Review
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 4, 397 - 415, 31.12.2022
https://doi.org/10.33714/masteb.1162688

Abstract

References

  • Altug, G., Gurun, S., Cardak, M., Ciftci, P. S., & Kalkan, S. (2012). The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Marine Environmental Research, 81, 35–42. https://doi.org/10.1016/j.marenvres.2012.08.005
  • Azar Daryany, M. K., Massudi, R., & Hosseini, M. (2008). Photoinactivation of Escherichia coli and Saccharomyces cerevisiae suspended in phosphate-buffered saline-A using 266- and 355-nm pulsed ultraviolet light. Current Microbiology, 56(5), 423–428. https://doi.org/10.1007/s00284-008-9110-3
  • Bailey, S. A., Brydges, T., Casas-Monroy, O., Kydd, J., Linley, R. D., Rozon, R. M., & Darling, J. A. (2022). First evaluation of ballast water management systems on operational ships for minimizing introductions of nonindigenous zooplankton. Marine Pollution Bulletin, 182, 113947. https://doi.org/10.1016/J.MARPOLBUL.2022.113947
  • Balaji, R., Yaakob, O., Adnan, F. A., & Koh, K. K. (2014). Design verification of heat exchanger for ballast water treatment. Jurnal Teknologi (Sciences and Engineering), 66(2), 61–65. https://doi.org/10.11113/jt.v66.2485
  • Bax, N., Williamson, A., Aguero, M., Gonzalez, E., & Geeves, W. (2003). Marine invasive alien species: A threat to global biodiversity. Marine Policy, 27(4), 313–323. https://doi.org/10.1016/S0308-597X(03)00041-1
  • Benson, A. J., Raikow, D., Larson, J., Fusaro, A., & Bogdanoff, A. K. (2022). Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database. Gainesville, FL. https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=5
  • Berdnikov, S. V., Selyutin, V. V., Vasilchenko, V. V., & Caddy, J. F. (1999). Trophodynamic model of the Black and Azov Sea pelagic ecosystem: consequences of the comb jelly, Mnemiopsis leydei, invasion. Fisheries Research, 42(3), 261–289. https://doi.org/10.1016/S0165-7836(99)00049-1
  • Bilgin Güney, C. (2022). Optimization of operational parameters of pneumatic system for ballast tank sediment reduction with experimental and ANN applications. Ocean Engineering, 259, 111927. https://doi.org/10.1016/J.OCEANENG.2022.111927
  • Bilgin Güney, C., & Yonsel, F. (2013). Electrochemical cell applications for ballast water treatment. Marine Technology Society Journal, 47(1), 134–145. https://doi.org/10.4031/MTSJ.47.1.9
  • Bilgin Güney, C., Danışman, D. B., & Ertürk Bozkurtoğlu, Ş. N. (2020). Reduction of ballast tank sediment: Evaluating the effect of minor structural changes and developing a pneumatic cleaning system. Ocean Engineering, 203, 107204. https://doi.org/10.1016/j.oceaneng.2020.107204
  • Bilgin Güney, C., Ertürk Bozkurtoğlu, Ş. N., Danışman, D. B., & Yonsel, F. (2016). Another challenge: Sediments of the ballast tanks. 1st International Congress on Ship and Marine Technology; “Green Technologies.” https://www.gmo.org.tr/GMO-SHIPMAR
  • Briski, E., Gollasch, S., David, M., Linley, R. D., Casas-Monroy, O., Rajakaruna, H., & Bailey, S. A. (2015). Combining ballast water exchange and treatment to maximize prevention of species introductions to freshwater ecosystems. Environmental Science and Technology, 49(16), 9566–9573. https://doi.org/10.1021/acs.est.5b01795
  • Burtle, G. J. (2014). Invasive aquatic animals. Encyclopedia of Agriculture and Food Systems, 2014, 58–65. https://doi.org/10.1016/B978-0-444-52512-3.00203-5
  • Butrón, A., Orive, E., & Madariaga, I. (2011). Potential risk of harmful algae transport by ballast waters: The case of Bilbao Harbour. Marine Pollution Bulletin, 62(4), 747–757. https://doi.org/10.1016/j.marpolbul.2011.01.008
  • Campara, L., Francic, V., Maglic, L., & Hasanspahic, N. (2019). Overview and comparison of the IMO and the US Maritime Administration ballast water management regulations. Journal of Marine Science and Engineering, 7(9), 283. https://doi.org/10.3390/jmse7090283
  • Carlton, J. T. (1979). History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific Coast of North America. [Ph.D. Thesis. University of California].
  • Casas-Monroy, O., Kydd, J., Rozon, R. M., & Bailey, S. A. (2022). Assessing the performance of four indicative analysis devices for ballast water compliance monitoring, considering organisms in the size range ≥10 to <50 μm. Journal of Environmental Management, 317, 115300. https://doi.org/10.1016/J.JENVMAN.2022.115300
  • Casas-Monroy, O., Linley, R. D., Chan, P. S., Kydd, J., Vanden Byllaardt, J., & Bailey, S. (2018). Evaluating efficacy of filtration + UV-C radiation for ballast water treatment at different temperatures. Journal of Sea Research, 133, 20–28. https://doi.org/10.1016/J.SEARES.2017.02.001
  • Cha, H. G., Seo, M. H., Lee, H. Y., Lee, J. H., Lee, D. S., Shin, K., & Choi, K. H. (2015). Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide. Marine Pollution Bulletin, 95(1), 315–323. https://doi.org/10.1016/J.MARPOLBUL.2015.03.025
  • Cirik, Ş., & Akçalı, B. (2002). Denizel ortama yabancı türlerin taşınıp yerleşmesi: biyolojik işgalin kontrolü, hukuksal, ekolojik ve ekonomik yönleri. E.U. Journal of Fisheries & Aquatic Sciences, 19, 507–527.
  • Cohen, A. N., & Dobbs, F. C. (2015). Failure of the public health testing program for ballast water treatment systems. Marine Pollution Bulletin, 91(1), 29–34. https://doi.org/10.1016/J.MARPOLBUL.2014.12.031
  • Cvetković, M., Kompare, B., & Klemenčič, A. K. (2015). Application of hydrodynamic cavitation in ballast water treatment. Environmental Science and Pollution Research, 22(10), 7422–7438. https://doi.org/10.1007/s11356-015-4360-7
  • de Kozlowski, S., Page, C., & Whetstone, J. (2002). Zebra Mussels in South Carolina: The Potential Risk of Infestation. Report, S.C. Department of Natural Resources, S.C. Sea Grant Consortium, Clemson University.
  • De Lafontaine, Y., Despatie, S. P., Veilleux, É., & Wiley, C. (2009). Onboard ship evaluation of the effectiveness and the potential environmental effects of PERACLEAN® Ocean for ballast water treatment in very cold conditions. Environmental Toxicology, 24(1), 49–65. https://doi.org/10.1002/tox.20394
  • de Lafontaine, Yves, Despatie, S. P., & Wiley, C. (2008). Effectiveness and potential toxicological impact of the PERACLEAN® Ocean ballast water treatment technology. Ecotoxicology and Environmental Safety, 71(2), 355–369. https://doi.org/10.1016/j.ecoenv.2007.10.033
  • Doblin, M. A., & Dobbs, F. C. (2006). Setting a size-exclusion limit to remove toxic dinoflagellate cysts from ships’ ballast water. Marine Pollution Bulletin, 52(3), 259–263. https://doi.org/10.1016/j.marpolbul.2005.12.014
  • Dobroski, N., Takata, L., Scianni, C., & Falkner, M. (2007). Assessment of the efficacy, availability and environmental impacts of ballast water treatment systems for use in California waters. Produced for the California State Legislature.
  • Dölle, K., & Kurzmann, D. E. (2020). The freshwater mollusk Dreissena polymorpha (zebra mussel) - A review: Living, prospects and jeopardies. Asian Journal of Environment & Ecology, 13(2), 1–17. https://doi.org/10.9734/ajee/2020/v13i230176
  • Dong, Y., Zhang, H., Wu, H., Xue, J., Liu, Y., & Jiang, X. (2021). Invasion risk to Yangtze River Estuary posed by resting eggs in ballast sediments from transoceanic ships. Journal of Experimental Marine Biology and Ecology, 545, 151627. https://doi.org/10.1016/J.JEMBE.2021.151627
  • Drillet, G. (2016). Protect aquaculture from ship pathogens. Nature, 539, 31. https://doi.org/10.1038/539031d
  • European Environment Agency. (2021). Pathways of introduction of marine non-indigenous species to European seas. https://www.eea.europa.eu/data-and-maps/indicators/trends-in-marine-alien-species-1/assessment
  • Fuchs, R., & de Wilde, I. (2003). Peraclean® Ocean – A potentially environmentally friendly and effective treatment option for ballast water. 2nd International Ballast Water Treatment R&D Symposium (Issue 02).
  • Fuchs, R., Steiner, N., de Wilde, I., & Voigt, M. (2001). Peraclean® Ocean – a Potential Ballast Water Treatment Option. 1st International Ballast Water Treatment R&D Symposium, pp. 76–80.
  • Gavand, M. R., McClintock, J. B., Amsler, C. D., Peters, R. W., & Angus, R. A. (2007). Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: A prospective treatment to eradicate invasive organisms from ballast water. Marine Pollution Bulletin, 54(11), 1777–1788. https://doi.org/10.1016/j.marpolbul.2007.07.012
  • Glomski, L. M. (2015). Zebra mussel chemical control guide - ERDC/EL TR-15-9 (Issue July).
  • Gollasch, S. (2006). Overview on introduced aquatic species in European navigational and adjacent waters. Helgoland Marine Research, 60(2), 84–89. https://doi.org/10.1007/s10152-006-0022-y
  • Gregg, M. D., & Hallegraeff, G. M. (2007). Efficacy of three commercially available ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria. Harmful Algae, 6(4), 567–584. https://doi.org/10.1016/j.hal.2006.08.009
  • Griffiths, R. W., Schloesser, D. W., Leach, J. H., & Kovalak, W. P. (1991). Distribution and dispersal of the zebra mussel (Dreissena polymorpha) in the Great Lakes region. Canadian Journal of Fisheries and Aquatic Sciences, 48(8), 1381–1388. https://doi.org/10.1139/f91-165
  • Grigorovich, I. A., Colautti, R. I., Mills, E. L., Holeck, K., Ballert, A. G., & MacIsaac, H. J. (2003). Ballast-mediated animal introductions in the Laurentian Great Lakes: Retrospective and prospective analyses. Canadian Journal of Fisheries and Aquatic Sciences, 60(6), 740–756. https://doi.org/10.1139/f03-053
  • Guo, M., Hu, H., Bolton, J. R., & El-Din, M. G. (2009). Comparison of low- and medium-pressure ultraviolet lamps: Photoreactivation of Escherichia coli and total coliforms in secondary effluents of municipal wastewater treatment plants. Water Research, 43(3), 815–821. https://doi.org/10.1016/j.watres.2008.11.028
  • Hallegraeff, G. M. (2015a). Transport of harmful marine microalgae via ship’s ballast water: Management and mitigation with special reference to the Arabian Gulf region. Aquatic Ecosystem Health and Management, 18(3), 290–298. https://doi.org/10.1080/14634988.2015.1027138
  • Hallegraeff, G. M. (2015b). Transport of harmful marine microalgae via ship’s ballast water: Management and mitigation with special reference to the Arabian Gulf region. Aquatic Ecosystem Health and Management, 18(3), 290–298. https://doi.org/10.1080/14634988.2015.1027138
