Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti ve Talaş Büzüşme Katsayısı Üzerine Etkisi

Yıl 2023, , 137 - 154, 30.12.2023
https://doi.org/10.52795/mateca.1381848

Öz

Ultrasonik atomizasyon esasına dayalı minimum miktar yağlama (UMMY) sistemi, takım-talaş ara yüzüne etkili bir şekilde nüfuz ederek kesme bölgesini soğutmada ve işleme performansının artmasında etkinlik kazanmıştır. UMMY sisteminin performansını, kesme sıvısı konsantrasyon oranı (A), nozul orifis çapı (B), yatay nozul açısı (C), dikey nozul açısı (D), nozul mesafesi (E), hava basıncı (F), kesme sıvısı atomizasyon oranı (G) ve nozul tipi (H) gibi UMMY işleme parametreleri önemli ölçüde etkilemektedir. Bu çalışmanın amacı, UMMY işleme parametrelerinin ortalama kesme kuvveti (Fc) ve talaş büzüşme katsayısı (ζ) üzerine etkilerini araştırmak ve optimum UMMY işleme parametrelerini belirlemektir. Bu amaçla UMMY sistemi ile AISI 1050 çeliğin tornalanması, Taguchi L27 ortogonal deney tasarımına göre CNC torna tezgâhında deneysel olarak gerçekleştirilmiştir. Taguchi deney tekniklerine göre UMMY işleme parametrelerinin Fc ve ζ üzerine etkisi varyans analizi kullanılarak tespit edilmiştir. Çalışma sonucunda, en düşük Fc ve ζ değerleri kısa nozulla (K) yapılan işlemede elde edilmiştir. Fc üzerine en fazla %29.20 değeriyle kesme sıvısı konsantrasyon oranı katkı sağlamıştır. Nozul orifis çapı, yatay nozul açısı ve dikey nozul açısı değerlerinin artmasıyla ζ değerinin arttığı tespit edilmiştir. Çoklu yanıt yöntemi kullanılarak yapılan gri ilişki analizinde optimum UMMY işleme parametrelerinin seviyeleri A2B1C2D3E2F3G1H2 şeklindedir.

