Derleme
BibTex RIS Kaynak Göster

Investigation of Mechanical Properties of 6061 Aluminum Alloy Sheets Welded by Friction Stir Welding

Yıl 2023, , 167 - 178, 30.12.2023
https://doi.org/10.52795/mateca.1393930

Öz

Friction stir welding (FSW) is a welding method in which a tool with a tip and shoulder designed in different forms rotates along the parts placed butt, lap or in different positions. It is also a solid-state joining technique that offers good mechanical properties in the weld area. Due to its significant advantages, the FSW combining method has been developing in recent years, and its development, research and use are constantly increasing. It has been observed that this joining method is increasingly used in various aluminium alloy materials that have problems such as hot cracking, porosity and distortion when joining with other welding methods. In this study, butt joints of AA6061-T6 sheets (0.5mm-6mm), which are frequently used in the defence and aerospace industry, were examined in terms of tensile strength. For this purpose, 17 different data sources were examined in terms of tensile strength and evaluated statistically. As a result of the studies, it was determined that the joint strengths were distributed in the range of 30-90% compared to the sheet strengths used, but the median values were collected in the range of 60-70%. It was determined that the average strength of 6 mm sheets, which were most frequently used in the studies, was around 75%. It has been observed that design and tool geometry are the most important parameters in joints.