  • Hallegraeff, G. M., & Bolch, C. J. (1991). Transport of toxic dinoflagellate cysts via ships’ ballast water. Marine Pollution Bulletin, 22(1), 27–30. https://doi.org/10.1016/0025-326X(91)90441-T
  • Hess-Erga, O. K., Attramadal, K. J. K., & Vadstein, O. (2008). Biotic and abiotic particles protect marine heterotrophic bacteria during UV and ozone disinfection. Aquatic Biology, 4(2), 147–154. https://doi.org/10.3354/ab00105
  • Hess-Erga, O. K., Moreno-Andrés, J., Enger, Ø., & Vadstein, O. (2019). Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. Science of The Total Environment, 657, 704–716. https://doi.org/10.1016/J.SCITOTENV.2018.12.004
  • Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3–22. https://doi.org/10.1016/j.watres.2005.10.030
  • Holm, E. R., Stamper, D. M., Brizzolara, R. A., Barnes, L., Deamer, N., & Burkholder, J. A. M. (2008). Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast water. Marine Pollution Bulletin, 56(6), 1201–1208. https://doi.org/10.1016/j.marpolbul.2008.02.007
  • Hwang, J., Park, S. Y., Lee, S., & Lee, T. K. (2018). High diversity and potential translocation of DNA viruses in ballast water. Marine Pollution Bulletin, 137, 449–455. https://doi.org/10.1016/J.MARPOLBUL.2018.10.053
  • IMO. (2004). International Convention for the Control and Management of Ships’ Ballast Water and Sediments. International Maritime Organization. https://doi.org/10.1017/CBO9781107415324.004
  • IMO. (2021). List of type approvals for ballast water management systems that are in accordance with the 2016 Guidelines (G8) or the BWMS Code (resolution MEPC.279(70) or MEPC.300(72)). https://www.imo.org/en
  • Jang, P. G., & Cha, H. G. (2020). Long-term changes of disinfection byproducts in treatment of simulated ballast water. Ocean Science Journal, 55(2), 265–277. https://doi.org/10.1007/s12601-020-0015-9
  • Johengen, T., Reid, D., Fahnenstiel, G., MacIsaac, H., Dobbs, F., Doblin, M., Ruiz, G., Jenkins, P., & Jenkins, P. T. (2005). Assessment of transoceanic NOBOB vessels and low-salinity ballast water as vectors for non-indigenous species introductions to the Great Lakes. In A Final Report for the Great Lakes NOBOB Project.
  • Joo, J., Park, D., Rhee, T., & Lee, J. (2022). Engineering perspective of electrochlorination system for ballast water. Journal of Advanced Marine Engineering and Technology, 46(3), 150–155. https://doi.org/10.5916/jamet.2022.46.3.150
  • Joyce, E., Phull, S. S., Lorimer, J. P., & Mason, T. J. (2003). The development and evaluation of ultrasound for the treatment of bacterial suspensions: A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10(6), 315–318. https://doi.org/10.1016/S1350-4177(03)00101-9
  • Jungfer, C., Schwartz, T., & Obst, U. (2007). UV-induced dark repair mechanisms in bacteria associated with drinking water. Water Research, 41(1), 188–196. https://doi.org/10.1016/j.watres.2006.09.001
  • Kazumi, J. (2007). Ballast Water Treatment Technologies and Their Application for Vessel Entering the Great Lakes via the St. Lawrence Seaway. Transportation Research Board Special Report 291. Great Lakes Shipping, Trade, and Aquatic Invasive Species. Prepared for Committee on the St. Lawrence Seaway: Options to Eliminate Introduction of Nonindigenous Species into the Great Lakes, Phase 2 Transportation Research Board and Division on Earth and Life Studies
  • Kideys, A. E. (1994). Recent dramatic changes in the Black Sea ecosystem: The reason for the sharp decline in Turkish anchovy fisheries. Journal of Marine Systems, 5(2), 171–181. https://doi.org/10.1016/0924-7963(94)90030-2
  • Kim, S. J., & Jang, S. K. (2009). Corrosion characteristics of steel in seawater containing various chloride concentrations generated by electrochemical method. Transactions of Nonferrous Metals Society of China, 19(Supplement 1), 50-55. https://doi.org/10.1016/S1003-6326(10)60244-0
  • Knowler, D. (2005). Reassessing the costs of biological invasion: Mnemiopsis leidyi in the Black Sea. Ecological Economics, 52(2), 187–199. https://doi.org/10.1016/j.ecolecon.2004.06.013
  • Kornmueller, A. (2007). Review of fundamentals and specific aspects of oxidation technologies in marine waters. Water Science and Technology, 55(12), 1–6. https://doi.org/10.2166/wst.2007.379
  • Kurniawan, S. B., Pambudi, D. S. A., Ahmad, M. M., Alfanda, B. D., Imron, M. F., & Abdullah, S. R. S. (2022). Ecological impacts of ballast water loading and discharge: insight into the toxicity and accumulation of disinfection by-products. Heliyon, 8(3), e09107. https://doi.org/10.1016/J.HELIYON.2022.E09107
  • Lacasa, E., Tsolaki, E., Sbokou, Z., Rodrigo, M. A., Mantzavinos, D., & Diamadopoulos, E. (2013). Electrochemical disinfection of simulated ballast water on conductive diamond electrodes. Chemical Engineering Journal, 223, 516–523. https://doi.org/10.1016/J.CEJ.2013.03.003
  • Lavoie, D. M., Smith, L. D., & Ruiz, G. M. (1999). The potential for intracoastal transfer of non-indigenous species in the ballast water of ships. Estuarine, Coastal and Shelf Science, 48(5), 551–564. https://doi.org/10.1006/ecss.1999.0467
  • Leppäkoski, E., & Gollasch, S. (2006). Risk Assessment of Ballast Water Mediated Species Introductions - a Baltic Sea Approach. Report prepared for HELCOM, Helsinki, Finland.
  • Lin, L., Wang, Q., & Wu, H. (2021). Study on the dinoflagellate cysts in ballast tank sediments of international vessels in Chinese shipyards. Marine Environmental Research, 169, 105348. https://doi.org/10.1016/j.marenvres.2021.105348
  • Lv, B., Cui, Y., Tian, W., & Feng, D. (2017). Composition and influencing factors of bacterial communities in ballast tank sediments: Implications for ballast water and sediment management. Marine Environmental Research, 132, 14–22. https://doi.org/10.1016/j.marenvres.2017.10.005
  • Lv, B., Cui, Y., Tian, W., Li, J., Xie, B., & Yin, F. (2018a). Abundances and profiles of antibiotic resistance genes as well as co-occurrences with human bacterial pathogens in ship ballast tank sediments from a shipyard in Jiangsu Province, China. Ecotoxicology and Environmental Safety, 157, 169–175. https://doi.org/10.1016/j.ecoenv.2018.03.053
  • Lv, B., Cui, Y., Tian, W., Li, J., Xie, B., & Yin, F. (2018b). Abundances and profiles of antibiotic resistance genes as well as co-occurrences with human bacterial pathogens in ship ballast tank sediments from a shipyard in Jiangsu Province, China. Ecotoxicology and Environmental Safety, 157, 169–175. https://doi.org/10.1016/J.ECOENV.2018.03.053
  • Maas, J., Tegtmeier, S., Quack, B., Biastoch, A., Durgadoo, J. V., Rühs, S., Gollasch, S., & David, M. (2019). Simulating the spread of disinfection by-products and anthropogenic bromoform emissions from ballast water discharge in Southeast Asia. Ocean Science, 15(4), 891–904. https://doi.org/10.5194/os-15-891-2019
  • Maglić, L., Frančić, V., Zec, D., & David, M. (2019). Ballast water sediment management in ports. Marine Pollution Bulletin, 147, 237-244. https://doi.org/10.1016/j.marpolbul.2017.09.065
  • Maglić, L., Zec, D., & Frančić, V. (2016). Ballast water sediment elemental analysis. Marine Pollution Bulletin, 103(1–2), 93–100. https://doi.org/10.1016/j.marpolbul.2015.12.042
  • Matheickal, J. T., Waite, T. D., Mylvaganam, S. T. (2003). Ballast Water Treatment by Filtration. 1st International Ballast Water Treatment R&D Symposium.
  • Matousek, R. C., Hill, D. W., Herwig, R. P., Cordell, J. R., Nielsen, B. C., Ferm, N. C., Lawrence, D. J., & Perrins, J. C. (2006). Electrolytic sodium hypochlorite system for treatment of ballast water. Journal of Ship Production, 22(3), 160–171.
  • McCarthy, S. A., & Khambaty, F. M. (1994). International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other nonpotable waters. Applied and Environmental Microbiology, 60(7), 2597–2601.
  • McCluskey, D. K., A. E., H., & Calay, R. K. (2005). A critical review of ballast water treatment techniques currently in development. ENSUS 2005, 3rd International Conference on Marine Science and Technology for Environmental Sustainability.
  • McCluskey, Daniel K, & Holdø, A. E. (2009). Optimizing the hydrocyclone for ballast water treatment using computational fluid dynamics. The International Journal of Multiphysics, 3(3), 221–234. https://doi.org/10.1260/175095409788922310
  • McMahon, R. F. (1996). The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist, 36(3), 339–363. https://doi.org/10.1093/icb/36.3.339
  • Medcof, J. C. (1975). Living marine animals in a ships ballast water. Proceedings National Shellfisheries Association. 65, pp. 11–12.
  • MEPC. (2008). RESOLUTION MEPC.174(58) Guidelines for Approval of Ballast Water Management Systems(G8).
  • MEPC. (2016). Resolution MEPC.279(70) 2016 Guidelines for Approval of Ballast Water Management Systems (G8) (Vol. 279, Issue October).
  • MEPC. (2017a). Report of The Marine Environment Protection Committee on Its Seventy-First Session.
  • MEPC. (2017b). Resolution MEPC.288(71), 2017 Guidelines for Ballast Water Exchange (G6).
  • MEPC. (2018). resolution MEPC.300(72) code for approval of ballast water management systems (BWMS CODE) (Vol. 300, Issue April).
  • Montemezzani, V., Duggan, I. C., Hogg, I. D., & Craggs, R. J. (2015). A review of potential methods for zooplankton control in wastewater treatment high rate algal ponds and algal production raceways. Algal Research, 11, 211–226. https://doi.org/10.1016/J.ALGAL.2015.06.024
  • Moreno-Andrés, J., & Peperzak, L. (2019). Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems. Chemosphere, 232, 496–505. https://doi.org/10.1016/J.CHEMOSPHERE.2019.05.152
  • Moreno-Andrés, J., Ambauen, N., Vadstein, O., Hallé, C., Acevedo-Merino, A., Nebot, E., & Meyn, T. (2018). Inactivation of marine heterotrophic bacteria in ballast water by an electrochemical advanced oxidation process. Water Research, 140, 377–386. https://doi.org/10.1016/J.WATRES.2018.04.061
  • Mountfort, D., Dogshun, T., & Taylor, M. (2003). Ballast water treatment by heat – New Zealand Laboratory & Shipboard trials. 1st International Ballast Water Treatment R&D Symposium.
