Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method

Yıl 2023, , 72 - 80, 30.08.2023
https://doi.org/10.52795/mateca.1332694

Öz

This study focuses on investigating the effect of process parameters on the tensile strength of PLA and iron-reinforced PLA samples produced using FDM technology. Filament material (PLA and iron-reinforced PLA), infill ratio (20, 40 and 60%), layer thickness (0.1, 0.2 and 0.3 mm), printing speed (40, 60 and 80 mm/s) and raster angle (30, 45 and 60°) were selected as process parameters. The experimental design was based on the Taguchi L18 index. Signal-to-Noise (S/N) ratio, variance analysis (Anova) and regression analyses were used to statistically analyze the tensile strength values obtained as a result of experimental measurements. The outcomes of this study show that the filament material plays an important role in tensile strength and iron reinforcement to PLA material decreases the tensile strength and increases the % elongation. The maximum tensile strength was measured as 33.55 MPa at 60% infill rate, 0.3 mm layer thickness, 60 mm/s printing speed and 60° raster angle in PLA filament material, which is the optimum process parameters.

Kaynakça

  • 1. P. Minetola, F. Calignano, M. Galati, Comparing geometric tolerance capabilities of additive manufacturing systems for polymers, Additive Manufacturing, 32: 101103, 2020.
  • 2. H.B. Mamo, A.D. Tura, A.J. Santhosh, N. Ashok, D.K. Rao, Modeling and analysis of flexural strength with fuzzy logic technique for a fused deposition modeling ABS components, Materials Today: Proceedings, 57(2): 768-774, 2022.
  • 3. J.Y. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials, Applied Materials Today, 7: 120-133, 2017.
  • 4. F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering, Biomaterials, 31(24): 6121-6130, 2010.
  • 5. J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities, Dental Materials, 32(1): 54-64, 2016.
  • 6. S.J. Schuldt, J.A. Jagoda, A.J. Hoisington, J.D. Delorit, A systematic review and analysis of the viability of 3D-printed construction in remote environments, Automation in Construction, 125: 103642, 2021.
  • 7. B. Turner, R.A. Strong, S. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyping, 20(3): 192-204, 2014.
  • 8. Y. Kuruoğlu, M. Akgün, H. Demir, FDM yöntemiyle üretilen ABS, PLA ve PETG numunelerin yüzey pürüzlülüğü ve çekme dayanımının modellenmesi ve optimizasyonu, International Journal of 3D Printing Technologies and Digital Industry, 6(3): 358-369, 2022.
  • 9. M. Günay, S. Gündüz, H. Yılmaz, N. Yaşar, R. Kaçar, PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu, Politeknik Dergisi, 23(1): 73-79, 2020.
  • 10. V.D.P. Rao, P. Rajiv, V.N. Geethika, Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA, Materials Today: Proceedings, 18: 2012-2018, 2019.
  • 11. M.S. Kamer, Ş. Temiz, D.H. Yaykaşlı, A. Kaya, O. Akay, 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3): 1197-1212, 2022.
  • 12. M. Altan, M. Eryildiz, B. Gumus, Y. Kahraman, Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength, Materials Testing, 60(5): 471-477, 2018.
  • 13. C.G. Schirmeister, T. Hees, E.H. Licht, R. Mülhaupt, 3D printing of high density polyethylene by fused filament fabrication, Additive Manufacturing, 28: 152-159, 2019.
  • 14. P. Sammaiah, K. Rushmamanisha, N. Praveenadevi, I.R. Reddy, The influence of process parameters on the surface roughness of the 3d printed part in FDM process, In IOP Conference Series: Materials Science and Engineering, 981(4): 042021, 2020.
  • 15. Z. Liu, Q. Lei, S. Xing, Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, Journal of Materials Research and Technology, 8(5): 3741-3751, 2019.
  • 16. X. Zhang, L. Chen, T. Mulholland, T.A. Osswald, Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling, SN Applied Sciences, 1(6): 1-12, 2019.
  • 17. T. Kıvak, Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, 50: 19-28, 2014.
  • 18. B. Özlü, M. Akgün, H. Demir, AA 6061 Alaşımının tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerine etkisinin analizi ve optimizasyonu, Gazi Mühendislik Bilimleri Dergisi, 5(2): 151-158, 2019.
  • 19. M. Uzun, Y.E. Erdoğdu, Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli pla kullanımının mekanik özelliklere etkisinin araştırılması, Journal of the Institute of Science and Technology, 10(4): 2800-2808, 2020.
  • 20. K. Özsoy, A. Erçetin, Z.A. Çevik, Comparison of mechanical properties of PLA and ABS based structures produced by fused deposition modelling additive manufacturing, Avrupa Bilim ve Teknoloji Dergisi, 27: 802-809, 2021.
  • 21. M. Akgün, H. Yurtkuran, H.B. Ulas, AA7075 alaşımının işlenebilirliğine suni yaşlandırmanın etkisinin analizi ve kesme parametrelerinin optimizasyonu, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1): 75-81, 2020.
  • 22. H. Ballıkaya, Sleipner soğuk iş takım çeliğinin yüzey finish modellemesinde takım yolu stratejisinin ve kesme parametrelerinin MRR ve Ra üzerine etkisi, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 13(1): 35-42, 2022.
  • 23. M. Akgün, Optimization of process parameters affecting cutting force, power consumption and surface roughness using taguchi-based gray relational analysis in turning AISI 1040 steel, Surface Review and Letters, 29(03): 2250029, 2022.
  • 24. B. Özlü, Evaluation of energy consumption, cutting force, surface roughness and vibration in machining toolox 44 steel using taguchi-based gray relational analysis, Surface Review and Letters, 29(08): 2250103, 2022.
  • 25. H. Yaka, Multiple Optimization of cutting parameters affecting kerf formation and surface roughness in laser cutting of Al 5052 alloy, El-Cezeri, 9(1): 220-231 2022.