Kaynakça

  • 1. F. Kafkas, R. Mergen, İşleme süreçlerinde ultrasonik atomizasyon kesme sıvısı (ACF) püskürtme sistemine dayalı minimum miktar yağlama (MQL) sistemlerine genel bir bakış, Mühendislik Alanında Uluslararası Araştırmalar VI. (Edt: L. Civcik), Konya: Eğitim Yayınevi, 7-34, 2022.
  • 2. N.A. Abukhshim, P.T. Mativenga, M.A. Sheikh, An investigation of the tool-chip contact length and wear in high-speed turning of EN19 steel, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(8): 889-903, 2004.
  • 3. S.A. Iqbal, P.T. Mativenga, M.A. Sheikh, Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 1: Investigation of contact phenomena, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(5): 909-916, 2007.
  • 4. I. Ghai, J. Wentz, R.E. DeVor, S.G. Kapoor, J. Samuel, Droplet behavior on a rotating surface for atomization-based cutting fluid application in micromachining, Journal of Manufacturing Science and Engineering, 132(1), 2010.
  • 5. V. Marinov, The tool chip contact length on orthogonal metal cutting, In 5th International Conference on Advanced Engineering and Technology, AMTECH, 99:149-155, 1999.
  • 6. A.C. Hoyne, C. Nath, S.G. Kapoor, On cutting temperature measurement during titanium machining with an atomization-based cutting fluid spray system, Journal of Manufacturing Science and Engineering, 137(2): 024502, 2015.
  • 7. M.B. Jun, S.S. Joshi, R.E. DeVor, S.G. Kapoor, An experimental evaluation of an atomization-based cutting fluid application system for micromachining, Journal of Manufacturing Science and Engineering, 130(3): 031118, 2008.
  • 8. X. Wang, C. Li, Y. Zhang, W. Ding, M. Yang, T. Gao, H.M. Ali, Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives, Journal of Manufacturing Processes, 59:76-97, 2020.
  • 9. S.A. Lawal, I. A. Choudhury, Y. Nukman, Application of vegetable oil-based metalworking fluids in machining ferrous metals-a review, International Journal of Machine Tools and Manufacture, 52(1):1-12, 2012.
  • 10. N.R. Dhar, M. Kamruzzaman, M. Ahmed, Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel, Journal of materials processing technology, 172(2):299-304, 2006.
  • 11. M. Hadad, B. Sadeghi, Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy, Journal of Cleaner Production, 54: 332-343, 2013.
  • 12. M.M.A. Khan, M.A.H. Mithu, N.R. Dhar, Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of materials processing Technology, 209(15-16):5573-5583, 2009.
  • 13. Y. Shuang, M. John, D. Songlin, Experimental investigation on the performance and mechanism of graphene oxide nanofluids in turning Ti-6Al-4V, Journal of Manufacturing Processes, 43:164-174, 2019.
  • 14. A. Shokrani, I. Al-Samarrai, S.T. Newman, Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy, Journal of Manufacturing Processes, 43:229-243,2019.
  • 15. H. Chen, W.L. Cheng, Y.H. Peng, W.W. Zhang, L.J. Jiang, Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling, International Journal of Heat and Mass Transfer, 103:57-65, 2016.
  • 16. M.A. Ebadian, C.X. Lin, A review of high-heat-flux heat removal technologies, Journal of Heat and Mass Transfer, 133(11), 2011.
  • 17. A. Tanveer, D. Marla, S.G. Kapoor, A thermal model to predict tool temperature in machining of Ti–6Al–4V alloy with an atomization-based cutting fluid spray system, Journal of Manufacturing Science and Engineering, 139(7): 071016, 2017.
  • 18. C. Nath, S.G. Kapoor, R.E. DeVor, A.K. Srivastava, J. Iverson, Design and evaluation of an atomization-based cutting fluid spray system in turning of titanium alloy, Journal of Manufacturing Processes, 14(4): 452-459, 2012.
  • 19. C. Nath, S.G. Kapoor, A.K. Srivastava, J. Iverson, Study of droplet spray behavior of an atomization-based cutting fluid spray system for machining titanium alloys, Journal of Manufacturing Science and Engineering, 136(2): 021004, 2014.
  • 20. C. Nath, S.G. Kapoor, A.K. Srivastava, Finish turning of Ti-6Al-4V with the atomization-based cutting fluid (ACF) spray system, Journal of Manufacturing Processes, 28: 464-471, 2017.
  • 21. M.B. Jun, S.S. Joshi, R.E. DeVor, S.G. Kapoor, An experimental evaluation of an atomization-based cutting fluid application system for micromachining, Journal of Manufacturing Science and Engineering, 130(3): 031118, 2008.
  • 22. C. Nath, S.G. Kapoor, R.E. DeVor, A.K. Srivastava, J. Iverson, Design and evaluation of an atomization-based cutting fluid spray system in turning of titanium alloy, Journal of Manufacturing Processes, 14(4): 452-459, 2012.
  • 23. C. Nath, S.G. Kapoor, A.K. Srivastava, J. Iverson, Effect of fluid concentration in titanium machining with an atomization-based cutting fluid (ACF) spray system, Journal of Manufacturing Processes, 15(4):419-425, 2013.