  • Nanayakkara, K. G. N., Zheng, Y. M., Alam, A. K. M. K., Zou, S., & Chen, J. P. (2011). Electrochemical disinfection for ballast water management: Technology development and risk assessment. Marine Pollution Bulletin, 63(5–12), 119–123. https://doi.org/10.1016/J.MARPOLBUL.2011.03.003
  • National Research Council. (1996). Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships’ Ballast Water. The National Academies Press. https://doi.org/10.17226/5294.
  • Nichols, D. (2001). Implications of the introduction and the transfer of non-indigenous marine species with particular reference to Canadian marine aquaculture. School of Graduate Studies, Marine Studies, Memorial University of Newfoundland.
  • Occhipinti-Ambrogi, A., & Savini, D. (2003). Biological invasions as a component of global change in stressed marine ecosystems. Marine Pollution Bulletin, 46(5), 542–551. https://doi.org/10.1016/S0025-326X(02)00363-6
  • Oemcke, D. J., & Van Leeuwen, J. (2005). Ozonation of the marine dinoflagellate alga Amphidinium sp. - Implications for ballast water disinfection. Water Research, 39(20), 5119–5125. https://doi.org/10.1016/j.watres.2005.09.024
  • Olenin, S., Gollasch, S., Jonušas, S., & Rimkutè, I. (2000). En-route investigations of plankton in ballast water on a ship’s voyage from the Baltic Sea to the open Atlantic coast of Europe. International Review of Hydrobiology, 85(5–6), 577–596. https://doi.org/10.1002/1522-2632(200011)85:5/6<577::AID-IROH577>3.0.CO;2-C
  • Olsen, R. O., Hoffmann, F., Hess-Erga, O. K., Larsen, A., Thuestad, G., & Hoell, I. A. (2016). Ultraviolet radiation as a ballast water treatment strategy: Inactivation of phytoplankton measured with flow cytometry. Marine Pollution Bulletin, 103(1–2), 270–275. https://doi.org/10.1016/J.MARPOLBUL.2015.12.008
  • Parsons, M. G., & Harkins, R. W. (2002). Full-scale particle removal performance of three types of mechanical separation devices for the primary treatment of ballast water. Marine Technology and SNAME News, 39(4), 211–222. https://doi.org/10.5957/mt1.2002.39.4.211
  • Pereira, L. S., Cheng, L. Y., Ribeiro, G. H. de S., Osello, P. H. S., Motezuki, F. K., & Pereira, N. N. (2021). Experimental and numerical studies of sediment removal in double bottom ballast tanks. Marine Pollution Bulletin, 168, 112399. https://doi.org/10.1016/j.marpolbul.2021.112399
  • Petersen, N. B., Madsen, T., Glaring, M. A., Dobbs, F. C., & Jørgensen, N. O. G. (2019). Ballast water treatment and bacteria: Analysis of bacterial activity and diversity after treatment of simulated ballast water by electrochlorination and UV exposure. Science of The Total Environment, 648, 408–421. https://doi.org/10.1016/J.SCITOTENV.2018.08.080
  • Quilez-Badia, G., McCollin, T., Josefsen, K. D., Vourdachas, A., Gill, M. E., Mesbahi, E., & Frid, C. L. J. (2008). On board short-time high temperature heat treatment of ballast water: A field trial under operational conditions. Marine Pollution Bulletin, 56(1), 127–135. https://doi.org/10.1016/j.marpolbul.2007.09.036
  • Raaymakers, S. (2002). The ballast water problem: Global ecological, economic and human health impacts. RESCO/IMO Joint Seminar on Tanker Ballast Water Management & Technologies.
  • Raaymakers, Steve. (2002). The Ballast Water Problem: Global Ecological, Economic and Human Health Impacts Paper Presented at the Dubai, UAE 16-18 Dec 2002. 1–22.
  • Raikow, D. E., Reid, D. E., Maynard, E. E., & Landrum, P. E. (2006). Sensitivity of aquatic invertebrate resting eggs to SeaKleen (Menadione): a test of potential ballast tank treatment options. Environmental Toxicology and Chemistry/SETAC, 25(2), 552–559. https://doi.org/10.1897/05-142R1.1
  • Ren, J. (2018). Technology selection for ballast water treatment by multi-stakeholders: A multi-attribute decision analysis approach based on the combined weights and extension theory. Chemosphere, 191, 747–760. https://doi.org/10.1016/J.CHEMOSPHERE.2017.10.053
  • Rigby, G. R., Hallegraeff, G. M., & Sutton, C. (1999). Novel ballast water heating technique offers cost-effective treatment to reduce the risk of global transport of harmful marine organisms. Marine Ecology Progress Series, 191, 289–293. https://doi.org/10.3354/meps191289
  • Roberts, L. (1990). Zebra mussel invasion threatens U.S. waters. Science, 249(4975), 1370–1372. https://doi.org/10.1126/science.249.4975.1370
  • Romero-Martínez, L., Rivas-Zaballos, I., Moreno-Andrés, J., Moreno-Garrido, I., Acevedo-Merino, A., & Nebot, E. (2021). Improving the microalgae inactivating efficacy of ultraviolet ballast water treatment in combination with hydrogen peroxide or peroxymonosulfate salt. Marine Pollution Bulletin, 162, 111886. https://doi.org/10.1016/J.MARPOLBUL.2020.111886
  • Ruiz, G. M., Rawlings, T. K., Dobbs, F. C., Drake, L. a, Mullady, T., Huq, A, & Colwell, R. R. (2000). Global spread of microorganisms by ships. Nature, 408(6808), 49–50. https://doi.org/10.1038/35040695
  • Sassi, J., Rytkönen, J., Vuorio, S., & Leppäkoski E. (2002). The development and testing of ultrasonic and ozon devices for ballast water treatment. ENSUS 2002 - International Conference on Marine Science and Technology for Environmental Sustainability.
  • Satir, T. (2014). Ballast water treatment systems: design, regulations, and selection under the choice varying priorities. Environmental Science and Pollution Research, 21(18), 10686–10695. https://doi.org/10.1007/s11356-014-3087-1
  • Shang, L., Hu, Z., Deng, Y., Liu, Y., Zhai, X., Chai, Z., Liu, X., Zhan, Z., Dobbs, F. C., & Tang, Y. Z. (2019). Metagenomic sequencing identifies highly diverse assemblages of dinoflagellate cysts in sediments from ships’ ballast tanks. Microorganisms, 7(8), 1–28. https://doi.org/10.3390/microorganisms7080250
  • Shiganova, T. A., Mirzoyan, Z. A., Studenikina, E. A., Volovik, S. P., Siokou-Frangou, I., Zervoudaki, S., Christou, E. D., Skirta, A. Y., & Dumont, H. J. (2001). Population development of the invader ctenophore Mnemiopsis leidyi, in the Black Sea and in other seas of the Mediterranean basin. Marine Biology, 139(3), 431–445. https://doi.org/10.1007/s002270100554
  • Takahashi, C. K., Lourenço, N. G. G. S., Lopes, T. F., Rall, V. L. M., & Lopes, C. a M. (2008). Ballast water: A review of the impact on the world public health. Journal of Venomous Animals and Toxins Including Tropical Diseases, 14(3), 393–408. https://doi.org/10.1590/S1678-91992008000300002
  • Tang, Y. Z., Shang, L., & Dobbs, F. C. (2022). Measuring viability of dinoflagellate cysts and diatoms with stains to test the efficiency of facsimile treatments possibly applicable to ships’ ballast water and sediment. Harmful Algae, 114, 102220. https://doi.org/10.1016/J.HAL.2022.102220
  • Tosa, K., & Hirata, T. (1999). Photoreactivation of enterohemorrhagic Escherichia coli following UV disinfection. Water Research, 33(2), 361–366. https://doi.org/10.1016/S0043-1354(98)00226-7
  • Tsolaki, E., Pitta, P., & Diamadopoulos, E. (2010). Electrochemical disinfection of simulated ballast water using Artemia salina as indicator. Chemical Engineering Journal, 156(2), 305–312. https://doi.org/10.1016/j.cej.2009.10.021
  • Viitasalo, S., Sassi, J., Rytkonen, J., & Leppakoski, E. (2005). Ozone, ultraviolet light, ultrasound and hydrogen peroxide as ballast water treatments – Experiments with Mesozooplankton in low-saline brackish water. Journal of Marine Environmental Engineering, 8, 35–55.
  • Waite, T., Kazumi, J., Lane, P., Farmer, L., Smith, S., Smith, S., Hitchcock, G., & Capo, T. (2003). Removal of natural populations of marine plankton by a large-scale ballast water treatment system. Marine Ecology Progress Series, 258(2000), 51–63. https://doi.org/10.3354/meps258051
  • Werschkun, B., Banerji, S., Basurko, O. C., David, M., Fuhr, F., Gollasch, S., Grummt, T., Haarich, M., Jha, A. N., Kacan, S., Kehrer, A., Linders, J., Mesbahi, E., Pughiuc, D., Richardson, S. D., Schwarz-Schulz, B., Shah, A., Theobald, N., von Gunten, U., Wieck, S., & Höfer, T. (2014). Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention. Chemosphere, 112, 256–266. https://doi.org/10.1016/j.chemosphere.2014.03.135
  • Wright, D. A., Dawson, R., Cutler, S. J., Cutler, H. G., Orano-Dawson, C. E., & Graneli, E. (2007). Naphthoquinones as broad spectrum biocides for treatment of ship’s ballast water: Toxicity to phytoplankton and bacteria. Water Research, 41(6), 1294–1302. https://doi.org/10.1016/j.watres.2006.11.051
  • Wu, D., You, H., Du, J., Chen, C., & Jin, D. (2011a). Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: Implications for removal of invasive species from ballast water. Journal of Environmental Sciences, 23(3), 513–519. https://doi.org/10.1016/S1001-0742(10)60443-3
  • Wu, D., You, H., Zhang, R., Chen, C., & Lee, D. J. (2011b). Ballast waters treatment using UV/Ag-TiO2+O3 advanced oxidation process with Escherichia coli and Vibrio alginolyticus as indicator microorganisms. Chemical Engineering Journal, 174(243), 714–718. https://doi.org/10.1016/j.cej.2011.09.087
  • Wu, H., Chen, C., Wang, Q., Lin, J., & Xue, J. (2017). The biological content of ballast water in China: A review. Aquaculture and Fisheries, 2(6), 241–246. https://doi.org/10.1016/J.AAF.2017.03.002
  • Yonsel, F., Bilgin Guney, C., & Bulent Danisman, D. (2014). A neural network application for a ballast water electrochlorination system. Fresenius Environmental Bulletin, 23(12b), 3353–3361.
  • Yuan, H., Zhou, P., & Mei, N. (2017). Numerical and experimental investigation on the ballast flushing system. Ocean Engineering, 130, 188–198. https://doi.org/10.1016/j.oceaneng.2016.12.003
  • Zhang, N., Zhang, Y., Bai, M., Zhang, Z., Chen, C., & Meng, X. (2014). Risk assessment of marine environments from ballast water discharges with laboratory-scale hydroxyl radicals treatment in Tianjin Harbor, China. Journal of Environmental Management, 145, 122–128. https://doi.org/10.1016/j.jenvman.2014.06.022
  • Zhou, P., Leigh, T., Aslan, F., & Hesse, K. (2005). Design optimization and tests of TREWABA system an onboard treatment of ballast water. 12th International Congress of the International Maritime Association of the Mediterranean - IMAM.
  • Zhu, Y., Ling, Y., Peng, Z., & Zhang, N. (2020). Formation of emerging iodinated disinfection by-products during ballast water treatment based on ozonation processes. Science of The Total Environment, 743, 140805. https://doi.org/10.1016/J.SCITOTENV.2020.140805

