross, R. P. (2016). Looking beyond the terrestrial: The potential of seaweed derived bioactives to treat non-communicable diseases. Marine Drugs, 14(3), 1–31. https://doi.org/10.3390/md14030060
  • Combet, E., Ma, Z. F., Cousins, F., Thompson, B., & Lean, M. E. J. (2014). Low-level seaweed supplementation improves iodine status in iodine-insufficient women. British Journal of Nutrition, 112(5), 753–761. https://doi.org/10.1017/S0007114514001573
  • Cotas, J., Pacheco, D., Gonçalves, A.M., Silva, P., Carvalho, L.G., & Pereira, L. (2021). Seaweeds’ nutraceutical and biomedical potential in cancer therapy: a concise review. Journal of Cancer Metastasis and Treatment, 7, 13. https://doi.org/10.20517/2394-4722.2020.134
  • Dasgupta, A., & Wahed, A. (2014). Effect of Herbal Supplements on Clinical Laboratory Test Results. In Dasgupta, A., & Wahed, A. (Eds.), Clinical Chemistry, Immunology and Laboratory Quality Control: A Comprehensive Review for Board Preparation, Certification and Clinical Practice (pp. 449–459). Elsevier. https://doi.org/10.1016/b978-0-12-407821-5.00025-5
  • De Corato, U., Salimbeni, R., De Pretis, A., Avella, N., & Patruno, G. (2017). Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biology and Technology, 131, 16–30. https://doi.org/10.1016/j.postharvbio.2017.04.011
  • De San, M. (2012). The farming of seaweeds. FAO/IOC. 29p.
  • Del Río, P. G., Gomes-Dias, J. S., Rocha, C. M. R., Romaní, A., Garrote, G., & Domingues, L. (2020). Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 299(October 2019), 122613. https://doi.org/10.1016/j.biortech.2019.122613
  • Desideri, D., Cantaluppi, C., Ceccotto, F., Meli, M. A., Roselli, C., & Feduzi, L. (2016). Essential and toxic elements in seaweeds for human consumption. Journal of Toxicology and Environmental Health-Part A: Current Issues, 79(3), 112–122. https://doi.org/10.1080/15287394.2015.1113598
  • Dobrinčić, A., Pedisić, S., Zorić, Z., Jurin, M., Roje, M., Čož-Rakovac, R., & Dragović-Uzelac, V. (2021). Microwave assisted extraction and pressurized liquid extraction of sulfated polysaccharides from fucus virsoides and Cystoseira barbata. Foods, 10(7), 1481. https://doi.org/10.3390/foods10071481
  • FAO. (2020). Food and Agriculture Organization of United States. The State of World Fisheries and Aquaculture 2020. Sustainability in action. In FAO. https://doi.org/https://doi.org/10.4060/ca9229en
  • FAO. (2021a). Food and Agriculture Organization of United States. Global seaweeds and microalgae production, 1950 – 2019. Food and Agricultural Organization of the United Nations. Rome, June, 2021. pp.5. https://www.fao.org/fishery/en/publications/280709
  • FAO. (2021b). Food and Agriculture Organization of United States. Global status of seaweed production, trade and utilization. Seaweed Innovation Forum Belize, May, 28th.
  • Filippini, M., Baldisserotto, A., Menotta, S., Fedrizzi, G., Rubini, S., Gigliotti, D., Valpiani, G., Buzzi, R., Manfredini, S., & Vertuani, S. (2021). Heavy metals and potential risks in edible seaweed on the market in Italy. Chemosphere, 263, 127983. https://doi.org/10.1016/j.chemosphere.2020.127983
  • Fleurence, J. (2016). Seaweeds as food. In Fleurence, J., & Ira Levine, I. (Eds.), Seaweed in Health and Disease Prevention (pp. 149-167). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802772-1.00005-1
  • Fleurence, J., Morançais, M., & Dumay, J. (2018). Seaweed proteins. In Yada, R. Y. (Ed.), Proteins in Food Processing (Second Edition) (pp. 245-262). Elsevier. https://doi.org/10.1016/B978-0-08-100722-8.00010-3
  • Flora, S. J. S. (2015). Arsenic: Chemistry, occurrence, and exposure. In Flora, S. J. S. (Ed.), Handbook of Arsenic Toxicology (pp. 1-49). https://doi.org/10.1016/B978-0-12-418688-0.00001-0
  • Furuta, T., Miyabe, Y., Yasui, H., Kinoshita, Y., & Kishimura, H. (2016). Angiotensin I converting enzyme inhibitory peptides derived from phycobiliproteins of dulse Palmaria palmata. Marine Drugs, 14(2), 32. https://doi.org/10.3390/md14020032
  • George, G., & Mathew, L. (2017). Anti-oxidant potential of four Chlorophycean members from Kerala Coast. International Journal of Scientific Research, 6(7), 66-68.
  • Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M. (2018). Corrigendum to “A review of macroalgae production, with potential applications in biofuels and bioenergy” [Renew Sustain Energy Rev 54 (2016) 473–481]. Renewable and Sustainable Energy Reviews, 96, 526. https://doi.org/10.1016/j.rser.2018.08.048
  • Gheda, S. F., El-Adawi, H. I., & El-Deeb, N. M. (2016). Antiviral profile of brown and red seaweed polysaccharides against hepatitis c virus. Iranian Journal of Pharmaceutical Research, 15(3), 483–491. https://doi.org/10.22037/ijpr.2016.1944
  • Gnanavel, V., Roopan, S. M., & Rajeshkumar, S. (2019). Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture, 507, 1–6. https://doi.org/10.1016/j.aquaculture.2019.04.004
  • Gómez-Guzmán, M., Rodríguez-Nogales, A., Algieri, F., & Gálvez, J. (2018). Potential role of seaweed polyphenols in cardiovascular-associated disorders. Marine Drugs, 16(8), 250. https://doi.org/10.3390/md16080250
  • Gosch, B. J., Magnusson, M., Paul, N. A., & de Nys, R. (2012). Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. GCB Bioenergy, 4(6), 919–930. https://doi.org/10.1111/j.1757-1707.2012.01175.x
  • Gullón, B., Gagaoua, M., Barba, F. J., Gullón, P., Zhang, W., & Lorenzo, J. M. (2020). Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends in Food Science and Technology, 100, 1–18. https://doi.org/10.1016/j.tifs.2020.03.039
  • Gunathilaka, T. L., Samarakoon, K., Ranasinghe, P., & Peiris, L. D. C. (2020). Antidiabetic potential of marine brown algae - A mini review. Journal of Diabetes Research, 2020, 1230218. https://doi.org/10.1155/2020/1230218
  • Gutiérrez-Rodríguez, A. G., Juárez-Portilla, C., Olivares-Bañuelos, T., & Zepeda, R. C. (2018). Anticancer activity of seaweeds. Drug Discovery Today, 23(2), 434–447. https://doi.org/10.1016/j.drudis.2017.10.019
  • Ha, M., Morrow, M., & Algiers, K. (2021, June 8). Brown algae and diatoms. https://bio.libretexts.org/@go/page/31928
  • Haq, S. H., Al-Ruwaished, G., Al-Mutlaq, M. A., Naji, S. A., Al-Mogren, M., Al-Rashed, S., Ain, Q. T., Al-Amro, A. A., & Al-Mussallam, A. (2019). Antioxidant, anticancer activity and phytochemical analysis of green algae, chaetomorpha collected from the Arabian Gulf. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-55309-1
  • Hardouin, K., Bedoux, G., Burlot, A. S., Donnay-Moreno, C., Bergé, J. P., Nyvall-Collén, P., & Bourgougnon, N. (2016). Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Research, 16, 233–239. https://doi.org/10.1016/j.algal.2016.03.013
  • Hentati, F., Delattre, C., Ursu, A. V., Desbrières, J., Le Cerf, D., Gardarin, C., Abdelkafi, S., Michaud, P., & Pierre, G. (2018). Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydrate Polymers, 198, 589–600. https://doi.org/10.1016/j.carbpol.2018.06.098
  • Hentati, F., Tounsi, L., Djomdi, D., Pierre, G., Delattre, C., Ursu, A. V., Fendri, I., Abdelkafi, S., & Michaud, P. (2020). Bioactive polysaccharides from seaweeds. Molecules, 25(14), 1–29. https://doi.org/10.3390/molecules25143152
  • Hermund, D. B. (2018). Antioxidant properties of seaweed-derived substances. In Qin, Y. (Ed.), Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets (pp. 201-221). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813312-5.00010-8
  • Jesumani, V., Du, H., Aslam, M., Pei, P., & Huang, N. (2019). Potential use of seaweed bioactive compounds in skincare—A review. Marine Drugs, 17(12), 688. https://doi.org/10.3390/md17120688
  • Jiménez-Escrig, A., Gómez-Ordóñez, E., & Rupérez, P. (2011). Seaweed as a source of novel nutraceuticals: Sulfated polysaccharides and peptides. Advances in Food and Nutrition Research, 64, 325–337. https://doi.org/10.1016/B978-0-12-387669-0.00026-0