  • 24. E. Martínez-Galván, R. Antón, J. C. Ramos, R. Khodabandeh, Effect of the spray cone angle in the spray cooling with R134a, Experimental Thermal and Fluid Science, 50:127-138, 2013.
  • 25. E. Abd Rahim, H. Dorairaju, Evaluation of mist flow characteristic and performance in minimum quantity lubrication (MQL) machining, Measurement, 123:213-225, 2018.
  • 26. R. Singh, Minimum quantity lubrication turning of hard to cut materials–A review, Materials Today: Proceedings, 37:3601-3605, 2021.
  • 27. T. Ueda, A. Hosokawa, K. Yamada, Effect of oil mist on tool temperature in cutting. Journal of Manufacturing Science and Engineering, 128:130–135, 2006.
  • 28. A. Yassin, C.Y. Teo, Effect of pressure and nozzle angle of minimal quantity lubrication on cutting temperature and tool wear in turning, In Applied Mechanics and Materials, 695:676-679, 2015.
  • 29. V. Upadhyay, P.K. Jain, N.K. Mehta, K. Branko, Minimum quantity lubrication assisted turning-an overview, Daaam İnternational Scientific Book, 463-478, 2012.
  • 30. V.S. Sharma, M. Dogra, N.M. Suri, Cooling techniques for improved productivity in turning, International Journal of Machine Tools and Manufacture, 49(6):435-453, 2009.
  • 31. T. Singh, P. Singh, J.S. Dureja, M. Dogra, H. Singh, M.S. Bhatti, A review of near dry machining/minimum quantity lubrication machining of difficult to machine alloys, International journal of Machining and Machinability of Materials, 18(3):213-251, 2016.
  • 32. Z.Q. Liu, X.J. Cai, M. Chen, Q.L. An, Investigation of cutting force and temperature of end-milling Ti–6Al–4V with different minimum quantity lubrication (MQL) parameters, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(8): 1273-1279, 2011.
  • 33. S. Masoudi, M.J. Esfahani, F. Jafarian, S.A. Mirsoleimani, Comparison the effect of MQL, wet and dry turning on surface topography, cylindricity tolerance and sustainability, International Journal of Precision Engineering and Manufacturing-Green Technology, 1-13, 2019.
  • 34. Y. Hou, X. Liu, J. Liu, M. Li, L. Pu, Experimental study on phase change spray cooling, Experimental Thermal and Fluid Science, 46:84-88, 2013.
  • 35. F. Kafkas, Evaluation of the efficiency of an ultrasonic atomization-based coolant (uACF) spray system in external turning using different nozzle tips, Journal of Manufacturing Processes, 81:991-1004, 2022.
  • 36. F. Kafkas, H. Gürbüz, U. Şeker, AISI 316L paslanmaz çeliğin tornalanmasında takım geometrisi ve işleme parametrelerinin yüzey bütünlüğü özelliklerine etkisinin taguchi yöntemi ile analizi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10 (3), 391-407, 2022.
  • 37. K. Palanikumar, Experimental investigation and optimisation in drilling of GFRP composites, Measurement, 44(10): 2138-2148, 2011.
  • 38. I. Asiltürk, H. Akkuş, Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method, Measurement, 44(9):1697-1704, 2011.
  • 39. O. Köksoy, F. Zehra Muluk, Solution to the Taguchi’s problem with correlated responses, Gazi University Journal of Science, 17(1):59-70, 2004.
  • 40. A. Gupta, H. Singh, A. Aggarwal, Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel, Expert Systems with Applications, 38(6):6822-6828, 2011.
  • 41. S. Kalpakjian, S.R. Schmid, Manufacturing engineering and technology in SI units, 8th Edition, UK: Pearson Education Limited, 2022.
  • 42. C.L. Lin, Use of the taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics, Mater. Manuf. Process. 19(2):209–220, 2004.
  • 43. A. Acır, M.E. Canlı, İ. Ata, R. Çakıroğlu, Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysi, Appl. Therm. Eng., 122:330–338, 2017.
  • 44. K. Ramesh, P. Baranitharan, R. Sakthivel, Investigation of the stability on boring tool attached with double impact dampers using Taguchi based Grey analysis and cutting tool temperature investigation through FLUKE-Thermal imager, Measurement, 131:143–155, 2019.
  • 45. M. Mia, A. Rifat, F. Tanvir, M.K. Gupta, J. Hossain, A. Goswami, Multi-objective optimization of chip-tool interaction parameters using Grey-Taguchi method in MQL-assisted turning, Measurement, 129:156–166, 2018.
  • 46. O. Zerti, M. Yallese, A. Zerti, S. Belhadi, F. Girardin, Simultaneous improvement of surface quality and productivity using grey relational analysis based Taguchi design for turning couple (AISI D3 steel/mixed ceramic tool (Al2O3+ TiC)), Int. J. Ind. Eng. Comput., 9(2):173–194, 2018.
  • 47. T. Zeng, C.J. Lin, Y.H. Yang, M.C. Jeng, Optimization of turning operations with multiple performance characteristics using the taguchi method and grey relational analysis, J. Mater. Process. Technol., 209:2753-2759, 2009.