Ballast Water Problem: Current Status and Expected Challenges

Year 2022, Volume: 11 Issue: 4, 397 - 415, 31.12.2022
https://doi.org/10.33714/masteb.1162688

Abstract

Transporting non-native species in ballast tanks has been a major challenge over the years. The number of surviving species in the host environment is quite small compared to those of all introduced. However, even a single species can cause great harm to the environment, economy, and public health. Ballast water treatment issues are difficult and complex as the performance of the treatment is highly affected by the variable characteristics of the seawater. In addition, targeted organisms are in a wide spectrum. The International Convention on the Control and Management of Ship Ballast Water and Sediments requires ships to manage ballast water with a Type Approved System in compliance with the Ballast water discharge standard defined in the Convention. The Ballast Water Management Systems Approval (G8) Guide was revised in 2016 and accepted as the BWMS Code (Ballast Water Management Systems Approval Code) as the mandatory regime in 2018. According to the implementation schedule of this mandatory approval regime, the ballast water management system installed on or after 28 October 2020 must be type-approved according to the IMO’s revised G8 requirements. Several systems use different methods with their limitations. However, the ballast water problem does not seem to end only with the installation of the systems on ships. Although substantial international progress has been made in ballast water management (both technically and regulatory), there are still several issues regarding effectiveness, compliance monitoring, and the environment.