Eriyik Yığma Modelleme Yöntemi ile Üretilen PLA ve Demir Takviyeli PLA Numunelerinin Çekme Dayanımını Etkileyen Proses Parametrelerinin Analizi ve Optimizasyonu

Yıl 2023, , 72 - 80, 30.08.2023
https://doi.org/10.52795/mateca.1332694

Öz

Bu çalışma, FDM teknolojisi kullanılarak üretilen PLA ve demir takviyeli PLA numunelerin çekme mukavemeti üzerinde proses parametrelerinin etkisini araştırmaya odaklanmaktadır. Proses parametreleri olarak filament malzemesi (PLA ve demir takviyeli PLA), dolgu oranı (20, 40 ve 60%), katman kalınlığı (0.1, 0.2 ve 0.3 mm), baskı hızı (40, 60 ve 80 mm/s) ve tarama açısı (30, 45 ve 60°) seçilmiştir. Deney tasarımı Taguchi L18 indeksine göre yapılmıştır. Deneysel ölçümler sonucunda elde edilen çekme dayanımı değerlerini istatistiksel olarak analiz etmek için Sinyal Gürültü (S/N) oranı, varyans analizi (Anova) ve regresyon analizleri kullanılmıştır. Bu çalışmanın sonuçları filament malzemesinin çekme dayanımı üzerinde önemli bir rol oynadığını ve PLA malzemeye demir takviyesinin çekme dayanımını düşürdüğünü ve % uzamayı arttırdığını göstermektedir. Maksimum çekme dayanımı optimum proses parametreleri olan PLA filament malzemesinde, 60 doluluk oranında, 0.3 mm katman kalınlığı, 60 mm/s baskı hızında ve 60° tarama açısında 33.55 MPa olarak ölçülmüştür.