Effect of UMQL Parameters on Cutting Force and Chip Compression Coefficient in Turning with Minimum Quantity Lubrication Based on Ultrasonic Atomization System (UMQL)

Yıl 2023, , 137 - 154, 30.12.2023
https://doi.org/10.52795/mateca.1381848

Öz

Minimum quantity lubrication system based on ultrasonic atomization (UMQL) has gained effectiveness in cooling the cutting zone and increasing machining performance by effectively penetrating the tool-chip interface. UMQL machining parameters such as cutting fluid concentration ratio (A), nozzle orifice diameter (B), horizontal nozzle angle (C), vertical nozzle angle (D), nozzle distance (E), air pressure (F), cutting fluid atomization ratio (G) and nozzle type (H) significantly affect the performance of the UMQL system. The aim of this study is to investigate the effects of UMQL machining parameters on average cutting force (Fc) and chip compression coefficient (ζ) and to determine the optimum UMQL machining parameters. For this purpose, the turning of AISI 1050 steel with the UMQL system was carried out according to the Taguchi L27 orthogonal experimental design on a CNC lathe. The effect of UMQL machining parameters on Fc and ζ was determined using analysis of variance according to Taguchi experimental techniques. As a result of the study, the lowest Fc and ζ values were obtained in the machining performed with a short nozzle (K). Cutting fluid concentration ratio contributed the most to Fc with a value of 29.20 %. It was determined that the ζ value increased as the nozzle orifice diameter, horizontal nozzle angle and vertical nozzle angle values increased. In the grey relational analysis using the multiple response method, the optimum UMMY machining parameters levels were A2B1C2D3E2F3G1H2.