References

  • Altug, G., Gurun, S., Cardak, M., Ciftci, P. S., & Kalkan, S. (2012). The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Marine Environmental Research, 81, 35–42. https://doi.org/10.1016/j.marenvres.2012.08.005
  • Azar Daryany, M. K., Massudi, R., & Hosseini, M. (2008). Photoinactivation of Escherichia coli and Saccharomyces cerevisiae suspended in phosphate-buffered saline-A using 266- and 355-nm pulsed ultraviolet light. Current Microbiology, 56(5), 423–428. https://doi.org/10.1007/s00284-008-9110-3
  • Bailey, S. A., Brydges, T., Casas-Monroy, O., Kydd, J., Linley, R. D., Rozon, R. M., & Darling, J. A. (2022). First evaluation of ballast water management systems on operational ships for minimizing introductions of nonindigenous zooplankton. Marine Pollution Bulletin, 182, 113947. https://doi.org/10.1016/J.MARPOLBUL.2022.113947
  • Balaji, R., Yaakob, O., Adnan, F. A., & Koh, K. K. (2014). Design verification of heat exchanger for ballast water treatment. Jurnal Teknologi (Sciences and Engineering), 66(2), 61–65. https://doi.org/10.11113/jt.v66.2485
  • Bax, N., Williamson, A., Aguero, M., Gonzalez, E., & Geeves, W. (2003). Marine invasive alien species: A threat to global biodiversity. Marine Policy, 27(4), 313–323. https://doi.org/10.1016/S0308-597X(03)00041-1
  • Benson, A. J., Raikow, D., Larson, J., Fusaro, A., & Bogdanoff, A. K. (2022). Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database. Gainesville, FL. https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=5
  • Berdnikov, S. V., Selyutin, V. V., Vasilchenko, V. V., & Caddy, J. F. (1999). Trophodynamic model of the Black and Azov Sea pelagic ecosystem: consequences of the comb jelly, Mnemiopsis leydei, invasion. Fisheries Research, 42(3), 261–289. https://doi.org/10.1016/S0165-7836(99)00049-1
  • Bilgin Güney, C. (2022). Optimization of operational parameters of pneumatic system for ballast tank sediment reduction with experimental and ANN applications. Ocean Engineering, 259, 111927. https://doi.org/10.1016/J.OCEANENG.2022.111927
  • Bilgin Güney, C., & Yonsel, F. (2013). Electrochemical cell applications for ballast water treatment. Marine Technology Society Journal, 47(1), 134–145. https://doi.org/10.4031/MTSJ.47.1.9
  • Bilgin Güney, C., Danışman, D. B., & Ertürk Bozkurtoğlu, Ş. N. (2020). Reduction of ballast tank sediment: Evaluating the effect of minor structural changes and developing a pneumatic cleaning system. Ocean Engineering, 203, 107204. https://doi.org/10.1016/j.oceaneng.2020.107204
  • Bilgin Güney, C., Ertürk Bozkurtoğlu, Ş. N., Danışman, D. B., & Yonsel, F. (2016). Another challenge: Sediments of the ballast tanks. 1st International Congress on Ship and Marine Technology; “Green Technologies.” https://www.gmo.org.tr/GMO-SHIPMAR
  • Briski, E., Gollasch, S., David, M., Linley, R. D., Casas-Monroy, O., Rajakaruna, H., & Bailey, S. A. (2015). Combining ballast water exchange and treatment to maximize prevention of species introductions to freshwater ecosystems. Environmental Science and Technology, 49(16), 9566–9573. https://doi.org/10.1021/acs.est.5b01795
  • Burtle, G. J. (2014). Invasive aquatic animals. Encyclopedia of Agriculture and Food Systems, 2014, 58–65. https://doi.org/10.1016/B978-0-444-52512-3.00203-5
  • Butrón, A., Orive, E., & Madariaga, I. (2011). Potential risk of harmful algae transport by ballast waters: The case of Bilbao Harbour. Marine Pollution Bulletin, 62(4), 747–757. https://doi.org/10.1016/j.marpolbul.2011.01.008
  • Campara, L., Francic, V., Maglic, L., & Hasanspahic, N. (2019). Overview and comparison of the IMO and the US Maritime Administration ballast water management regulations. Journal of Marine Science and Engineering, 7(9), 283. https://doi.org/10.3390/jmse7090283
  • Carlton, J. T. (1979). History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific Coast of North America. [Ph.D. Thesis. University of California].
  • Casas-Monroy, O., Kydd, J., Rozon, R. M., & Bailey, S. A. (2022). Assessing the performance of four indicative analysis devices for ballast water compliance monitoring, considering organisms in the size range ≥10 to <50 μm. Journal of Environmental Management, 317, 115300. https://doi.org/10.1016/J.JENVMAN.2022.115300
  • Casas-Monroy, O., Linley, R. D., Chan, P. S., Kydd, J., Vanden Byllaardt, J., & Bailey, S. (2018). Evaluating efficacy of filtration + UV-C radiation for ballast water treatment at different temperatures. Journal of Sea Research, 133, 20–28. https://doi.org/10.1016/J.SEARES.2017.02.001
  • Cha, H. G., Seo, M. H., Lee, H. Y., Lee, J. H., Lee, D. S., Shin, K., & Choi, K. H. (2015). Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide. Marine Pollution Bulletin, 95(1), 315–323. https://doi.org/10.1016/J.MARPOLBUL.2015.03.025
  • Cirik, Ş., & Akçalı, B. (2002). Denizel ortama yabancı türlerin taşınıp yerleşmesi: biyolojik işgalin kontrolü, hukuksal, ekolojik ve ekonomik yönleri. E.U. Journal of Fisheries & Aquatic Sciences, 19, 507–527.
  • Cohen, A. N., & Dobbs, F. C. (2015). Failure of the public health testing program for ballast water treatment systems. Marine Pollution Bulletin, 91(1), 29–34. https://doi.org/10.1016/J.MARPOLBUL.2014.12.031
  • Cvetković, M., Kompare, B., & Klemenčič, A. K. (2015). Application of hydrodynamic cavitation in ballast water treatment. Environmental Science and Pollution Research, 22(10), 7422–7438. https://doi.org/10.1007/s11356-015-4360-7
  • de Kozlowski, S., Page, C., & Whetstone, J. (2002). Zebra Mussels in South Carolina: The Potential Risk of Infestation. Report, S.C. Department of Natural Resources, S.C. Sea Grant Consortium, Clemson University.
  • De Lafontaine, Y., Despatie, S. P., Veilleux, É., & Wiley, C. (2009). Onboard ship evaluation of the effectiveness and the potential environmental effects of PERACLEAN® Ocean for ballast water treatment in very cold conditions. Environmental Toxicology, 24(1), 49–65. https://doi.org/10.1002/tox.20394
  • de Lafontaine, Yves, Despatie, S. P., & Wiley, C. (2008). Effectiveness and potential toxicological impact of the PERACLEAN® Ocean ballast water treatment technology. Ecotoxicology and Environmental Safety, 71(2), 355–369. https://doi.org/10.1016/j.ecoenv.2007.10.033
  • Doblin, M. A., & Dobbs, F. C. (2006). Setting a size-exclusion limit to remove toxic dinoflagellate cysts from ships’ ballast water. Marine Pollution Bulletin, 52(3), 259–263. https://doi.org/10.1016/j.marpolbul.2005.12.014
  • Dobroski, N., Takata, L., Scianni, C., & Falkner, M. (2007). Assessment of the efficacy, availability and environmental impacts of ballast water treatment systems for use in California waters. Produced for the California State Legislature.
  • Dölle, K., & Kurzmann, D. E. (2020). The freshwater mollusk Dreissena polymorpha (zebra mussel) - A review: Living, prospects and jeopardies. Asian Journal of Environment & Ecology, 13(2), 1–17. https://doi.org/10.9734/ajee/2020/v13i230176
  • Dong, Y., Zhang, H., Wu, H., Xue, J., Liu, Y., & Jiang, X. (2021). Invasion risk to Yangtze River Estuary posed by resting eggs in ballast sediments from transoceanic ships. Journal of Experimental Marine Biology and Ecology, 545, 151627. https://doi.org/10.1016/J.JEMBE.2021.151627
  • Drillet, G. (2016). Protect aquaculture from ship pathogens. Nature, 539, 31. https://doi.org/10.1038/539031d
  • European Environment Agency. (2021). Pathways of introduction of marine non-indigenous species to European seas. https://www.eea.europa.eu/data-and-maps/indicators/trends-in-marine-alien-species-1/assessment
  • Fuchs, R., & de Wilde, I. (2003). Peraclean® Ocean – A potentially environmentally friendly and effective treatment option for ballast water. 2nd International Ballast Water Treatment R&D Symposium (Issue 02).
  • Fuchs, R., Steiner, N., de Wilde, I., & Voigt, M. (2001). Peraclean® Ocean – a Potential Ballast Water Treatment Option. 1st International Ballast Water Treatment R&D Symposium, pp. 76–80.
  • Gavand, M. R., McClintock, J. B., Amsler, C. D., Peters, R. W., & Angus, R. A. (2007). Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: A prospective treatment to eradicate invasive organisms from ballast water. Marine Pollution Bulletin, 54(11), 1777–1788. https://doi.org/10.1016/j.marpolbul.2007.07.012
  • Glomski, L. M. (2015). Zebra mussel chemical control guide - ERDC/EL TR-15-9 (Issue July).
  • Gollasch, S. (2006). Overview on introduced aquatic species in European navigational and adjacent waters. Helgoland Marine Research, 60(2), 84–89. https://doi.org/10.1007/s10152-006-0022-y
  • Gregg, M. D., & Hallegraeff, G. M. (2007). Efficacy of three commercially available ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria. Harmful Algae, 6(4), 567–584. https://doi.org/10.1016/j.hal.2006.08.009
  • Griffiths, R. W., Schloesser, D. W., Leach, J. H., & Kovalak, W. P. (1991). Distribution and dispersal of the zebra mussel (Dreissena polymorpha) in the Great Lakes region. Canadian Journal of Fisheries and Aquatic Sciences, 48(8), 1381–1388. https://doi.org/10.1139/f91-165
  • Grigorovich, I. A., Colautti, R. I., Mills, E. L., Holeck, K., Ballert, A. G., & MacIsaac, H. J. (2003). Ballast-mediated animal introductions in the Laurentian Great Lakes: Retrospective and prospective analyses. Canadian Journal of Fisheries and Aquatic Sciences, 60(6), 740–756. https://doi.org/10.1139/f03-053
  • Guo, M., Hu, H., Bolton, J. R., & El-Din, M. G. (2009). Comparison of low- and medium-pressure ultraviolet lamps: Photoreactivation of Escherichia coli and total coliforms in secondary effluents of municipal wastewater treatment plants. Water Research, 43(3), 815–821. https://doi.org/10.1016/j.watres.2008.11.028
  • Hallegraeff, G. M. (2015a). Transport of harmful marine microalgae via ship’s ballast water: Management and mitigation with special reference to the Arabian Gulf region. Aquatic Ecosystem Health and Management, 18(3), 290–298. https://doi.org/10.1080/14634988.2015.1027138
  • Hallegraeff, G. M. (2015b). Transport of harmful marine microalgae via ship’s ballast water: Management and mitigation with special reference to the Arabian Gulf region. Aquatic Ecosystem Health and Management, 18(3), 290–298. https://doi.org/10.1080/14634988.2015.1027138