  • Jumaidin, R., Sapuan, S.M., Jawaid, M., Shak, M.R., & Sahari, J. (2018). Seaweeds as Renewable Sources for Biopolymers and its Composites: A Review. Current Analytical Chemistry, 14(3), 249-267. https://doi.org/10.2174/1573411013666171009164355
  • Kadam, S. U., Tiwari, B. K., Smyth, T. J., & O’Donnell, C. P. (2015). Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics Sonochemistry, 23, 308–316. https://doi.org/10.1016/j.ultsonch.2014.10.007
  • Kalasariya, H. S., Yadav, V. K., Yadav, K. K., Tirth, V., Algahtani, A., Islam, S., Gupta, N., & Jeon, B. H. (2021). Seaweed-based molecules and their potential biological activities: An eco-sustainable cosmetics. Molecules, 26(17), 5313. https://doi.org/10.3390/molecules26175313
  • Kendel, M., Wielgosz-Collin, G., Bertrand, S., Roussakis, C., Bourgougnon, N. B., & Bedoux, G. (2015). Lipid composition, fatty acids and sterols in the seaweeds ulva armoricana, and solieria chordalis from brittany (France): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Marine Drugs, 13(9), 5606–5628. https://doi.org/10.3390/md13095606
  • Khalid, S., Abbas, M., Saeed, F., Bader-Ul-Ain, H., & Ansar Rasul Suleria, H. (2018). Therapeutic Potential of Seaweed Bioactive Compounds. Seaweed Biomaterials. IntechOpen. https://doi.org/10.5772/intechopen.74060
  • Kılınç, B., Cirik, S., Turan, G., Tekogul, H., & Koru, E. (2013). Seaweeds for food and industrial applications. In Muzzalupo, I. (Ed.), Food Industry. IntechOpen. https://doi.org/10.5772/53172
  • Kolanjinathan, K., Ganesh, P., & Saranraj, P. (2014). Pharmacological Importance of Seaweeds: A Review. World Journal of Fish and Marine Sciences, 6(1), 1–15. https://doi.org/10.5829/idosi.wjfms.2014.06.01.76195
  • Kulshreshtha, G., Burlot, A. S., Marty, C., Critchley, A., Hafting, J., Bedoux, G., Bourgougnon, N., & Prithiviraj, B. (2015). Enzyme-assisted extraction of bioactive material from Chondrus crispus and codium fragile and its effect on Herpes simplex virus (HSV-1). Marine Drugs, 13(1), 558–580. https://doi.org/10.3390/md13010558
  • Lee, W. K., Lim, Y. Y., Leow, A. T. C., Namasivayam, P., Ong Abdullah, J., & Ho, C. L. (2017). Biosynthesis of agar in red seaweeds: A review. Carbohydrate Polymers, 164, 23–30. https://doi.org/10.1016/j.carbpol.2017.01.078
  • Liu, X., Wang, S., Cao, S., He, X., Qin, L., He, M., Yang, Y., Hao, J., & Mao, W. (2018). Structural characteristics and anticoagulant property in vitro and in vivo of a seaweed Sulfated Rhamnan. Marine Drugs, 16(7), 243. https://doi.org/10.3390/md16070243
  • Lorenzo, J. M., Agregán, R., Munekata, P. E. S., Franco, D., Carballo, J., Şahin, S., Lacomba, R., & Barba, F. J. (2017). Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs, 15(11), 360. https://doi.org/10.3390/md15110360
  • Lucas, W. J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S. R., Helariutta, Y., He, X. Q., Fukuda, H., Kang, J., Brady, S. M., Patrick, J. W., Sperry, J., Yoshida, A., López-Millán, A. F., Grusak, M. A., & Kachroo, P. (2013). The plant vascular system: Evolution, development and functions. Journal of Integrative Plant Biology, 55(4), 294–388. https://doi.org/10.1111/jipb.12041
  • Luo, X., Su, P., & Zhang, W. (2015). Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Marine Drugs, 13(7), 4231–4254. https://doi.org/10.3390/md13074231
  • Machmudah, S., Wahyudiono, Kanda, H., & Goto, M. (2018). Supercritical fluids extraction of valuable compounds from algae: Future perspectives and challenges. Engineering Journal, 22(5), 13–30. https://doi.org/10.4186/ej.2018.22.5.13
  • Mahadevan, K. (2015). Seaweeds: A sustainable food source. In Tivari, K., & Troy, D. J. (Eds.), Seaweed Sustainability: Food and Non-Food Applications (pp. 347-364) Elsevier. https://doi.org/10.1016/B978-0-12-418697-2.00013-1
  • Makkar, H. P. S., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1–17. https://doi.org/10.1016/j.anifeedsci.2015.09.018
  • Martínez–Hernández, G. B., Castillejo, N., Carrión–Monteagudo, M. del M., Artés, F., & Artés-Hernández, F. (2018). Nutritional and bioactive compounds of commercialized algae powders used as food supplements. Food Science and Technology International, 24(2), 172–182. https://doi.org/10.1177/1082013217740000
  • Michalak, I., Górka, B., Wieczorek, P. P., Rój, E., Lipok, J., Łęska, B., Messyasz, B., Wilk, R., Schroeder, G., Dobrzyńska-Inger, A., & Chojnacka, K. (2016). Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. European Journal of Phycology, 51(3), 243–252. https://doi.org/10.1080/09670262.2015.1134813
  • Michalak, I., Tuhy, Ł., & Chojnacka, K. (2015). Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chemistry, 13(1), 1183–1195. https://doi.org/10.1515/chem-2015-0132
  • Misra, N. N., Rai, D. K., & Hossain, M. (2015). Analytical techniques for bioactives from seaweed. In Tivari, K., & Troy, D. J. (Eds.), Seaweed Sustainability: Food and Non-Food Applications (pp. 271–287). Elsevier Inc. https://doi.org/10.1016/B978-0-12-418697-2.00010-6
  • Mišurcová, L., Ambrožová, J., & Samek, D. (2011). Seaweed lipids as nutraceuticals. Advances in Food and Nutrition Research, 64, 339–355. https://doi.org/10.1016/B978-0-12-387669-0.00027-2
  • Montero, L., del Pilar Sánchez-Camargo, A., Ibáñez, E., & Gilbert-López, B. (2017). Phenolic compounds from edible algae: Bioactivity and health benefits. Current Medicinal Chemistry, 25(37), 4808–4826. https://doi.org/10.2174/0929867324666170523120101
  • Morais, T., Cotas, J., Pacheco, D., & Pereira, L. (2021). Seaweeds compounds: An ecosustainable source of cosmetic ingredients? Cosmetics, 8(1), 1–28. https://doi.org/10.3390/COSMETICS8010008
  • Morais, T., Inácio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L., & Bahcevandziev, K. (2020). Seaweed potential in the animal feed: A review. Journal of Marine Science and Engineering, 8(8), 1–24. https://doi.org/10.3390/JMSE8080559
  • Moubayed, N. M. S., Al Houri, H. J., Al Khulaifi, M. M., & Al Farraj, D. A. (2017). Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi Journal of Biological Sciences, 24(1), 162–169. https://doi.org/10.1016/j.sjbs.2016.05.018
  • Mouritsen, O. G., Rhatigan, P., & Pérez-Lloréns, J. L. (2018). World cuisine of seaweeds: Science meets gastronomy. International Journal of Gastronomy and Food Science, 14, 55–65. https://doi.org/10.1016/j.ijgfs.2018.09.002
  • Murai, U., Yamagishi, K., Kishida, R., & Iso, H. (2021). Impact of seaweed intake on health. European Journal of Clinical Nutrition, 75(6), 877–889. https://doi.org/10.1038/s41430-020-00739-8
  • Nakhate, P., & van der Meer, Y. (2021). A systematic review on seaweed functionality: A sustainable bio-based materia. Sustainability, 13(11), 6174. https://doi.org/10.3390/su13116174
  • Naseri, A., Marinho, G. S., Holdt, S. L., Bartela, J. M., & Jacobsen, C. (2020). Enzyme-assisted extraction and characterization of protein from red seaweed Palmaria palmata. Algal Research, 47, 101849. https://doi.org/10.1016/j.algal.2020.101849
  • Nasmia, Rosyida, E., Masyahoro, A., Putera F. H. A., Natsir, S. (2021). The utililzation of seaweed-based liquid organic fertilizer to stimulate Gracilaria verrucosa growth and quality. International Journal of Environmental Science and Technology, 18, 1637-15644. https://doi.org/10.1007/s13762-020-02921-8
  • National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). (2016). Hyperthyroidism (Overactive Thyroid). Retrieved on June 28, 2021, from https://www.nih.gov/
  • Nazarudin, M. F., Yusoff, F., Idrus, E. S., & Aliyu-Paiko, M. (2020). Brown seaweed Sargassum polycystum as dietary supplement exhibits prebiotic potentials in Asian sea bass Lates calcarifer fingerlings. Aquaculture Reports, 18, 100488. https://doi.org/10.1016/j.aqrep.2020.100488
  • Nešić, A., Cabrera-Barjas, G., Dimitrijević-Branković, S., Davidović, S., Radovanović, N., & Delattre, C. (2019). Prospect of polysaccharide-based materials as advanced food packaging. Molecules, 25(1), 135. https://doi.org/10.3390/molecules25010135
  • Olsson, J., Toth, G. B., & Albers, E. (2020). Biochemical composition of red, green and brown seaweeds on the Swedish west coast. Journal of Applied Phycology, 32(5), 3305–3317. https://doi.org/10.1007/s10811-020-02145-w