Kaynakça

  • 1. F. Kafkas, R. Mergen, İşleme süreçlerinde ultrasonik atomizasyon kesme sıvısı (ACF) püskürtme sistemine dayalı minimum miktar yağlama (MQL) sistemlerine genel bir bakış, Mühendislik Alanında Uluslararası Araştırmalar VI. (Edt: L. Civcik), Konya: Eğitim Yayınevi, 7-34, 2022.
  • 2. N.A. Abukhshim, P.T. Mativenga, M.A. Sheikh, An investigation of the tool-chip contact length and wear in high-speed turning of EN19 steel, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(8): 889-903, 2004.
  • 3. S.A. Iqbal, P.T. Mativenga, M.A. Sheikh, Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 1: Investigation of contact phenomena, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(5): 909-916, 2007.
  • 4. I. Ghai, J. Wentz, R.E. DeVor, S.G. Kapoor, J. Samuel, Droplet behavior on a rotating surface for atomization-based cutting fluid application in micromachining, Journal of Manufacturing Science and Engineering, 132(1), 2010.
  • 5. V. Marinov, The tool chip contact length on orthogonal metal cutting, In 5th International Conference on Advanced Engineering and Technology, AMTECH, 99:149-155, 1999.
  • 6. A.C. Hoyne, C. Nath, S.G. Kapoor, On cutting temperature measurement during titanium machining with an atomization-based cutting fluid spray system, Journal of Manufacturing Science and Engineering, 137(2): 024502, 2015.
  • 7. M.B. Jun, S.S. Joshi, R.E. DeVor, S.G. Kapoor, An experimental evaluation of an atomization-based cutting fluid application system for micromachining, Journal of Manufacturing Science and Engineering, 130(3): 031118, 2008.
  • 8. X. Wang, C. Li, Y. Zhang, W. Ding, M. Yang, T. Gao, H.M. Ali, Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives, Journal of Manufacturing Processes, 59:76-97, 2020.
  • 9. S.A. Lawal, I. A. Choudhury, Y. Nukman, Application of vegetable oil-based metalworking fluids in machining ferrous metals-a review, International Journal of Machine Tools and Manufacture, 52(1):1-12, 2012.
  • 10. N.R. Dhar, M. Kamruzzaman, M. Ahmed, Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel, Journal of materials processing technology, 172(2):299-304, 2006.
  • 11. M. Hadad, B. Sadeghi, Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy, Journal of Cleaner Production, 54: 332-343, 2013.
  • 12. M.M.A. Khan, M.A.H. Mithu, N.R. Dhar, Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of materials processing Technology, 209(15-16):5573-5583, 2009.
  • 13. Y. Shuang, M. John, D. Songlin, Experimental investigation on the performance and mechanism of graphene oxide nanofluids in turning Ti-6Al-4V, Journal of Manufacturing Processes, 43:164-174, 2019.
  • 14. A. Shokrani, I. Al-Samarrai, S.T. Newman, Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy, Journal of Manufacturing Processes, 43:229-243,2019.
  • 15. H. Chen, W.L. Cheng, Y.H. Peng, W.W. Zhang, L.J. Jiang, Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling, International Journal of Heat and Mass Transfer, 103:57-65, 2016.
  • 16. M.A. Ebadian, C.X. Lin, A review of high-heat-flux heat removal technologies, Journal of Heat and Mass Transfer, 133(11), 2011.
  • 17. A. Tanveer, D. Marla, S.G. Kapoor, A thermal model to predict tool temperature in machining of Ti–6Al–4V alloy with an atomization-based cutting fluid spray system, Journal of Manufacturing Science and Engineering, 139(7): 071016, 2017.
  • 18. C. Nath, S.G. Kapoor, R.E. DeVor, A.K. Srivastava, J. Iverson, Design and evaluation of an atomization-based cutting fluid spray system in turning of titanium alloy, Journal of Manufacturing Processes, 14(4): 452-459, 2012.
  • 19. C. Nath, S.G. Kapoor, A.K. Srivastava, J. Iverson, Study of droplet spray behavior of an atomization-based cutting fluid spray system for machining titanium alloys, Journal of Manufacturing Science and Engineering, 136(2): 021004, 2014.
  • 20. C. Nath, S.G. Kapoor, A.K. Srivastava, Finish turning of Ti-6Al-4V with the atomization-based cutting fluid (ACF) spray system, Journal of Manufacturing Processes, 28: 464-471, 2017.
  • 21. M.B. Jun, S.S. Joshi, R.E. DeVor, S.G. Kapoor, An experimental evaluation of an atomization-based cutting fluid application system for micromachining, Journal of Manufacturing Science and Engineering, 130(3): 031118, 2008.
  • 22. C. Nath, S.G. Kapoor, R.E. DeVor, A.K. Srivastava, J. Iverson, Design and evaluation of an atomization-based cutting fluid spray system in turning of titanium alloy, Journal of Manufacturing Processes, 14(4): 452-459, 2012.
  • 23. C. Nath, S.G. Kapoor, A.K. Srivastava, J. Iverson, Effect of fluid concentration in titanium machining with an atomization-based cutting fluid (ACF) spray system, Journal of Manufacturing Processes, 15(4):419-425, 2013.