  • Hallegraeff, G. M., & Bolch, C. J. (1991). Transport of toxic dinoflagellate cysts via ships’ ballast water. Marine Pollution Bulletin, 22(1), 27–30. https://doi.org/10.1016/0025-326X(91)90441-T
  • Hess-Erga, O. K., Attramadal, K. J. K., & Vadstein, O. (2008). Biotic and abiotic particles protect marine heterotrophic bacteria during UV and ozone disinfection. Aquatic Biology, 4(2), 147–154. https://doi.org/10.3354/ab00105
  • Hess-Erga, O. K., Moreno-Andrés, J., Enger, Ø., & Vadstein, O. (2019). Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. Science of The Total Environment, 657, 704–716. https://doi.org/10.1016/J.SCITOTENV.2018.12.004
  • Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3–22. https://doi.org/10.1016/j.watres.2005.10.030
  • Holm, E. R., Stamper, D. M., Brizzolara, R. A., Barnes, L., Deamer, N., & Burkholder, J. A. M. (2008). Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast water. Marine Pollution Bulletin, 56(6), 1201–1208. https://doi.org/10.1016/j.marpolbul.2008.02.007
  • Hwang, J., Park, S. Y., Lee, S., & Lee, T. K. (2018). High diversity and potential translocation of DNA viruses in ballast water. Marine Pollution Bulletin, 137, 449–455. https://doi.org/10.1016/J.MARPOLBUL.2018.10.053
  • IMO. (2004). International Convention for the Control and Management of Ships’ Ballast Water and Sediments. International Maritime Organization. https://doi.org/10.1017/CBO9781107415324.004
  • IMO. (2021). List of type approvals for ballast water management systems that are in accordance with the 2016 Guidelines (G8) or the BWMS Code (resolution MEPC.279(70) or MEPC.300(72)). https://www.imo.org/en
  • Jang, P. G., & Cha, H. G. (2020). Long-term changes of disinfection byproducts in treatment of simulated ballast water. Ocean Science Journal, 55(2), 265–277. https://doi.org/10.1007/s12601-020-0015-9
  • Johengen, T., Reid, D., Fahnenstiel, G., MacIsaac, H., Dobbs, F., Doblin, M., Ruiz, G., Jenkins, P., & Jenkins, P. T. (2005). Assessment of transoceanic NOBOB vessels and low-salinity ballast water as vectors for non-indigenous species introductions to the Great Lakes. In A Final Report for the Great Lakes NOBOB Project.
  • Joo, J., Park, D., Rhee, T., & Lee, J. (2022). Engineering perspective of electrochlorination system for ballast water. Journal of Advanced Marine Engineering and Technology, 46(3), 150–155. https://doi.org/10.5916/jamet.2022.46.3.150
  • Joyce, E., Phull, S. S., Lorimer, J. P., & Mason, T. J. (2003). The development and evaluation of ultrasound for the treatment of bacterial suspensions: A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10(6), 315–318. https://doi.org/10.1016/S1350-4177(03)00101-9
  • Jungfer, C., Schwartz, T., & Obst, U. (2007). UV-induced dark repair mechanisms in bacteria associated with drinking water. Water Research, 41(1), 188–196. https://doi.org/10.1016/j.watres.2006.09.001
  • Kazumi, J. (2007). Ballast Water Treatment Technologies and Their Application for Vessel Entering the Great Lakes via the St. Lawrence Seaway. Transportation Research Board Special Report 291. Great Lakes Shipping, Trade, and Aquatic Invasive Species. Prepared for Committee on the St. Lawrence Seaway: Options to Eliminate Introduction of Nonindigenous Species into the Great Lakes, Phase 2 Transportation Research Board and Division on Earth and Life Studies
  • Kideys, A. E. (1994). Recent dramatic changes in the Black Sea ecosystem: The reason for the sharp decline in Turkish anchovy fisheries. Journal of Marine Systems, 5(2), 171–181. https://doi.org/10.1016/0924-7963(94)90030-2
  • Kim, S. J., & Jang, S. K. (2009). Corrosion characteristics of steel in seawater containing various chloride concentrations generated by electrochemical method. Transactions of Nonferrous Metals Society of China, 19(Supplement 1), 50-55. https://doi.org/10.1016/S1003-6326(10)60244-0
  • Knowler, D. (2005). Reassessing the costs of biological invasion: Mnemiopsis leidyi in the Black Sea. Ecological Economics, 52(2), 187–199. https://doi.org/10.1016/j.ecolecon.2004.06.013
  • Kornmueller, A. (2007). Review of fundamentals and specific aspects of oxidation technologies in marine waters. Water Science and Technology, 55(12), 1–6. https://doi.org/10.2166/wst.2007.379
  • Kurniawan, S. B., Pambudi, D. S. A., Ahmad, M. M., Alfanda, B. D., Imron, M. F., & Abdullah, S. R. S. (2022). Ecological impacts of ballast water loading and discharge: insight into the toxicity and accumulation of disinfection by-products. Heliyon, 8(3), e09107. https://doi.org/10.1016/J.HELIYON.2022.E09107
  • Lacasa, E., Tsolaki, E., Sbokou, Z., Rodrigo, M. A., Mantzavinos, D., & Diamadopoulos, E. (2013). Electrochemical disinfection of simulated ballast water on conductive diamond electrodes. Chemical Engineering Journal, 223, 516–523. https://doi.org/10.1016/J.CEJ.2013.03.003
  • Lavoie, D. M., Smith, L. D., & Ruiz, G. M. (1999). The potential for intracoastal transfer of non-indigenous species in the ballast water of ships. Estuarine, Coastal and Shelf Science, 48(5), 551–564. https://doi.org/10.1006/ecss.1999.0467
  • Leppäkoski, E., & Gollasch, S. (2006). Risk Assessment of Ballast Water Mediated Species Introductions - a Baltic Sea Approach. Report prepared for HELCOM, Helsinki, Finland.
  • Lin, L., Wang, Q., & Wu, H. (2021). Study on the dinoflagellate cysts in ballast tank sediments of international vessels in Chinese shipyards. Marine Environmental Research, 169, 105348. https://doi.org/10.1016/j.marenvres.2021.105348
  • Lv, B., Cui, Y., Tian, W., & Feng, D. (2017). Composition and influencing factors of bacterial communities in ballast tank sediments: Implications for ballast water and sediment management. Marine Environmental Research, 132, 14–22. https://doi.org/10.1016/j.marenvres.2017.10.005
  • Lv, B., Cui, Y., Tian, W., Li, J., Xie, B., & Yin, F. (2018a). Abundances and profiles of antibiotic resistance genes as well as co-occurrences with human bacterial pathogens in ship ballast tank sediments from a shipyard in Jiangsu Province, China. Ecotoxicology and Environmental Safety, 157, 169–175. https://doi.org/10.1016/j.ecoenv.2018.03.053
  • Lv, B., Cui, Y., Tian, W., Li, J., Xie, B., & Yin, F. (2018b). Abundances and profiles of antibiotic resistance genes as well as co-occurrences with human bacterial pathogens in ship ballast tank sediments from a shipyard in Jiangsu Province, China. Ecotoxicology and Environmental Safety, 157, 169–175. https://doi.org/10.1016/J.ECOENV.2018.03.053
  • Maas, J., Tegtmeier, S., Quack, B., Biastoch, A., Durgadoo, J. V., Rühs, S., Gollasch, S., & David, M. (2019). Simulating the spread of disinfection by-products and anthropogenic bromoform emissions from ballast water discharge in Southeast Asia. Ocean Science, 15(4), 891–904. https://doi.org/10.5194/os-15-891-2019
  • Maglić, L., Frančić, V., Zec, D., & David, M. (2019). Ballast water sediment management in ports. Marine Pollution Bulletin, 147, 237-244. https://doi.org/10.1016/j.marpolbul.2017.09.065
  • Maglić, L., Zec, D., & Frančić, V. (2016). Ballast water sediment elemental analysis. Marine Pollution Bulletin, 103(1–2), 93–100. https://doi.org/10.1016/j.marpolbul.2015.12.042
  • Matheickal, J. T., Waite, T. D., Mylvaganam, S. T. (2003). Ballast Water Treatment by Filtration. 1st International Ballast Water Treatment R&D Symposium.
  • Matousek, R. C., Hill, D. W., Herwig, R. P., Cordell, J. R., Nielsen, B. C., Ferm, N. C., Lawrence, D. J., & Perrins, J. C. (2006). Electrolytic sodium hypochlorite system for treatment of ballast water. Journal of Ship Production, 22(3), 160–171.
  • McCarthy, S. A., & Khambaty, F. M. (1994). International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other nonpotable waters. Applied and Environmental Microbiology, 60(7), 2597–2601.
  • McCluskey, D. K., A. E., H., & Calay, R. K. (2005). A critical review of ballast water treatment techniques currently in development. ENSUS 2005, 3rd International Conference on Marine Science and Technology for Environmental Sustainability.
  • McCluskey, Daniel K, & Holdø, A. E. (2009). Optimizing the hydrocyclone for ballast water treatment using computational fluid dynamics. The International Journal of Multiphysics, 3(3), 221–234. https://doi.org/10.1260/175095409788922310
  • McMahon, R. F. (1996). The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist, 36(3), 339–363. https://doi.org/10.1093/icb/36.3.339
  • Medcof, J. C. (1975). Living marine animals in a ships ballast water. Proceedings National Shellfisheries Association. 65, pp. 11–12.
  • MEPC. (2008). RESOLUTION MEPC.174(58) Guidelines for Approval of Ballast Water Management Systems(G8).
  • MEPC. (2016). Resolution MEPC.279(70) 2016 Guidelines for Approval of Ballast Water Management Systems (G8) (Vol. 279, Issue October).
  • MEPC. (2017a). Report of The Marine Environment Protection Committee on Its Seventy-First Session.
  • MEPC. (2017b). Resolution MEPC.288(71), 2017 Guidelines for Ballast Water Exchange (G6).
  • MEPC. (2018). resolution MEPC.300(72) code for approval of ballast water management systems (BWMS CODE) (Vol. 300, Issue April).
  • Montemezzani, V., Duggan, I. C., Hogg, I. D., & Craggs, R. J. (2015). A review of potential methods for zooplankton control in wastewater treatment high rate algal ponds and algal production raceways. Algal Research, 11, 211–226. https://doi.org/10.1016/J.ALGAL.2015.06.024
  • Moreno-Andrés, J., & Peperzak, L. (2019). Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems. Chemosphere, 232, 496–505. https://doi.org/10.1016/J.CHEMOSPHERE.2019.05.152
  • Moreno-Andrés, J., Ambauen, N., Vadstein, O., Hallé, C., Acevedo-Merino, A., Nebot, E., & Meyn, T. (2018). Inactivation of marine heterotrophic bacteria in ballast water by an electrochemical advanced oxidation process. Water Research, 140, 377–386. https://doi.org/10.1016/J.WATRES.2018.04.061
  • Mountfort, D., Dogshun, T., & Taylor, M. (2003). Ballast water treatment by heat – New Zealand Laboratory & Shipboard trials. 1st International Ballast Water Treatment R&D Symposium.
  • Nanayakkara, K. G. N., Zheng, Y. M., Alam, A. K. M. K., Zou, S., & Chen, J. P. (2011). Electrochemical disinfection for ballast water management: Technology development and risk assessment. Marine Pollution Bulletin, 63(5–12), 119–123. https://doi.org/10.1016/J.MARPOLBUL.2011.03.003