  • Otero, P., Quintana, S. E., Reglero, G., Fornari, T., & García-Risco, M. R. (2018). Pressurized Liquid Extraction (PLE) as an innovative green technology for the effective enrichment of galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Marine Drugs, 16(5), 156. https://doi.org/10.3390/md16050156
  • Pal, A., Kamthania, M. C., & Kumar, A. (2014). Bioactive compounds and properties of seaweeds—A Review. Open Access Library Journal, 01(04), e752. https://doi.org/10.4236/oalib.1100752
  • Palstra, A. P., Kals, J., Garcia, A. B., Dirks, R. P., & Poelman, M. (2018). Immunomodulatory effects of dietary seaweeds in LPS challenged Atlantic Salmon Salmo salar as determined by deep RNA sequencing of the head kidney transcriptome. Frontiers in Physiology, 9, 625. https://doi.org/10.3389/fphys.2018.00625
  • Peñalver, R., Lorenzo, J. M., Ros, G., Amarowicz, R., Pateiro, M., & Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs, 18(6), 301. https://doi.org/10.3390/md18060301
  • Pereira, L., & Cotas, J. (2019). Historical use of seaweed as an agricultural fertilizer in the European Atlantic area. In Pereira, L., Bahcevandziev, K., & Joshi, N. H. (Eds.), Seaweeds as plant fertilizer, agricultural biostimulants and animal fodder (pp. 1–22). CRC Press. https://doi.org/10.1201/9780429487156-1
  • Pérez, M. J., Falqué, E., & Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14(3), 1–38. https://doi.org/10.3390/md14030052
  • Pérez-López, P., Balboa, E. M., González-García, S., Domínguez, H., Feijoo, G., & Moreira, M. T. (2014). Comparative environmental assessment of valorization strategies of the invasive macroalgae Sargassum muticum. Bioresource Technology, 161, 137–148. https://doi.org/10.1016/j.biortech.2014.03.013
  • Praveen, M. A., Parvathy, K. R. K., Balasubramanian, P., & Jayabalan, R. (2019). An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends in Food Science and Technology, 92, 46–64. https://doi.org/10.1016/j.tifs.2019.08.011
  • Premarathna, A. D., Amcp, K., Jayasooriya, A. P., De, J., & Adhikari, R. B. (2019a). Distribution and diversity of seaweed species in south coastal waters in Sri Lanka. Journal of Oceanography and Marine Research, 7(S1), 196. https://doi.org/10.35248/2572-3103.19.7.196
  • Premarathna, A. D., Ranahewa, T. H., Wijesekera, S., & Wijesundera, K. K. (2019b). Wound healing properties of aqueous extracts of Sargassum illicifolium : An in vitro assay wound healing properties of aqueous extracts of Sargassum illicifolium : An in vitro assay. Wound Medicine, 24(1), 1-7. https://doi.org/10.1016/j.wndm.2018.11.001
  • Quitain, A. T., Kai, T., Sasaki, M., & Goto, M. (2013). Microwave-hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida. Industrial and Engineering Chemistry Research, 52(23), 7940–7946. https://doi.org/10.1021/ie400527b
  • Ramnani, P., Chitarrari, R., Tuohy, K., Grant, J., Hotchkiss, S., Philp, K., Campbell, R., Gill, C., & Rowland, I. (2012). Invitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe, 18(1), 1–6. https://doi.org/10.1016/j.anaerobe.2011.08.003
  • Rao, P. S., Periyasamy, C., Kumar, K. S., Rao, A. S., & Anantharaman, P. (2018). Seaweeds: Distribution, production and uses. In Noor, M. N., Bahtnagar, S. K., & Sinha, S. K. (Eds.), Bioprospecting of algae-2018 (pp. 59-78). Society for Plant Research India.
  • Rengasamy, K. R., Mahomoodally, M. F., Aumeeruddy, M. Z., Zengin, G., Xiao, J., & Kim, D. H. (2020). Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food and Chemical Toxicology, 135, 111013. https://doi.org/10.1016/j.fct.2019.111013
  • Rhein-Knudsen, N., Ale, M. T., Ajalloueian, F., Yu, L., & Meyer, A. S. (2017). Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids, 63, 50–58. https://doi.org/10.1016/j.foodhyd.2016.08.023
  • Rodrigues, D., Sousa, S., Silva, A., Amorim, M., Pereira, L., Rocha-Santos, T. A. P., Gomes, A. M. P., Duarte, A. C., & Freitas, A. C. (2015). Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the Central West Coast of Portugal. Journal of Agricultural and Food Chemistry, 63(12), 3177–3188. https://doi.org/10.1021/jf504220e
  • Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86(3), 1137–1144. https://doi.org/10.1016/j.carbpol.2011.06.006
  • Ruban, P., & Govindasamy, C. (2018). Seaweed fertilizers in modern agriculture. International Journal of Research Publications, 14(1), 100141102018386.
  • Rubio, C., Napoleone, G., Luis-González, G., Gutiérrez, A. J., González-Weller, D., Hardisson, A., & Revert, C. (2017). Metals in edible seaweed. Chemosphere, 173, 572–579. https://doi.org/10.1016/j.chemosphere.2017.01.064
  • Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D., & Kirk, P. M. (2015). A higher level classification of all living organisms. PLoS ONE, 10(4), 1–60. https://doi.org/10.1371/journal.pone.0119248
  • Rupérez, P., Gómez-Ordóñez, E., & Jiménez-Escrig, A. (2013). Biological activity of algal sulfated and nonsulfated polysaccharides. In Hernández-Ledesma, B., & Herrero, M. (Eds.), Bioactive Compounds from Marine Foods: Plant and Animal Sources (pp. 219–247). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118412893.ch11
  • Sabeena, S. F., Alagarsamy, S., Sattari, Z., Al-Haddad, S., Fakhraldeen, S., Al-Ghunaim, A., & Al-Yamani, F. (2020). Enzyme-assisted extraction of bioactive compounds from brown seaweeds and characterization. Journal of Applied Phycology, 32(1), 615–629. https://doi.org/10.1007/s10811-019-01906-6
  • Saito, H., & Lal, T. M. (2019). Antimycotic activity of seaweed extracts (Caulerpa lentillifera and Eucheuma cottonii) against two genera of marine oomycetes, Lagenidium spp. and Haliphthoros spp. Biocontrol Science, 24(2), 73–80. https://doi.org/10.4265/BIO.24.73
  • Sánchez-Camargo, A. del P., Ibáñez, E., Cifuentes, A., & Herrero, M. (2017). Bioactives obtained from plants, seaweeds, microalgae and food by-products using pressurized liquid extraction and supercritical fluid extraction. Comprehensive Analytical Chemistry, 76, 27–51. https://doi.org/10.1016/bs.coac.2017.01.001
  • Saraswati, Giriwono, P. E., Iskandriati, D., Tan, C. P., & Andarwulan, N. (2019). Sargassum seaweed as a source of anti-inflammatory substances and the potential insight of the tropical species: A review. Marine Drugs, 17(10), 1–35. https://doi.org/10.3390/md17100590
  • Seca, A. M. L., & Pinto, D. C. G. A. (2018). Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Marine Drugs, 16(7), 237. https://doi.org/10.3390/md16070237
  • Seong, H., Bae, J. H., Seo, J. S., Kim, S. A., Kim, T. J., & Han, N. S. (2019). Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. Journal of Functional Foods, 57, 408–416. https://doi.org/10.1016/j.jff.2019.04.014
  • Sevimli-Gur, C., & Yesil-Celiktas, O. (2019). Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids. Molecular Biology Reports, 46(4), 3691–3699. https://doi.org/10.1007/s11033-019-04812-9
  • Shelar, P. S., Kumar, V., & Gauri, S. (2012). Medicinal value of seaweeds and its applications–A review. Continental Journal of Pharmacology and Toxicology Research, 5(2), 1–22.
  • Silva, J., Alves, C., Pinteus, S., Mendes, S., & Pedrosa, R. (2018). Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model. BMC Complementary and Alternative Medicine, 18(1), 4–13. https://doi.org/10.1186/s12906-018-2103-2
  • Singh, S., Gaikwad, K. K., Park, S. Il, & Lee, Y. S. (2017). Microwave-assisted step reduced extraction of seaweed (Gelidiella aceroso) cellulose nanocrystals. International Journal of Biological Macromolecules, 99, 506–510. https://doi.org/10.1016/j.ijbiomac.2017.03.004
  • Škrovánková, S. (2011). Seaweed vitamins as nutraceuticals. Advances in Food and Nutrition Research, 64, 357–369. https://doi.org/10.1016/B978-0-12-387669-0.00028-4
  • Subaryono, S. (2018). Carageenan oligosaccharides: Biological activity and its development opportunities in Indonesia. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 13(1), 35-43.
  • Sudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91, 165–179. https://doi.org/10.1016/j.rser.2018.03.100
  • Sun, Z., Dai, Z., Zhang, W., Fan, S., Liu, H., Liu, R., & Zhao, T. (2018). Antiobesity, antidiabetic, antioxidative, and antihyperlipidemic activities of bioactive seaweed substances. In Qin, Y. (Ed.), Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets (pp. 239-253). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813312-5.00012-1
  • Suryanarayana Murty, U., & Banerjee, A. K. (2011). Seaweeds: The wealth of oceans. In Kim, S. -K. (Ed.), Handbook of Marine Macroalgae: Biotechnology and Applied Phycology (pp. 36–44). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119977087.ch2
  • Susanto, E., Fahmi, A. S., Hosokawa, M., & Miyashita, K. (2019). Variation in lipid components from 15 species of tropical and temperate seaweeds. Marine Drugs, 17(11), 630. https://doi.org/10.3390/md17110630
  • Teas, J., Vena, S., Cone, D. L., & Irhimeh, M. (2013). The consumption of seaweed as a protective factor in the etiology of breast cancer: Proof of principle. Journal of Applied Phycology, 25(3), 771–779. https://doi.org/10.1007/s10811-012-9931-0
  • Thao My, P. Le, Sung, V. Van, Dat, T. Do, Nam, H. M., Phong, M. T., & Hieu, N. H. (2020). Ultrasound‐assisted extraction of fucoidan from Vietnamese brown Seaweed Sargassum mcclurei and testing bioactivities of the extract. ChemistrySelect, 5(14), 4371–4380. https://doi.org/10.1002/slct.201903818
  • van Wyk, A. S., & Prinsloo, G. (2020). Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. South African Journal of Botany, 133, 54–62. https://doi.org/10.1016/j.sajb.2020.06.031
  • Vásquez, V., Martínez, R., & Bernal, C. (2019). Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. Journal of Applied Phycology, 31(3), 1999–2010. https://doi.org/10.1007/s10811-018-1712-y
  • Vatsos, I. N., & Rebours, C. (2015). Seaweed extracts as antimicrobial agents in aquaculture. Journal of Applied Phycology, 27(5), 2017–2035. https://doi.org/10.1007/s10811-014-0506-0
  • Venugopal, V. (2019). Sulfated and non-sulfated polysaccharides from seaweeds and their uses: An overview. ECronicon Nutrition, 2, 126–141.
  • Woo, C. S. J., Lau, J. S. H., & El-Nezami, H. (2012). Herbal medicine. Toxicity and recent trends in assessing their potential toxic effects. In Shyur, L. F., & Lau, A. S. Y. (Eds.), Advances in Botanical Research Volume 62 (pp. 365-384). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394591-4.00009-X
  • Yeh, T. S., Hung, N. H., & Lin, T. C. (2014). Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake. Journal of Food and Drug Analysis, 22(2), 189–196. https://doi.org/10.1016/j.jfda.2014.01.014
  • Yim, M. J., Lee, J. M., Choi, G., Cho, S. Y., & Lee, D. S. (2019). The antihyperlipidemic effect of alginate-free residue from sea tangle in hyperlipidemic rats. Fisheries and Aquatic Sciences, 22(1), 4–9. https://doi.org/10.1186/s41240-019-0144-1
  • Yokoi, K., & Konomi, A. (2012). Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regulatory Toxicology and Pharmacology, 63(2), 291–297. https://doi.org/10.1016/j.yrtph.2012.04.006
  • Youssouf, L., Lallemand, L., Giraud, P., Soulé, F., Bhaw-Luximon, A., Meilhac, O., D’Hellencourt, C. L., Jhurry, D., & Couprie, J. (2017). Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydrate Polymers, 166, 55–63. https://doi.org/10.1016/j.carbpol.2017.01.041
  • Yu, K. X., Jantan, I., Ahmad, R., & Wong, C. L. (2014). The major bioactive components of seaweeds and their mosquitocidal potential. Parasitology Research, 113(9), 3121–3141. https://doi.org/10.1007/s00436-014-4068-5
  • Zamani, S., Khorasaninejad, S., & Kashefi, B. (2013). The importance role of seaweeds of some characters of plant. International Journal of Agriculture and Crop Sciences, 5(16), 1789–1793.
  • Zava, T. T., & Zava, D. T. (2011). Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Research, 4(1), 1–7. https://doi.org/10.1186/1756-6614-4-14
  • Zheng, J., Chen, Y., Yao, F., Chen, W., & Shi, G. (2012). Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of gloiopeltis tenax. Marine Drugs, 10(12), 2634–2647. https://doi.org/10.3390/md1012263

Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods

Yıl 2022, Cilt: 11 Sayı: 1, 9 - 31, 28.03.2022
https://doi.org/10.33714/masteb.1021121

Öz

Seaweeds, also known as macroalgae, are abundant sources of various vital bioactive components with a wide range of biological functions. They are sold commercially and are primarily used in the food industry, pharmaceuticals, cosmeceuticals, and other related industries. The diverse biological activities linked with bioactive compounds obtained from seaweeds have the potential to expand their health benefit value in the food and pharmaceutical industries. Studies revealed that seaweeds have the potential to be used as complementary medicine due to its variety of biological properties that have been shown to be therapeutic for health and disease management, such as antibacterial, anticoagulant, anticancer, antidiabetic, antiestrogenic, antihypertensive, antihyperlipidemic, antifungal, anti-inflammatory, antioxidant, antiobesity, antiviral, immunomodulatory, neuroprotective, thyroid stimulant, tissue healing properties, and many more. Although seaweeds are generally beneficial to humans, they may still pose possible health risks due to high iodine concentration and exposure to heavy metals and arsenic concentrations. However, information on this topic is still limited. With the great importance of seaweeds, various green extraction methods such as Microwave-assisted Extraction (MAE), Supercritical Fluid Extraction (SFE), Pressurized Solvents Extraction (PSE) and Enzyme-ssisted Extraction (EAE) were used as an alternative to the conventional method to isolate bioactive components and further purified using chromatographic technique analysis to ensure the purity of the extract. This review covers the following topics: general structure and characteristics of seaweeds, seaweed production, bioactive components and properties of seaweed, possible risk factors of seaweeds, applications of seaweeds, extraction, and purification of seaweed extracts.

Kaynakça

  • Aakre, I., Evensen, L. T., Kjellevold, M., Dahl, L., Henjum, S., Alexander, J., Madsen, L., & Markhus, M. W. (2020). Iodine status and thyroid function in a group of seaweed consumers in norway. Nutrients, 12(11), 1–14. https://doi.org/10.3390/nu12113483
  • Abdul Khalil, H. P. S., Lai, T. K., Tye, Y. Y., Rizal, S., Chong, E. W. N., Yap, S. W., Hamzah, A. A., Nurul Fazita, M. R., & Paridah, M. T. (2018). A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polymer Letters, 12(4), 296–317. https://doi.org/10.3144/expresspolymlett.2018.27
  • Admassu, H., Gasmalla, M. A. A., Yang, R., & Zhao, W. (2018). Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. Journal of Food Science, 83(1), 6–16. https://doi.org/10.1111/1750-3841.14011
  • Agarwal, P. K., Dangariya, M., & Agarwal, P. (2021). Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Research, 58(October 2020), 102363. https://doi.org/10.1016/j.algal.2021.102363
  • Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., & Nasri, N. S. (2018). Treatment of wastewater using seaweed: A review. International Journal of Environmental Research and Public Health, 15(12). 2851. https://doi.org/10.3390/ijerph15122851
  • Aryee, A. N., Agyei, D., & Akanbi, T. O. (2018). Recovery and utilization of seaweed pigments in food processing. Current Opinion in Food Science, 19, 113–119. https://doi.org/10.1016/j.cofs.2018.03.013
  • Ashraf, M. T., Fang, C., Bochenski, T., Cybulska, I., Alassali, A., Sowunmi, A., Farzanah, R., Brudecki, G. P., Chaturvedi, T., Haris, S., Schmidt, J. E., & Thomsen, M. H. (2016). Estimation of bioenergy potential for local biomass in the United Arab Emirates. Emirates Journal of Food and Agriculture, 28(2), 99–106. https://doi.org/10.9755/ejfa.2015-04-060
  • Baleta, F. N., & Nalleb, J. P. (2016). Species composition, abundance and diversity of seaweeds along the intertidal zone of Nangaramoan, San Vicente, Sta. Ana, Cagayan, Philippines. AACL Bioflux, 9(2), 250–259.
  • Batool, A., & Menaa, F. (2020). Concentration and purification of seaweed components by chromatography methods. In Torres, M. D., Kraan, S., & Dominguez, H. (Eds.), Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications (pp. 315-370). Elsevier. https://doi.org/10.1016/b978-0-12-817943-7.00013-5
  • Baweja, P., Kumar, S., Sahoo, D., & Levine, I. (2016). Biology of seaweeds. In Fleurence, J., & Ira Levine, I. (Eds.), Seaweed in Health and Disease Prevention (pp. 41-106). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802772-1.00003-8
  • Becerra, M., Boutefnouchet, S., Córdoba, O., Vitorino, G. P., Brehu, L., Lamour, I., Laimay, F., Efstathiou, A., Smirlis, D., Michel, S., Kritsanida, M., Flores, M. L., & Grougnet, R. (2015). Antileishmanial activity of fucosterol recovered from Lessonia vadosa Searles (Lessoniaceae) by SFE, PSE and CPC. Phytochemistry Letters, 11, 418–423. https://doi.org/10.1016/j.phytol.2014.12.019
  • Bedoux, G., Hardouin, K., Burlot, A. S., & Bourgougnon, N. (2014). Bioactive components from seaweeds: Cosmetic applications and future development. In Bourgougnon, E. (Ed.), Advances in Botanical Research Volume 71 (pp. 345-378). Elsevier. https://doi.org/10.1016/B978-0-12-408062-1.00012-3
  • Biancarosa, I., Belghit, I., Bruckner, C. G., Liland, N. S., Waagbø, R., Amlund, H., Heesch, S., & Lock, E. J. (2018). Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed. Journal of the Science of Food and Agriculture, 98(5), 2035–2042. https://doi.org/10.1002/jsfa.8798
  • Bouga, M., & Combet, E. (2015). Emergence of seaweed and seaweed-containing foods in the uk: Focus on labeling, iodine content, toxicity and nutrition. Foods, 4(2), 240–253. https://doi.org/10.3390/foods4020240
  • Cecile, L. G., Justine, D., Claire, D.-M., Sandrine, B., Jean-Yves, R., Joel, F., & Jean-Pascal, B. (2015). Achimer Ultrasound-assisted extraction of R-phycoerythrin from Grateloupia turuturu with and without enzyme addition. Algal Research, 12(November), 522–528.