Kaynakça

  • 1. P. Minetola, F. Calignano, M. Galati, Comparing geometric tolerance capabilities of additive manufacturing systems for polymers, Additive Manufacturing, 32: 101103, 2020.
  • 2. H.B. Mamo, A.D. Tura, A.J. Santhosh, N. Ashok, D.K. Rao, Modeling and analysis of flexural strength with fuzzy logic technique for a fused deposition modeling ABS components, Materials Today: Proceedings, 57(2): 768-774, 2022.
  • 3. J.Y. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials, Applied Materials Today, 7: 120-133, 2017.
  • 4. F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering, Biomaterials, 31(24): 6121-6130, 2010.
  • 5. J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities, Dental Materials, 32(1): 54-64, 2016.
  • 6. S.J. Schuldt, J.A. Jagoda, A.J. Hoisington, J.D. Delorit, A systematic review and analysis of the viability of 3D-printed construction in remote environments, Automation in Construction, 125: 103642, 2021.
  • 7. B. Turner, R.A. Strong, S. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyping, 20(3): 192-204, 2014.
  • 8. Y. Kuruoğlu, M. Akgün, H. Demir, FDM yöntemiyle üretilen ABS, PLA ve PETG numunelerin yüzey pürüzlülüğü ve çekme dayanımının modellenmesi ve optimizasyonu, International Journal of 3D Printing Technologies and Digital Industry, 6(3): 358-369, 2022.
  • 9. M. Günay, S. Gündüz, H. Yılmaz, N. Yaşar, R. Kaçar, PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu, Politeknik Dergisi, 23(1): 73-79, 2020.
  • 10. V.D.P. Rao, P. Rajiv, V.N. Geethika, Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA, Materials Today: Proceedings, 18: 2012-2018, 2019.
  • 11. M.S. Kamer, Ş. Temiz, D.H. Yaykaşlı, A. Kaya, O. Akay, 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3): 1197-1212, 2022.
  • 12. M. Altan, M. Eryildiz, B. Gumus, Y. Kahraman, Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength, Materials Testing, 60(5): 471-477, 2018.
  • 13. C.G. Schirmeister, T. Hees, E.H. Licht, R. Mülhaupt, 3D printing of high density polyethylene by fused filament fabrication, Additive Manufacturing, 28: 152-159, 2019.
  • 14. P. Sammaiah, K. Rushmamanisha, N. Praveenadevi, I.R. Reddy, The influence of process parameters on the surface roughness of the 3d printed part in FDM process, In IOP Conference Series: Materials Science and Engineering, 981(4): 042021, 2020.
  • 15. Z. Liu, Q. Lei, S. Xing, Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, Journal of Materials Research and Technology, 8(5): 3741-3751, 2019.
  • 16. X. Zhang, L. Chen, T. Mulholland, T.A. Osswald, Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling, SN Applied Sciences, 1(6): 1-12, 2019.
  • 17. T. Kıvak, Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, 50: 19-28, 2014.
  • 18. B. Özlü, M. Akgün, H. Demir, AA 6061 Alaşımının tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerine etkisinin analizi ve optimizasyonu, Gazi Mühendislik Bilimleri Dergisi, 5(2): 151-158, 2019.
  • 19. M. Uzun, Y.E. Erdoğdu, Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli pla kullanımının mekanik özelliklere etkisinin araştırılması, Journal of the Institute of Science and Technology, 10(4): 2800-2808, 2020.
  • 20. K. Özsoy, A. Erçetin, Z.A. Çevik, Comparison of mechanical properties of PLA and ABS based structures produced by fused deposition modelling additive manufacturing, Avrupa Bilim ve Teknoloji Dergisi, 27: 802-809, 2021.
  • 21. M. Akgün, H. Yurtkuran, H.B. Ulas, AA7075 alaşımının işlenebilirliğine suni yaşlandırmanın etkisinin analizi ve kesme parametrelerinin optimizasyonu, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1): 75-81, 2020.
  • 22. H. Ballıkaya, Sleipner soğuk iş takım çeliğinin yüzey finish modellemesinde takım yolu stratejisinin ve kesme parametrelerinin MRR ve Ra üzerine etkisi, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 13(1): 35-42, 2022.
  • 23. M. Akgün, Optimization of process parameters affecting cutting force, power consumption and surface roughness using taguchi-based gray relational analysis in turning AISI 1040 steel, Surface Review and Letters, 29(03): 2250029, 2022.
  • 24. B. Özlü, Evaluation of energy consumption, cutting force, surface roughness and vibration in machining toolox 44 steel using taguchi-based gray relational analysis, Surface Review and Letters, 29(08): 2250103, 2022.
  • 25. H. Yaka, Multiple Optimization of cutting parameters affecting kerf formation and surface roughness in laser cutting of Al 5052 alloy, El-Cezeri, 9(1): 220-231 2022.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İmalat Süreçleri ve Teknolojileri, Katmanlı Üretim, Üretimde Optimizasyon
Bölüm Araştırma Makaleleri
Yazarlar

Yasin Kuruoğlu 0000-0002-0432-6599

Mahir Akgün 0000-0002-4522-066X

Halil Demir 0000-0002-9802-083X

Erken Görünüm Tarihi 31 Ağustos 2023
Yayımlanma Tarihi 30 Ağustos 2023
Gönderilme Tarihi 25 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kuruoğlu, Y., Akgün, M., & Demir, H. (2023). Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method. Manufacturing Technologies and Applications, 4(2), 72-80. https://doi.org/10.52795/mateca.1332694
AMA Kuruoğlu Y, Akgün M, Demir H. Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method. MATECA. Ağustos 2023;4(2):72-80. doi:10.52795/mateca.1332694
Chicago Kuruoğlu, Yasin, Mahir Akgün, ve Halil Demir. “Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method”. Manufacturing Technologies and Applications 4, sy. 2 (Ağustos 2023): 72-80. https://doi.org/10.52795/mateca.1332694.
EndNote Kuruoğlu Y, Akgün M, Demir H (01 Ağustos 2023) Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method. Manufacturing Technologies and Applications 4 2 72–80.
IEEE Y. Kuruoğlu, M. Akgün, ve H. Demir, “Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method”, MATECA, c. 4, sy. 2, ss. 72–80, 2023, doi: 10.52795/mateca.1332694.
ISNAD Kuruoğlu, Yasin vd. “Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method”. Manufacturing Technologies and Applications 4/2 (Ağustos 2023), 72-80. https://doi.org/10.52795/mateca.1332694.
JAMA Kuruoğlu Y, Akgün M, Demir H. Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method. MATECA. 2023;4:72–80.
MLA Kuruoğlu, Yasin vd. “Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method”. Manufacturing Technologies and Applications, c. 4, sy. 2, 2023, ss. 72-80, doi:10.52795/mateca.1332694.
Vancouver Kuruoğlu Y, Akgün M, Demir H. Analysis and Optimization of Process Parameters Affecting on the Tensile Strength of PLA and Iron-Reinforced PLA Samples Fabricated by Fused Deposition Modeling Method. MATECA. 2023;4(2):72-80.