  • National Research Council. (1996). Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships’ Ballast Water. The National Academies Press. https://doi.org/10.17226/5294.
  • Nichols, D. (2001). Implications of the introduction and the transfer of non-indigenous marine species with particular reference to Canadian marine aquaculture. School of Graduate Studies, Marine Studies, Memorial University of Newfoundland.
  • Occhipinti-Ambrogi, A., & Savini, D. (2003). Biological invasions as a component of global change in stressed marine ecosystems. Marine Pollution Bulletin, 46(5), 542–551. https://doi.org/10.1016/S0025-326X(02)00363-6
  • Oemcke, D. J., & Van Leeuwen, J. (2005). Ozonation of the marine dinoflagellate alga Amphidinium sp. - Implications for ballast water disinfection. Water Research, 39(20), 5119–5125. https://doi.org/10.1016/j.watres.2005.09.024
  • Olenin, S., Gollasch, S., Jonušas, S., & Rimkutè, I. (2000). En-route investigations of plankton in ballast water on a ship’s voyage from the Baltic Sea to the open Atlantic coast of Europe. International Review of Hydrobiology, 85(5–6), 577–596. https://doi.org/10.1002/1522-2632(200011)85:5/6<577::AID-IROH577>3.0.CO;2-C
  • Olsen, R. O., Hoffmann, F., Hess-Erga, O. K., Larsen, A., Thuestad, G., & Hoell, I. A. (2016). Ultraviolet radiation as a ballast water treatment strategy: Inactivation of phytoplankton measured with flow cytometry. Marine Pollution Bulletin, 103(1–2), 270–275. https://doi.org/10.1016/J.MARPOLBUL.2015.12.008
  • Parsons, M. G., & Harkins, R. W. (2002). Full-scale particle removal performance of three types of mechanical separation devices for the primary treatment of ballast water. Marine Technology and SNAME News, 39(4), 211–222. https://doi.org/10.5957/mt1.2002.39.4.211
  • Pereira, L. S., Cheng, L. Y., Ribeiro, G. H. de S., Osello, P. H. S., Motezuki, F. K., & Pereira, N. N. (2021). Experimental and numerical studies of sediment removal in double bottom ballast tanks. Marine Pollution Bulletin, 168, 112399. https://doi.org/10.1016/j.marpolbul.2021.112399
  • Petersen, N. B., Madsen, T., Glaring, M. A., Dobbs, F. C., & Jørgensen, N. O. G. (2019). Ballast water treatment and bacteria: Analysis of bacterial activity and diversity after treatment of simulated ballast water by electrochlorination and UV exposure. Science of The Total Environment, 648, 408–421. https://doi.org/10.1016/J.SCITOTENV.2018.08.080
  • Quilez-Badia, G., McCollin, T., Josefsen, K. D., Vourdachas, A., Gill, M. E., Mesbahi, E., & Frid, C. L. J. (2008). On board short-time high temperature heat treatment of ballast water: A field trial under operational conditions. Marine Pollution Bulletin, 56(1), 127–135. https://doi.org/10.1016/j.marpolbul.2007.09.036
  • Raaymakers, S. (2002). The ballast water problem: Global ecological, economic and human health impacts. RESCO/IMO Joint Seminar on Tanker Ballast Water Management & Technologies.
  • Raaymakers, Steve. (2002). The Ballast Water Problem: Global Ecological, Economic and Human Health Impacts Paper Presented at the Dubai, UAE 16-18 Dec 2002. 1–22.
  • Raikow, D. E., Reid, D. E., Maynard, E. E., & Landrum, P. E. (2006). Sensitivity of aquatic invertebrate resting eggs to SeaKleen (Menadione): a test of potential ballast tank treatment options. Environmental Toxicology and Chemistry/SETAC, 25(2), 552–559. https://doi.org/10.1897/05-142R1.1
  • Ren, J. (2018). Technology selection for ballast water treatment by multi-stakeholders: A multi-attribute decision analysis approach based on the combined weights and extension theory. Chemosphere, 191, 747–760. https://doi.org/10.1016/J.CHEMOSPHERE.2017.10.053
  • Rigby, G. R., Hallegraeff, G. M., & Sutton, C. (1999). Novel ballast water heating technique offers cost-effective treatment to reduce the risk of global transport of harmful marine organisms. Marine Ecology Progress Series, 191, 289–293. https://doi.org/10.3354/meps191289
  • Roberts, L. (1990). Zebra mussel invasion threatens U.S. waters. Science, 249(4975), 1370–1372. https://doi.org/10.1126/science.249.4975.1370
  • Romero-Martínez, L., Rivas-Zaballos, I., Moreno-Andrés, J., Moreno-Garrido, I., Acevedo-Merino, A., & Nebot, E. (2021). Improving the microalgae inactivating efficacy of ultraviolet ballast water treatment in combination with hydrogen peroxide or peroxymonosulfate salt. Marine Pollution Bulletin, 162, 111886. https://doi.org/10.1016/J.MARPOLBUL.2020.111886
  • Ruiz, G. M., Rawlings, T. K., Dobbs, F. C., Drake, L. a, Mullady, T., Huq, A, & Colwell, R. R. (2000). Global spread of microorganisms by ships. Nature, 408(6808), 49–50. https://doi.org/10.1038/35040695
  • Sassi, J., Rytkönen, J., Vuorio, S., & Leppäkoski E. (2002). The development and testing of ultrasonic and ozon devices for ballast water treatment. ENSUS 2002 - International Conference on Marine Science and Technology for Environmental Sustainability.
  • Satir, T. (2014). Ballast water treatment systems: design, regulations, and selection under the choice varying priorities. Environmental Science and Pollution Research, 21(18), 10686–10695. https://doi.org/10.1007/s11356-014-3087-1
  • Shang, L., Hu, Z., Deng, Y., Liu, Y., Zhai, X., Chai, Z., Liu, X., Zhan, Z., Dobbs, F. C., & Tang, Y. Z. (2019). Metagenomic sequencing identifies highly diverse assemblages of dinoflagellate cysts in sediments from ships’ ballast tanks. Microorganisms, 7(8), 1–28. https://doi.org/10.3390/microorganisms7080250
  • Shiganova, T. A., Mirzoyan, Z. A., Studenikina, E. A., Volovik, S. P., Siokou-Frangou, I., Zervoudaki, S., Christou, E. D., Skirta, A. Y., & Dumont, H. J. (2001). Population development of the invader ctenophore Mnemiopsis leidyi, in the Black Sea and in other seas of the Mediterranean basin. Marine Biology, 139(3), 431–445. https://doi.org/10.1007/s002270100554
  • Takahashi, C. K., Lourenço, N. G. G. S., Lopes, T. F., Rall, V. L. M., & Lopes, C. a M. (2008). Ballast water: A review of the impact on the world public health. Journal of Venomous Animals and Toxins Including Tropical Diseases, 14(3), 393–408. https://doi.org/10.1590/S1678-91992008000300002
  • Tang, Y. Z., Shang, L., & Dobbs, F. C. (2022). Measuring viability of dinoflagellate cysts and diatoms with stains to test the efficiency of facsimile treatments possibly applicable to ships’ ballast water and sediment. Harmful Algae, 114, 102220. https://doi.org/10.1016/J.HAL.2022.102220
  • Tosa, K., & Hirata, T. (1999). Photoreactivation of enterohemorrhagic Escherichia coli following UV disinfection. Water Research, 33(2), 361–366. https://doi.org/10.1016/S0043-1354(98)00226-7
  • Tsolaki, E., Pitta, P., & Diamadopoulos, E. (2010). Electrochemical disinfection of simulated ballast water using Artemia salina as indicator. Chemical Engineering Journal, 156(2), 305–312. https://doi.org/10.1016/j.cej.2009.10.021
  • Viitasalo, S., Sassi, J., Rytkonen, J., & Leppakoski, E. (2005). Ozone, ultraviolet light, ultrasound and hydrogen peroxide as ballast water treatments – Experiments with Mesozooplankton in low-saline brackish water. Journal of Marine Environmental Engineering, 8, 35–55.
  • Waite, T., Kazumi, J., Lane, P., Farmer, L., Smith, S., Smith, S., Hitchcock, G., & Capo, T. (2003). Removal of natural populations of marine plankton by a large-scale ballast water treatment system. Marine Ecology Progress Series, 258(2000), 51–63. https://doi.org/10.3354/meps258051
  • Werschkun, B., Banerji, S., Basurko, O. C., David, M., Fuhr, F., Gollasch, S., Grummt, T., Haarich, M., Jha, A. N., Kacan, S., Kehrer, A., Linders, J., Mesbahi, E., Pughiuc, D., Richardson, S. D., Schwarz-Schulz, B., Shah, A., Theobald, N., von Gunten, U., Wieck, S., & Höfer, T. (2014). Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention. Chemosphere, 112, 256–266. https://doi.org/10.1016/j.chemosphere.2014.03.135
  • Wright, D. A., Dawson, R., Cutler, S. J., Cutler, H. G., Orano-Dawson, C. E., & Graneli, E. (2007). Naphthoquinones as broad spectrum biocides for treatment of ship’s ballast water: Toxicity to phytoplankton and bacteria. Water Research, 41(6), 1294–1302. https://doi.org/10.1016/j.watres.2006.11.051
  • Wu, D., You, H., Du, J., Chen, C., & Jin, D. (2011a). Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: Implications for removal of invasive species from ballast water. Journal of Environmental Sciences, 23(3), 513–519. https://doi.org/10.1016/S1001-0742(10)60443-3
  • Wu, D., You, H., Zhang, R., Chen, C., & Lee, D. J. (2011b). Ballast waters treatment using UV/Ag-TiO2+O3 advanced oxidation process with Escherichia coli and Vibrio alginolyticus as indicator microorganisms. Chemical Engineering Journal, 174(243), 714–718. https://doi.org/10.1016/j.cej.2011.09.087
  • Wu, H., Chen, C., Wang, Q., Lin, J., & Xue, J. (2017). The biological content of ballast water in China: A review. Aquaculture and Fisheries, 2(6), 241–246. https://doi.org/10.1016/J.AAF.2017.03.002
  • Yonsel, F., Bilgin Guney, C., & Bulent Danisman, D. (2014). A neural network application for a ballast water electrochlorination system. Fresenius Environmental Bulletin, 23(12b), 3353–3361.
  • Yuan, H., Zhou, P., & Mei, N. (2017). Numerical and experimental investigation on the ballast flushing system. Ocean Engineering, 130, 188–198. https://doi.org/10.1016/j.oceaneng.2016.12.003
  • Zhang, N., Zhang, Y., Bai, M., Zhang, Z., Chen, C., & Meng, X. (2014). Risk assessment of marine environments from ballast water discharges with laboratory-scale hydroxyl radicals treatment in Tianjin Harbor, China. Journal of Environmental Management, 145, 122–128. https://doi.org/10.1016/j.jenvman.2014.06.022
  • Zhou, P., Leigh, T., Aslan, F., & Hesse, K. (2005). Design optimization and tests of TREWABA system an onboard treatment of ballast water. 12th International Congress of the International Maritime Association of the Mediterranean - IMAM.
  • Zhu, Y., Ling, Y., Peng, Z., & Zhang, N. (2020). Formation of emerging iodinated disinfection by-products during ballast water treatment based on ozonation processes. Science of The Total Environment, 743, 140805. https://doi.org/10.1016/J.SCITOTENV.2020.140805
There are 126 citations in total.