  • Černá, M. (2011). Seaweed proteins and amino acids as nutraceuticals. In Kim, S. -K.(Ed.), Advances in Food and Nutrition Research Volume 64 (pp. 297-312) (1st ed., Vol. 64). Elsevier Inc. https://doi.org/10.1016/B978-0-12-387669-0.00024-7
  • Charoensiddhi, S., Franco, C., Su, P., & Zhang, W. (2015). Improved antioxidant activities of brown seaweed Ecklonia radiata extracts prepared by microwave-assisted enzymatic extraction. Journal of Applied Phycology, 27(5), 2049–2058. https://doi.org/10.1007/s10811-014-0476-2
  • Charrier, B., Abreu, M. H., Araujo, R., Bruhn, A., Coates, J. C., De Clerck, O., Katsaros, C., Robaina, R. R., & Wichard, T. (2017). Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytologist, 216(4), 967–975. https://doi.org/10.1111/nph.14728
  • Chen, K., Ríos, J. J., Pérez-Gálvez, A., & Roca, M. (2017). Comprehensive chlorophyll composition in the main edible seaweeds. Food Chemistry, 228(February), 625–633. https://doi.org/10.1016/j.foodchem.2017.02.036
  • Cheney, D. (2016). Toxic and Harmful Seaweeds. In Fleurence, J., & Levine, I. (Eds.), Seaweed in Health and Disease Prevention (pp. 407-421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802772-1.00013-0
  • Cherry, P., O’hara, C., Magee, P. J., Mcsorley, E. M., & Allsopp, P. J. (2019). Risks and benefits of consuming edible seaweeds. Nutrition Reviews, 77(5), 307–329. https://doi.org/10.1093/nutrit/nuy066
  • Chopin, T., & Tacon, A. G. J. (2021). Importance of Seaweeds and Extractive Species in Global Aquaculture Production. Reviews in Fisheries Science and Aquaculture, 29(2), 139–148. https://doi.org/10.1080/23308249.2020.1810626
  • Cikoš, A. M., Jokić, S., Šubarić, D., & Jerković, I. (2018). Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Marine Drugs, 16(10), 348. https://doi.org/10.3390/md16100348
  • Circuncisão, A. R., Catarino, M. D., Cardoso, S. M., & Silva, A. M. S. (2018). Minerals from macroalgae origin: Health benefits and risks for consumers. Marine Drugs, 16(11), 400. https://doi.org/10.3390/md16110400
  • Cofrades, S., Benedí, J., Garcimartin, A., Sánchez-Muniz, F. J., & Jimenez-Colmenero, F. (2017). A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Research International, 99, 1084–1094. https://doi.org/10.1016/j.foodres.2016.06.029
  • Collins, K. G., Fitzgerald, G. F., Stanton, C., & Ross, R. P. (2016). Looking beyond the terrestrial: The potential of seaweed derived bioactives to treat non-communicable diseases. Marine Drugs, 14(3), 1–31. https://doi.org/10.3390/md14030060
  • Combet, E., Ma, Z. F., Cousins, F., Thompson, B., & Lean, M. E. J. (2014). Low-level seaweed supplementation improves iodine status in iodine-insufficient women. British Journal of Nutrition, 112(5), 753–761. https://doi.org/10.1017/S0007114514001573
  • Cotas, J., Pacheco, D., Gonçalves, A.M., Silva, P., Carvalho, L.G., & Pereira, L. (2021). Seaweeds’ nutraceutical and biomedical potential in cancer therapy: a concise review. Journal of Cancer Metastasis and Treatment, 7, 13. https://doi.org/10.20517/2394-4722.2020.134
  • Dasgupta, A., & Wahed, A. (2014). Effect of Herbal Supplements on Clinical Laboratory Test Results. In Dasgupta, A., & Wahed, A. (Eds.), Clinical Chemistry, Immunology and Laboratory Quality Control: A Comprehensive Review for Board Preparation, Certification and Clinical Practice (pp. 449–459). Elsevier. https://doi.org/10.1016/b978-0-12-407821-5.00025-5
  • De Corato, U., Salimbeni, R., De Pretis, A., Avella, N., & Patruno, G. (2017). Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biology and Technology, 131, 16–30. https://doi.org/10.1016/j.postharvbio.2017.04.011
  • De San, M. (2012). The farming of seaweeds. FAO/IOC. 29p.
  • Del Río, P. G., Gomes-Dias, J. S., Rocha, C. M. R., Romaní, A., Garrote, G., & Domingues, L. (2020). Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 299(October 2019), 122613. https://doi.org/10.1016/j.biortech.2019.122613
  • Desideri, D., Cantaluppi, C., Ceccotto, F., Meli, M. A., Roselli, C., & Feduzi, L. (2016). Essential and toxic elements in seaweeds for human consumption. Journal of Toxicology and Environmental Health-Part A: Current Issues, 79(3), 112–122. https://doi.org/10.1080/15287394.2015.1113598
  • Dobrinčić, A., Pedisić, S., Zorić, Z., Jurin, M., Roje, M., Čož-Rakovac, R., & Dragović-Uzelac, V. (2021). Microwave assisted extraction and pressurized liquid extraction of sulfated polysaccharides from fucus virsoides and Cystoseira barbata. Foods, 10(7), 1481. https://doi.org/10.3390/foods10071481
  • FAO. (2020). Food and Agriculture Organization of United States. The State of World Fisheries and Aquaculture 2020. Sustainability in action. In FAO. https://doi.org/https://doi.org/10.4060/ca9229en
  • FAO. (2021a). Food and Agriculture Organization of United States. Global seaweeds and microalgae production, 1950 – 2019. Food and Agricultural Organization of the United Nations. Rome, June, 2021. pp.5. https://www.fao.org/fishery/en/publications/280709
  • FAO. (2021b). Food and Agriculture Organization of United States. Global status of seaweed production, trade and utilization. Seaweed Innovation Forum Belize, May, 28th.
  • Filippini, M., Baldisserotto, A., Menotta, S., Fedrizzi, G., Rubini, S., Gigliotti, D., Valpiani, G., Buzzi, R., Manfredini, S., & Vertuani, S. (2021). Heavy metals and potential risks in edible seaweed on the market in Italy. Chemosphere, 263, 127983. https://doi.org/10.1016/j.chemosphere.2020.127983
  • Fleurence, J. (2016). Seaweeds as food. In Fleurence, J., & Ira Levine, I. (Eds.), Seaweed in Health and Disease Prevention (pp. 149-167). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802772-1.00005-1
  • Fleurence, J., Morançais, M., & Dumay, J. (2018). Seaweed proteins. In Yada, R. Y. (Ed.), Proteins in Food Processing (Second Edition) (pp. 245-262). Elsevier. https://doi.org/10.1016/B978-0-08-100722-8.00010-3
  • Flora, S. J. S. (2015). Arsenic: Chemistry, occurrence, and exposure. In Flora, S. J. S. (Ed.), Handbook of Arsenic Toxicology (pp. 1-49). https://doi.org/10.1016/B978-0-12-418688-0.00001-0
  • Furuta, T., Miyabe, Y., Yasui, H., Kinoshita, Y., & Kishimura, H. (2016). Angiotensin I converting enzyme inhibitory peptides derived from phycobiliproteins of dulse Palmaria palmata. Marine Drugs, 14(2), 32. https://doi.org/10.3390/md14020032
  • George, G., & Mathew, L. (2017). Anti-oxidant potential of four Chlorophycean members from Kerala Coast. International Journal of Scientific Research, 6(7), 66-68.
  • Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M. (2018). Corrigendum to “A review of macroalgae production, with potential applications in biofuels and bioenergy” [Renew Sustain Energy Rev 54 (2016) 473–481]. Renewable and Sustainable Energy Reviews, 96, 526. https://doi.org/10.1016/j.rser.2018.08.048
  • Gheda, S. F., El-Adawi, H. I., & El-Deeb, N. M. (2016). Antiviral profile of brown and red seaweed polysaccharides against hepatitis c virus. Iranian Journal of Pharmaceutical Research, 15(3), 483–491. https://doi.org/10.22037/ijpr.2016.1944
  • Gnanavel, V., Roopan, S. M., & Rajeshkumar, S. (2019). Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture, 507, 1–6. https://doi.org/10.1016/j.aquaculture.2019.04.004
  • Gómez-Guzmán, M., Rodríguez-Nogales, A., Algieri, F., & Gálvez, J. (2018). Potential role of seaweed polyphenols in cardiovascular-associated disorders. Marine Drugs, 16(8), 250. https://doi.org/10.3390/md16080250
  • Gosch, B. J., Magnusson, M., Paul, N. A., & de Nys, R. (2012). Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. GCB Bioenergy, 4(6), 919–930. https://doi.org/10.1111/j.1757-1707.2012.01175.x
  • Gullón, B., Gagaoua, M., Barba, F. J., Gullón, P., Zhang, W., & Lorenzo, J. M. (2020). Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends in Food Science and Technology, 100, 1–18. https://doi.org/10.1016/j.tifs.2020.03.039
  • Gunathilaka, T. L., Samarakoon, K., Ranasinghe, P., & Peiris, L. D. C. (2020). Antidiabetic potential of marine brown algae - A mini review. Journal of Diabetes Research, 2020, 1230218. https://doi.org/10.1155/2020/1230218
  • Gutiérrez-Rodríguez, A. G., Juárez-Portilla, C., Olivares-Bañuelos, T., & Zepeda, R. C. (2018). Anticancer activity of seaweeds. Drug Discovery Today, 23(2), 434–447. https://doi.org/10.1016/j.drudis.2017.10.019
  • Ha, M., Morrow, M., & Algiers, K. (2021, June 8). Brown algae and diatoms. https://bio.libretexts.org/@go/page/31928
  • Haq, S. H., Al-Ruwaished, G., Al-Mutlaq, M. A., Naji, S. A., Al-Mogren, M., Al-Rashed, S., Ain, Q. T., Al-Amro, A. A., & Al-Mussallam, A. (2019). Antioxidant, anticancer activity and phytochemical analysis of green algae, chaetomorpha collected from the Arabian Gulf. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-55309-1
  • Hardouin, K., Bedoux, G., Burlot, A. S., Donnay-Moreno, C., Bergé, J. P., Nyvall-Collén, P., & Bourgougnon, N. (2016). Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Research, 16, 233–239. https://doi.org/10.1016/j.algal.2016.03.013
  • Hentati, F., Delattre, C., Ursu, A. V., Desbrières, J., Le Cerf, D., Gardarin, C., Abdelkafi, S., Michaud, P., & Pierre, G. (2018). Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydrate Polymers, 198, 589–600. https://doi.org/10.1016/j.carbpol.2018.06.098
  • Hentati, F., Tounsi, L., Djomdi, D., Pierre, G., Delattre, C., Ursu, A. V., Fendri, I., Abdelkafi, S., & Michaud, P. (2020). Bioactive polysaccharides from seaweeds. Molecules, 25(14), 1–29. https://doi.org/10.3390/molecules25143152
  • Hermund, D. B. (2018). Antioxidant properties of seaweed-derived substances. In Qin, Y. (Ed.), Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets (pp. 201-221). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813312-5.00010-8
  • Jesumani, V., Du, H., Aslam, M., Pei, P., & Huang, N. (2019). Potential use of seaweed bioactive compounds in skincare—A review. Marine Drugs, 17(12), 688. https://doi.org/10.3390/md17120688
  • Jiménez-Escrig, A., Gómez-Ordóñez, E., & Rupérez, P. (2011). Seaweed as a source of novel nutraceuticals: Sulfated polysaccharides and peptides. Advances in Food and Nutrition Research, 64, 325–337. https://doi.org/10.1016/B978-0-12-387669-0.00026-0
  • Jumaidin, R., Sapuan, S.M., Jawaid, M., Shak, M.R., & Sahari, J. (2018). Seaweeds as Renewable Sources for Biopolymers and its Composites: A Review. Current Analytical Chemistry, 14(3), 249-267. https://doi.org/10.2174/1573411013666171009164355
  • Kadam, S. U., Tiwari, B. K., Smyth, T. J., & O’Donnell, C. P. (2015). Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics Sonochemistry, 23, 308–316. https://doi.org/10.1016/j.ultsonch.2014.10.007
  • Kalasariya, H. S., Yadav, V. K., Yadav, K. K., Tirth, V., Algahtani, A., Islam, S., Gupta, N., & Jeon, B. H. (2021). Seaweed-based molecules and their potential biological activities: An eco-sustainable cosmetics. Molecules, 26(17), 5313. https://doi.org/10.3390/molecules26175313
  • Kendel, M., Wielgosz-Collin, G., Bertrand, S., Roussakis, C., Bourgougnon, N. B., & Bedoux, G. (2015). Lipid composition, fatty acids and sterols in the seaweeds ulva armoricana, and solieria chordalis from brittany (France): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Marine Drugs, 13(9), 5606–5628. https://doi.org/10.3390/md13095606
  • Khalid, S., Abbas, M., Saeed, F., Bader-Ul-Ain, H., & Ansar Rasul Suleria, H. (2018). Therapeutic Potential of Seaweed Bioactive Compounds. Seaweed Biomaterials. IntechOpen. https://doi.org/10.5772/intechopen.74060
  • Kılınç, B., Cirik, S., Turan, G., Tekogul, H., & Koru, E. (2013). Seaweeds for food and industrial applications. In Muzzalupo, I. (Ed.), Food Industry. IntechOpen. https://doi.org/10.5772/53172
  • Kolanjinathan, K., Ganesh, P., & Saranraj, P. (2014). Pharmacological Importance of Seaweeds: A Review. World Journal of Fish and Marine Sciences, 6(1), 1–15. https://doi.org/10.5829/idosi.wjfms.2014.06.01.76195
  • Kulshreshtha, G., Burlot, A. S., Marty, C., Critchley, A., Hafting, J., Bedoux, G., Bourgougnon, N., & Prithiviraj, B. (2015). Enzyme-assisted extraction of bioactive material from Chondrus crispus and codium fragile and its effect on Herpes simplex virus (HSV-1). Marine Drugs, 13(1), 558–580. https://doi.org/10.3390/md13010558
  • Lee, W. K., Lim, Y. Y., Leow, A. T. C., Namasivayam, P., Ong Abdullah, J., & Ho, C. L. (2017). Biosynthesis of agar in red seaweeds: A review. Carbohydrate Polymers, 164, 23–30. https://doi.org/10.1016/j.carbpol.2017.01.078
  • Liu, X., Wang, S., Cao, S., He, X., Qin, L., He, M., Yang, Y., Hao, J., & Mao, W. (2018). Structural characteristics and anticoagulant property in vitro and in vivo of a seaweed Sulfated Rhamnan. Marine Drugs, 16(7), 243. https://doi.org/10.3390/md16070243
  • Lorenzo, J. M., Agregán, R., Munekata, P. E. S., Franco, D., Carballo, J., Şahin, S., Lacomba, R., & Barba, F. J. (2017). Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs, 15(11), 360. https://doi.org/10.3390/md15110360
  • Lucas, W. J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S. R., Helariutta, Y., He, X. Q., Fukuda, H., Kang, J., Brady, S. M., Patrick, J. W., Sperry, J., Yoshida, A., López-Millán, A. F., Grusak, M. A., & Kachroo, P. (2013). The plant vascular system: Evolution, development and functions. Journal of Integrative Plant Biology, 55(4), 294–388. https://doi.org/10.1111/jipb.12041
  • Luo, X., Su, P., & Zhang, W. (2015). Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Marine Drugs, 13(7), 4231–4254. https://doi.org/10.3390/md13074231
  • Machmudah, S., Wahyudiono, Kanda, H., & Goto, M. (2018). Supercritical fluids extraction of valuable compounds from algae: Future perspectives and challenges. Engineering Journal, 22(5), 13–30. https://doi.org/10.4186/ej.2018.22.5.13
  • Mahadevan, K. (2015). Seaweeds: A sustainable food source. In Tivari, K., & Troy, D. J. (Eds.), Seaweed Sustainability: Food and Non-Food Applications (pp. 347-364) Elsevier. https://doi.org/10.1016/B978-0-12-418697-2.00013-1
  • Makkar, H. P. S., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1–17. https://doi.org/10.1016/j.anifeedsci.2015.09.018
  • Martínez–Hernández, G. B., Castillejo, N., Carrión–Monteagudo, M. del M., Artés, F., & Artés-Hernández, F. (2018). Nutritional and bioactive compounds of commercialized algae powders used as food supplements. Food Science and Technology International, 24(2), 172–182. https://doi.org/10.1177/1082013217740000
  • Michalak, I., Górka, B., Wieczorek, P. P., Rój, E., Lipok, J., Łęska, B., Messyasz, B., Wilk, R., Schroeder, G., Dobrzyńska-Inger, A., & Chojnacka, K. (2016). Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. European Journal of Phycology, 51(3), 243–252. https://doi.org/10.1080/09670262.2015.1134813