  • 24. E. Martínez-Galván, R. Antón, J. C. Ramos, R. Khodabandeh, Effect of the spray cone angle in the spray cooling with R134a, Experimental Thermal and Fluid Science, 50:127-138, 2013.
  • 25. E. Abd Rahim, H. Dorairaju, Evaluation of mist flow characteristic and performance in minimum quantity lubrication (MQL) machining, Measurement, 123:213-225, 2018.
  • 26. R. Singh, Minimum quantity lubrication turning of hard to cut materials–A review, Materials Today: Proceedings, 37:3601-3605, 2021.
  • 27. T. Ueda, A. Hosokawa, K. Yamada, Effect of oil mist on tool temperature in cutting. Journal of Manufacturing Science and Engineering, 128:130–135, 2006.
  • 28. A. Yassin, C.Y. Teo, Effect of pressure and nozzle angle of minimal quantity lubrication on cutting temperature and tool wear in turning, In Applied Mechanics and Materials, 695:676-679, 2015.
  • 29. V. Upadhyay, P.K. Jain, N.K. Mehta, K. Branko, Minimum quantity lubrication assisted turning-an overview, Daaam İnternational Scientific Book, 463-478, 2012.
  • 30. V.S. Sharma, M. Dogra, N.M. Suri, Cooling techniques for improved productivity in turning, International Journal of Machine Tools and Manufacture, 49(6):435-453, 2009.
  • 31. T. Singh, P. Singh, J.S. Dureja, M. Dogra, H. Singh, M.S. Bhatti, A review of near dry machining/minimum quantity lubrication machining of difficult to machine alloys, International journal of Machining and Machinability of Materials, 18(3):213-251, 2016.
  • 32. Z.Q. Liu, X.J. Cai, M. Chen, Q.L. An, Investigation of cutting force and temperature of end-milling Ti–6Al–4V with different minimum quantity lubrication (MQL) parameters, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(8): 1273-1279, 2011.
  • 33. S. Masoudi, M.J. Esfahani, F. Jafarian, S.A. Mirsoleimani, Comparison the effect of MQL, wet and dry turning on surface topography, cylindricity tolerance and sustainability, International Journal of Precision Engineering and Manufacturing-Green Technology, 1-13, 2019.
  • 34. Y. Hou, X. Liu, J. Liu, M. Li, L. Pu, Experimental study on phase change spray cooling, Experimental Thermal and Fluid Science, 46:84-88, 2013.
  • 35. F. Kafkas, Evaluation of the efficiency of an ultrasonic atomization-based coolant (uACF) spray system in external turning using different nozzle tips, Journal of Manufacturing Processes, 81:991-1004, 2022.
  • 36. F. Kafkas, H. Gürbüz, U. Şeker, AISI 316L paslanmaz çeliğin tornalanmasında takım geometrisi ve işleme parametrelerinin yüzey bütünlüğü özelliklerine etkisinin taguchi yöntemi ile analizi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10 (3), 391-407, 2022.
  • 37. K. Palanikumar, Experimental investigation and optimisation in drilling of GFRP composites, Measurement, 44(10): 2138-2148, 2011.
  • 38. I. Asiltürk, H. Akkuş, Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method, Measurement, 44(9):1697-1704, 2011.
  • 39. O. Köksoy, F. Zehra Muluk, Solution to the Taguchi’s problem with correlated responses, Gazi University Journal of Science, 17(1):59-70, 2004.
  • 40. A. Gupta, H. Singh, A. Aggarwal, Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel, Expert Systems with Applications, 38(6):6822-6828, 2011.
  • 41. S. Kalpakjian, S.R. Schmid, Manufacturing engineering and technology in SI units, 8th Edition, UK: Pearson Education Limited, 2022.
  • 42. C.L. Lin, Use of the taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics, Mater. Manuf. Process. 19(2):209–220, 2004.
  • 43. A. Acır, M.E. Canlı, İ. Ata, R. Çakıroğlu, Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysi, Appl. Therm. Eng., 122:330–338, 2017.
  • 44. K. Ramesh, P. Baranitharan, R. Sakthivel, Investigation of the stability on boring tool attached with double impact dampers using Taguchi based Grey analysis and cutting tool temperature investigation through FLUKE-Thermal imager, Measurement, 131:143–155, 2019.
  • 45. M. Mia, A. Rifat, F. Tanvir, M.K. Gupta, J. Hossain, A. Goswami, Multi-objective optimization of chip-tool interaction parameters using Grey-Taguchi method in MQL-assisted turning, Measurement, 129:156–166, 2018.
  • 46. O. Zerti, M. Yallese, A. Zerti, S. Belhadi, F. Girardin, Simultaneous improvement of surface quality and productivity using grey relational analysis based Taguchi design for turning couple (AISI D3 steel/mixed ceramic tool (Al2O3+ TiC)), Int. J. Ind. Eng. Comput., 9(2):173–194, 2018.
  • 47. T. Zeng, C.J. Lin, Y.H. Yang, M.C. Jeng, Optimization of turning operations with multiple performance characteristics using the taguchi method and grey relational analysis, J. Mater. Process. Technol., 209:2753-2759, 2009.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İmalat Süreçleri ve Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Ramazan Mergen 0000-0002-1411-7213