Details

Primary Language English
Subjects Maritime Engineering
Journal Section Review Paper
Authors

Ceren Bilgin Güney 0000-0003-3445-8688

Early Pub Date September 30, 2022
Publication Date December 31, 2022
Submission Date August 16, 2022
Acceptance Date October 7, 2022
Published in Issue Year 2022 Volume: 11 Issue: 4

Cite

APA Bilgin Güney, C. (2022). Ballast Water Problem: Current Status and Expected Challenges. Marine Science and Technology Bulletin, 11(4), 397-415. https://doi.org/10.33714/masteb.1162688
AMA Bilgin Güney C. Ballast Water Problem: Current Status and Expected Challenges. Mar. Sci. Tech. Bull. December 2022;11(4):397-415. doi:10.33714/masteb.1162688
Chicago Bilgin Güney, Ceren. “Ballast Water Problem: Current Status and Expected Challenges”. Marine Science and Technology Bulletin 11, no. 4 (December 2022): 397-415. https://doi.org/10.33714/masteb.1162688.
EndNote Bilgin Güney C (December 1, 2022) Ballast Water Problem: Current Status and Expected Challenges. Marine Science and Technology Bulletin 11 4 397–415.
IEEE C. Bilgin Güney, “Ballast Water Problem: Current Status and Expected Challenges”, Mar. Sci. Tech. Bull., vol. 11, no. 4, pp. 397–415, 2022, doi: 10.33714/masteb.1162688.
ISNAD Bilgin Güney, Ceren. “Ballast Water Problem: Current Status and Expected Challenges”. Marine Science and Technology Bulletin 11/4 (December 2022), 397-415. https://doi.org/10.33714/masteb.1162688.
JAMA Bilgin Güney C. Ballast Water Problem: Current Status and Expected Challenges. Mar. Sci. Tech. Bull. 2022;11:397–415.
MLA Bilgin Güney, Ceren. “Ballast Water Problem: Current Status and Expected Challenges”. Marine Science and Technology Bulletin, vol. 11, no. 4, 2022, pp. 397-15, doi:10.33714/masteb.1162688.
Vancouver Bilgin Güney C. Ballast Water Problem: Current Status and Expected Challenges. Mar. Sci. Tech. Bull. 2022;11(4):397-415.

27116