  • Michalak, I., Tuhy, Ł., & Chojnacka, K. (2015). Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chemistry, 13(1), 1183–1195. https://doi.org/10.1515/chem-2015-0132
  • Misra, N. N., Rai, D. K., & Hossain, M. (2015). Analytical techniques for bioactives from seaweed. In Tivari, K., & Troy, D. J. (Eds.), Seaweed Sustainability: Food and Non-Food Applications (pp. 271–287). Elsevier Inc. https://doi.org/10.1016/B978-0-12-418697-2.00010-6
  • Mišurcová, L., Ambrožová, J., & Samek, D. (2011). Seaweed lipids as nutraceuticals. Advances in Food and Nutrition Research, 64, 339–355. https://doi.org/10.1016/B978-0-12-387669-0.00027-2
  • Montero, L., del Pilar Sánchez-Camargo, A., Ibáñez, E., & Gilbert-López, B. (2017). Phenolic compounds from edible algae: Bioactivity and health benefits. Current Medicinal Chemistry, 25(37), 4808–4826. https://doi.org/10.2174/0929867324666170523120101
  • Morais, T., Cotas, J., Pacheco, D., & Pereira, L. (2021). Seaweeds compounds: An ecosustainable source of cosmetic ingredients? Cosmetics, 8(1), 1–28. https://doi.org/10.3390/COSMETICS8010008
  • Morais, T., Inácio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L., & Bahcevandziev, K. (2020). Seaweed potential in the animal feed: A review. Journal of Marine Science and Engineering, 8(8), 1–24. https://doi.org/10.3390/JMSE8080559
  • Moubayed, N. M. S., Al Houri, H. J., Al Khulaifi, M. M., & Al Farraj, D. A. (2017). Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi Journal of Biological Sciences, 24(1), 162–169. https://doi.org/10.1016/j.sjbs.2016.05.018
  • Mouritsen, O. G., Rhatigan, P., & Pérez-Lloréns, J. L. (2018). World cuisine of seaweeds: Science meets gastronomy. International Journal of Gastronomy and Food Science, 14, 55–65. https://doi.org/10.1016/j.ijgfs.2018.09.002
  • Murai, U., Yamagishi, K., Kishida, R., & Iso, H. (2021). Impact of seaweed intake on health. European Journal of Clinical Nutrition, 75(6), 877–889. https://doi.org/10.1038/s41430-020-00739-8
  • Nakhate, P., & van der Meer, Y. (2021). A systematic review on seaweed functionality: A sustainable bio-based materia. Sustainability, 13(11), 6174. https://doi.org/10.3390/su13116174
  • Naseri, A., Marinho, G. S., Holdt, S. L., Bartela, J. M., & Jacobsen, C. (2020). Enzyme-assisted extraction and characterization of protein from red seaweed Palmaria palmata. Algal Research, 47, 101849. https://doi.org/10.1016/j.algal.2020.101849
  • Nasmia, Rosyida, E., Masyahoro, A., Putera F. H. A., Natsir, S. (2021). The utililzation of seaweed-based liquid organic fertilizer to stimulate Gracilaria verrucosa growth and quality. International Journal of Environmental Science and Technology, 18, 1637-15644. https://doi.org/10.1007/s13762-020-02921-8
  • National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). (2016). Hyperthyroidism (Overactive Thyroid). Retrieved on June 28, 2021, from https://www.nih.gov/
  • Nazarudin, M. F., Yusoff, F., Idrus, E. S., & Aliyu-Paiko, M. (2020). Brown seaweed Sargassum polycystum as dietary supplement exhibits prebiotic potentials in Asian sea bass Lates calcarifer fingerlings. Aquaculture Reports, 18, 100488. https://doi.org/10.1016/j.aqrep.2020.100488
  • Nešić, A., Cabrera-Barjas, G., Dimitrijević-Branković, S., Davidović, S., Radovanović, N., & Delattre, C. (2019). Prospect of polysaccharide-based materials as advanced food packaging. Molecules, 25(1), 135. https://doi.org/10.3390/molecules25010135
  • Olsson, J., Toth, G. B., & Albers, E. (2020). Biochemical composition of red, green and brown seaweeds on the Swedish west coast. Journal of Applied Phycology, 32(5), 3305–3317. https://doi.org/10.1007/s10811-020-02145-w
  • Otero, P., Quintana, S. E., Reglero, G., Fornari, T., & García-Risco, M. R. (2018). Pressurized Liquid Extraction (PLE) as an innovative green technology for the effective enrichment of galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Marine Drugs, 16(5), 156. https://doi.org/10.3390/md16050156
  • Pal, A., Kamthania, M. C., & Kumar, A. (2014). Bioactive compounds and properties of seaweeds—A Review. Open Access Library Journal, 01(04), e752. https://doi.org/10.4236/oalib.1100752
  • Palstra, A. P., Kals, J., Garcia, A. B., Dirks, R. P., & Poelman, M. (2018). Immunomodulatory effects of dietary seaweeds in LPS challenged Atlantic Salmon Salmo salar as determined by deep RNA sequencing of the head kidney transcriptome. Frontiers in Physiology, 9, 625. https://doi.org/10.3389/fphys.2018.00625
  • Peñalver, R., Lorenzo, J. M., Ros, G., Amarowicz, R., Pateiro, M., & Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs, 18(6), 301. https://doi.org/10.3390/md18060301
  • Pereira, L., & Cotas, J. (2019). Historical use of seaweed as an agricultural fertilizer in the European Atlantic area. In Pereira, L., Bahcevandziev, K., & Joshi, N. H. (Eds.), Seaweeds as plant fertilizer, agricultural biostimulants and animal fodder (pp. 1–22). CRC Press. https://doi.org/10.1201/9780429487156-1
  • Pérez, M. J., Falqué, E., & Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14(3), 1–38. https://doi.org/10.3390/md14030052
  • Pérez-López, P., Balboa, E. M., González-García, S., Domínguez, H., Feijoo, G., & Moreira, M. T. (2014). Comparative environmental assessment of valorization strategies of the invasive macroalgae Sargassum muticum. Bioresource Technology, 161, 137–148. https://doi.org/10.1016/j.biortech.2014.03.013
  • Praveen, M. A., Parvathy, K. R. K., Balasubramanian, P., & Jayabalan, R. (2019). An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends in Food Science and Technology, 92, 46–64. https://doi.org/10.1016/j.tifs.2019.08.011
  • Premarathna, A. D., Amcp, K., Jayasooriya, A. P., De, J., & Adhikari, R. B. (2019a). Distribution and diversity of seaweed species in south coastal waters in Sri Lanka. Journal of Oceanography and Marine Research, 7(S1), 196. https://doi.org/10.35248/2572-3103.19.7.196
  • Premarathna, A. D., Ranahewa, T. H., Wijesekera, S., & Wijesundera, K. K. (2019b). Wound healing properties of aqueous extracts of Sargassum illicifolium : An in vitro assay wound healing properties of aqueous extracts of Sargassum illicifolium : An in vitro assay. Wound Medicine, 24(1), 1-7. https://doi.org/10.1016/j.wndm.2018.11.001
  • Quitain, A. T., Kai, T., Sasaki, M., & Goto, M. (2013). Microwave-hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida. Industrial and Engineering Chemistry Research, 52(23), 7940–7946. https://doi.org/10.1021/ie400527b
  • Ramnani, P., Chitarrari, R., Tuohy, K., Grant, J., Hotchkiss, S., Philp, K., Campbell, R., Gill, C., & Rowland, I. (2012). Invitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe, 18(1), 1–6. https://doi.org/10.1016/j.anaerobe.2011.08.003
  • Rao, P. S., Periyasamy, C., Kumar, K. S., Rao, A. S., & Anantharaman, P. (2018). Seaweeds: Distribution, production and uses. In Noor, M. N., Bahtnagar, S. K., & Sinha, S. K. (Eds.), Bioprospecting of algae-2018 (pp. 59-78). Society for Plant Research India.
  • Rengasamy, K. R., Mahomoodally, M. F., Aumeeruddy, M. Z., Zengin, G., Xiao, J., & Kim, D. H. (2020). Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food and Chemical Toxicology, 135, 111013. https://doi.org/10.1016/j.fct.2019.111013
  • Rhein-Knudsen, N., Ale, M. T., Ajalloueian, F., Yu, L., & Meyer, A. S. (2017). Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids, 63, 50–58. https://doi.org/10.1016/j.foodhyd.2016.08.023
  • Rodrigues, D., Sousa, S., Silva, A., Amorim, M., Pereira, L., Rocha-Santos, T. A. P., Gomes, A. M. P., Duarte, A. C., & Freitas, A. C. (2015). Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the Central West Coast of Portugal. Journal of Agricultural and Food Chemistry, 63(12), 3177–3188. https://doi.org/10.1021/jf504220e
  • Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86(3), 1137–1144. https://doi.org/10.1016/j.carbpol.2011.06.006
  • Ruban, P., & Govindasamy, C. (2018). Seaweed fertilizers in modern agriculture. International Journal of Research Publications, 14(1), 100141102018386.