Fırat Kafkas 0000-0003-3257-7413

Erken Görünüm Tarihi 30 Aralık 2023
Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 26 Ekim 2023
Kabul Tarihi 26 Kasım 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Mergen, R., & Kafkas, F. (2023). Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti ve Talaş Büzüşme Katsayısı Üzerine Etkisi. Manufacturing Technologies and Applications, 4(3), 137-154. https://doi.org/10.52795/mateca.1381848
AMA Mergen R, Kafkas F. Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti ve Talaş Büzüşme Katsayısı Üzerine Etkisi. MATECA. Aralık 2023;4(3):137-154. doi:10.52795/mateca.1381848
Chicago Mergen, Ramazan, ve Fırat Kafkas. “Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti Ve Talaş Büzüşme Katsayısı Üzerine Etkisi”. Manufacturing Technologies and Applications 4, sy. 3 (Aralık 2023): 137-54. https://doi.org/10.52795/mateca.1381848.
EndNote Mergen R, Kafkas F (01 Aralık 2023) Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti ve Talaş Büzüşme Katsayısı Üzerine Etkisi. Manufacturing Technologies and Applications 4 3 137–154.
IEEE R. Mergen ve F. Kafkas, “Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti ve Talaş Büzüşme Katsayısı Üzerine Etkisi”, MATECA, c. 4, sy. 3, ss. 137–154, 2023, doi: 10.52795/mateca.1381848.
ISNAD Mergen, Ramazan - Kafkas, Fırat. “Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti Ve Talaş Büzüşme Katsayısı Üzerine Etkisi”. Manufacturing Technologies and Applications 4/3 (Aralık 2023), 137-154. https://doi.org/10.52795/mateca.1381848.
JAMA Mergen R, Kafkas F. Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti ve Talaş Büzüşme Katsayısı Üzerine Etkisi. MATECA. 2023;4:137–154.
MLA Mergen, Ramazan ve Fırat Kafkas. “Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti Ve Talaş Büzüşme Katsayısı Üzerine Etkisi”. Manufacturing Technologies and Applications, c. 4, sy. 3, 2023, ss. 137-54, doi:10.52795/mateca.1381848.
Vancouver Mergen R, Kafkas F. Ultrasonik Atomizasyon Esasına Dayalı Minimum Miktar Yağlama (UMMY) Sistemi İle Tornalamada UMMY Parametrelerinin Kesme Kuvveti ve Talaş Büzüşme Katsayısı Üzerine Etkisi. MATECA. 2023;4(3):137-54.