  • Rubio, C., Napoleone, G., Luis-González, G., Gutiérrez, A. J., González-Weller, D., Hardisson, A., & Revert, C. (2017). Metals in edible seaweed. Chemosphere, 173, 572–579. https://doi.org/10.1016/j.chemosphere.2017.01.064
  • Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D., & Kirk, P. M. (2015). A higher level classification of all living organisms. PLoS ONE, 10(4), 1–60. https://doi.org/10.1371/journal.pone.0119248
  • Rupérez, P., Gómez-Ordóñez, E., & Jiménez-Escrig, A. (2013). Biological activity of algal sulfated and nonsulfated polysaccharides. In Hernández-Ledesma, B., & Herrero, M. (Eds.), Bioactive Compounds from Marine Foods: Plant and Animal Sources (pp. 219–247). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118412893.ch11
  • Sabeena, S. F., Alagarsamy, S., Sattari, Z., Al-Haddad, S., Fakhraldeen, S., Al-Ghunaim, A., & Al-Yamani, F. (2020). Enzyme-assisted extraction of bioactive compounds from brown seaweeds and characterization. Journal of Applied Phycology, 32(1), 615–629. https://doi.org/10.1007/s10811-019-01906-6
  • Saito, H., & Lal, T. M. (2019). Antimycotic activity of seaweed extracts (Caulerpa lentillifera and Eucheuma cottonii) against two genera of marine oomycetes, Lagenidium spp. and Haliphthoros spp. Biocontrol Science, 24(2), 73–80. https://doi.org/10.4265/BIO.24.73
  • Sánchez-Camargo, A. del P., Ibáñez, E., Cifuentes, A., & Herrero, M. (2017). Bioactives obtained from plants, seaweeds, microalgae and food by-products using pressurized liquid extraction and supercritical fluid extraction. Comprehensive Analytical Chemistry, 76, 27–51. https://doi.org/10.1016/bs.coac.2017.01.001
  • Saraswati, Giriwono, P. E., Iskandriati, D., Tan, C. P., & Andarwulan, N. (2019). Sargassum seaweed as a source of anti-inflammatory substances and the potential insight of the tropical species: A review. Marine Drugs, 17(10), 1–35. https://doi.org/10.3390/md17100590
  • Seca, A. M. L., & Pinto, D. C. G. A. (2018). Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Marine Drugs, 16(7), 237. https://doi.org/10.3390/md16070237
  • Seong, H., Bae, J. H., Seo, J. S., Kim, S. A., Kim, T. J., & Han, N. S. (2019). Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. Journal of Functional Foods, 57, 408–416. https://doi.org/10.1016/j.jff.2019.04.014
  • Sevimli-Gur, C., & Yesil-Celiktas, O. (2019). Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids. Molecular Biology Reports, 46(4), 3691–3699. https://doi.org/10.1007/s11033-019-04812-9
  • Shelar, P. S., Kumar, V., & Gauri, S. (2012). Medicinal value of seaweeds and its applications–A review. Continental Journal of Pharmacology and Toxicology Research, 5(2), 1–22.
  • Silva, J., Alves, C., Pinteus, S., Mendes, S., & Pedrosa, R. (2018). Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model. BMC Complementary and Alternative Medicine, 18(1), 4–13. https://doi.org/10.1186/s12906-018-2103-2
  • Singh, S., Gaikwad, K. K., Park, S. Il, & Lee, Y. S. (2017). Microwave-assisted step reduced extraction of seaweed (Gelidiella aceroso) cellulose nanocrystals. International Journal of Biological Macromolecules, 99, 506–510. https://doi.org/10.1016/j.ijbiomac.2017.03.004
  • Škrovánková, S. (2011). Seaweed vitamins as nutraceuticals. Advances in Food and Nutrition Research, 64, 357–369. https://doi.org/10.1016/B978-0-12-387669-0.00028-4
  • Subaryono, S. (2018). Carageenan oligosaccharides: Biological activity and its development opportunities in Indonesia. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 13(1), 35-43.
  • Sudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91, 165–179. https://doi.org/10.1016/j.rser.2018.03.100
  • Sun, Z., Dai, Z., Zhang, W., Fan, S., Liu, H., Liu, R., & Zhao, T. (2018). Antiobesity, antidiabetic, antioxidative, and antihyperlipidemic activities of bioactive seaweed substances. In Qin, Y. (Ed.), Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets (pp. 239-253). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813312-5.00012-1
  • Suryanarayana Murty, U., & Banerjee, A. K. (2011). Seaweeds: The wealth of oceans. In Kim, S. -K. (Ed.), Handbook of Marine Macroalgae: Biotechnology and Applied Phycology (pp. 36–44). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119977087.ch2
  • Susanto, E., Fahmi, A. S., Hosokawa, M., & Miyashita, K. (2019). Variation in lipid components from 15 species of tropical and temperate seaweeds. Marine Drugs, 17(11), 630. https://doi.org/10.3390/md17110630
  • Teas, J., Vena, S., Cone, D. L., & Irhimeh, M. (2013). The consumption of seaweed as a protective factor in the etiology of breast cancer: Proof of principle. Journal of Applied Phycology, 25(3), 771–779. https://doi.org/10.1007/s10811-012-9931-0
  • Thao My, P. Le, Sung, V. Van, Dat, T. Do, Nam, H. M., Phong, M. T., & Hieu, N. H. (2020). Ultrasound‐assisted extraction of fucoidan from Vietnamese brown Seaweed Sargassum mcclurei and testing bioactivities of the extract. ChemistrySelect, 5(14), 4371–4380. https://doi.org/10.1002/slct.201903818
  • van Wyk, A. S., & Prinsloo, G. (2020). Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. South African Journal of Botany, 133, 54–62. https://doi.org/10.1016/j.sajb.2020.06.031
  • Vásquez, V., Martínez, R., & Bernal, C. (2019). Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. Journal of Applied Phycology, 31(3), 1999–2010. https://doi.org/10.1007/s10811-018-1712-y
  • Vatsos, I. N., & Rebours, C. (2015). Seaweed extracts as antimicrobial agents in aquaculture. Journal of Applied Phycology, 27(5), 2017–2035. https://doi.org/10.1007/s10811-014-0506-0
  • Venugopal, V. (2019). Sulfated and non-sulfated polysaccharides from seaweeds and their uses: An overview. ECronicon Nutrition, 2, 126–141.
  • Woo, C. S. J., Lau, J. S. H., & El-Nezami, H. (2012). Herbal medicine. Toxicity and recent trends in assessing their potential toxic effects. In Shyur, L. F., & Lau, A. S. Y. (Eds.), Advances in Botanical Research Volume 62 (pp. 365-384). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394591-4.00009-X
  • Yeh, T. S., Hung, N. H., & Lin, T. C. (2014). Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake. Journal of Food and Drug Analysis, 22(2), 189–196. https://doi.org/10.1016/j.jfda.2014.01.014
  • Yim, M. J., Lee, J. M., Choi, G., Cho, S. Y., & Lee, D. S. (2019). The antihyperlipidemic effect of alginate-free residue from sea tangle in hyperlipidemic rats. Fisheries and Aquatic Sciences, 22(1), 4–9. https://doi.org/10.1186/s41240-019-0144-1
  • Yokoi, K., & Konomi, A. (2012). Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regulatory Toxicology and Pharmacology, 63(2), 291–297. https://doi.org/10.1016/j.yrtph.2012.04.006
  • Youssouf, L., Lallemand, L., Giraud, P., Soulé, F., Bhaw-Luximon, A., Meilhac, O., D’Hellencourt, C. L., Jhurry, D., & Couprie, J. (2017). Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydrate Polymers, 166, 55–63. https://doi.org/10.1016/j.carbpol.2017.01.041
  • Yu, K. X., Jantan, I., Ahmad, R., & Wong, C. L. (2014). The major bioactive components of seaweeds and their mosquitocidal potential. Parasitology Research, 113(9), 3121–3141. https://doi.org/10.1007/s00436-014-4068-5
  • Zamani, S., Khorasaninejad, S., & Kashefi, B. (2013). The importance role of seaweeds of some characters of plant. International Journal of Agriculture and Crop Sciences, 5(16), 1789–1793.
  • Zava, T. T., & Zava, D. T. (2011). Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Research, 4(1), 1–7. https://doi.org/10.1186/1756-6614-4-14
  • Zheng, J., Chen, Y., Yao, F., Chen, W., & Shi, G. (2012). Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of gloiopeltis tenax. Marine Drugs, 10(12), 2634–2647. https://doi.org/10.3390/md1012263
Toplam 145 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balıkçılık Yönetimi
Bölüm Review Paper
Yazarlar

Merilyn Amlanı 0000-0002-4038-7313

Senem Yetgin 0000-0003-4352-4544

Yayımlanma Tarihi 28 Mart 2022
Gönderilme Tarihi 9 Kasım 2021
Kabul Tarihi 17 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 1

Kaynak Göster

APA Amlanı, M., & Yetgin, S. (2022). Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods. Marine Science and Technology Bulletin, 11(1), 9-31. https://doi.org/10.33714/masteb.1021121
AMA Amlanı M, Yetgin S. Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods. Mar. Sci. Tech. Bull. Mart 2022;11(1):9-31. doi:10.33714/masteb.1021121
Chicago Amlanı, Merilyn, ve Senem Yetgin. “Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods”. Marine Science and Technology Bulletin 11, sy. 1 (Mart 2022): 9-31. https://doi.org/10.33714/masteb.1021121.
EndNote Amlanı M, Yetgin S (01 Mart 2022) Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods. Marine Science and Technology Bulletin 11 1 9–31.
IEEE M. Amlanı ve S. Yetgin, “Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods”, Mar. Sci. Tech. Bull., c. 11, sy. 1, ss. 9–31, 2022, doi: 10.33714/masteb.1021121.
ISNAD Amlanı, Merilyn - Yetgin, Senem. “Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods”. Marine Science and Technology Bulletin 11/1 (Mart 2022), 9-31. https://doi.org/10.33714/masteb.1021121.
JAMA Amlanı M, Yetgin S. Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods. Mar. Sci. Tech. Bull. 2022;11:9–31.
MLA Amlanı, Merilyn ve Senem Yetgin. “Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods”. Marine Science and Technology Bulletin, c. 11, sy. 1, 2022, ss. 9-31, doi:10.33714/masteb.1021121.
Vancouver Amlanı M, Yetgin S. Seaweeds: Bioactive Components and Properties, Potential Risk Factors, Uses, Extraction and Purification Methods. Mar. Sci. Tech. Bull. 2022;11(1):9-31.

27116