Kaynakça

  • 1. W.M. Thomas, E.D. Nicholas, Friction welding, US Patent 228, 1995.
  • 2. I. Stol, Selecting manufacturing processes for automotive aluminum space frames, Weld J., 73: 57–65, 1994.
  • 3. R. Irving, Interest in welded aluminum automobiles Gathers Momentum worldwide, Weld J., 77: 31–35, 1998.
  • 4. M.R. Johnsen, Friction stir welding takes off at Boeing, Weld J., 78: 35–39, 1999.
  • 5. P.F. Mendez, T.W. Eager, Welding processes for aeronautics, Adv Mater Process, 159: 34-43, 2001.
  • 6. D. Burford, C. Widener, B. Tweedy, Advances in friction stir welding for aerospace applications, Airframer, 14: 3–7, 2007.
  • 7. S. Benavides, Y. Li, L.E. Murr, D. Brown, J.C. McClure, Low temperature friction stir welding of 2024 aluminum, Scr Mater, 41: 809–815, 1999.
  • 8. K.V. Jata, S.L. Semiatin, Continuous dynamic recrystallization during friction stir weldind of high strength aluminum alloys, Scr Mater, 43: 743–749, 2000.
  • 9. G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, F.R. Vega, Microstructural aspects of the friction stir welding of 6061-T6 aluminum, Scr Mater, 37: 355–361, 1997.
  • 10. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum, Scr Mater, 36: 67–75, 1997.
  • 11. M. ÖZDEMİR, Sürtünme karıştırma kaynak yöntemi ile alüminyum malzemelerin kaynaklanabilirliği, Yüksek Lisans, Gazi Üniversitesi, 2003.
  • 12. G. Staniek, W. Hillger, C.D. Donne, Ultrasonic testing on friction stir weldedaluminium alloys, Welding and Cutting, 313–318, 2002.
  • 13. P. Threadgill, Friction stir welds in aluminium alloys- preliminary microstructural assessment, TWI, 2: 513, 1997.
  • 14. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminium, Scr Mater, 36: 690–751, 1997.
  • 15. R.S. Mishra, Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering R. Reports, 50: 1–78, 2005.
  • 16. E. Taban, E. Kaluç, Sürtünen eleman ile kaynak (FSW) yöntemi, Makine Mühendisleri Odası Yayını, Ankara, 2007.
  • 17. B. Christner, J. McCoury, S.C. Higgins, Development and testing of friction stir welding (FSW) as a joining method for primary aircraft structure, 4th International Symposium on Friction Stir Welding, Park City, Utah, 14–16, 2003.
  • 18. B. Christner, M. Hansen, M. Skinner, G.V. Sylva, Friction stir welding system development fort hin-gauge aerospace structures, 4th International Symposium on Friction Stir Welding, Park City, Utah, 2003.
  • 19. G.E. Shepherd, The evaluation of friction stir welded joints on Airbus aircraft wing structure, 4th International Symposium on Friction Stir Welding, Park City, Utah, 2003.
  • 20. D. Lohwasser, Friction stir welding of aerospace alloys, 4th International Symposium on Friction Stir Welding, Park City, Utah, 2003.
  • 21. H.J. Liu, H. Fujii, M. Maeda, K. Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, J. Mater Process Technol, 142: 692–696, 2003.
  • 22. W.M. Thomas, K.I. Johnson, C.S. Wiesner, Friction stir welding-recent developments in tool and process technologies, Adv Eng Mater, 5: 485–490, 2003.
  • 23. H.N.B. Schmidt, T.L. Dickerson, J.H. Hattel, Material flow in butt friction stir welds in AA2024-T3, Acta Mater, 54: 1199–1209, 2006.
  • 24. J.A. Schneider, A.C. Nunes, Characterization of plastic flow and resulting microtextures in a friction stir weld, Metallurgical and Materials Transactions B, 35: 777–783, 2004.
  • 25. P. Heurtier, C. Desrayaud, F. Montheillet, A thermomechanical analysis of the friction stir welding process, Materials Science Forum, 396: 1537–1542, 2002.
  • 26. P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, D. Allehauxet, Mechanical and thermal modelling of friction stir welding, J. Mater Process Technol, 171: 348–357, 2006.
  • 27. A. Sık, M.K. Külekçi, Sürtünme karıştırma kaynağı ile alüminyum alasımı levhalarının birleştirilmesi ve elde edilen kaynaklı bağlantıların özellikleri, Kaynak Teknolojisi IV Ulusal Kongresi, 77–87, 2003.
  • 28. G. Çam, Sürtünme karıştırma kaynağındaki gelişmeler, Kaynak Teknolojisi IV Ulusal Kongresi, 47–64, 2003.
  • 29. H.J. Liu, J.C. Hou, H. Guo, Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy, Mater Des, 50: 872–878, 2013.
  • 30. D. Peng, J. Shen, Q. Tang, C. Wu, Y. Zhou, Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints, Int J Miner Metall Mater, 20: 259–265, 2013.
  • 31. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Smith, C.J. Dawes, Improvements relating to friction stir welding, 1992.
  • 32. W.M. Thomas, I.M. Norris, I.J. Smith, D.G. Staines, Reversal stir welding-feasibility study, 4th International Symposium on Friction Stir Welding, 2003.
  • 33. R.A. Prado, L.E. Murr, D.J. Shindo, K.F. Soto, Tool wear in the friction-stir welding of aluminium alloy 6016+%20 Al2O3: a prelimary study, Scr Mater, 45: 78–80, 2001.
  • 34. S. Vijayan, R. Raju, S.R.K. Rao, Multi objective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using Taguchi-based grey relation analysis, Mater Manuf Process, 25: 1206–1212, 2010.
  • 35. N.Z. Khan, Z.A. Khan, A.N. Siddiquee, Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength of friction stir welded 6063 aluminium alloy, Mater Today, 2: 1450–1457, 2015.
  • 36. S. Babu, K. Elangovan, V. Balasubramanian, M. Balasubramanian, Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints, Metals Mater Int, 15: 321–330, 2009.
  • 37. J. Mohammadi, Y. Behnamian, A. Mostafaei, H. Izadi, T. Saeid, A.H. Gerlich, Materials characterization friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations, Mater Charact, 101: 189–207, 2015.
  • 38. R.P. Mahto, R. Bhoje, S.K. Pal, H.S. Joshi, S. Das, A study on mechanical properties in friction stir lap welding of AA 6061– T6 and AISI 304, Mater Sci Eng, 652: 136–144, 2016.
  • 39. W.M. Thomas, E.D. Nicholas, S.D. Smith, Friction stir welding- tool developments, TMS Annual Meeting and Exhibition, Aluminium Joining – Emphasizing Laser and Friction stir welding, New Orleans, 2001.
  • 40. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Predicting tensile strength, hardness and corrosion rate of friction stir welded {AA}6061-T6 aluminium alloy joints, Mater Des, 32: 2878–2890, 2011.
  • 41. K. Elangovan, V. Balasubramanian, Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy, Mater Sci Eng A, 459: 7–18, 2007.
  • 42. S. Verma, M. Gupta, J.P. Misra, Friction stir welding of aerospace materials, a State of Art Review, 135–150, 2016.
  • 43. M. Vangalapati, K. Balaji, A. Gopichand, ANN modeling and analysis of friction welded AA6061 aluminum alloy, Mater Today Proc, 18: 3357–3364, 2019.
  • 44. L.N. Semakane, E. Ekınlabı, F. Nemavhola, Material characterization and optimisation of friction stir welds of 6061-T6 aluminium alloy, Masters, University of Johannesburg, 2018.
  • 45. M. Gomathisankar, M. Gangatharan, P. Pitchipoo, A novel optimization of friction stir welding process parameters on aluminum alloy 6061-T6, Mater Today Proc, 5: 14397–14404, 2018.
  • 46. S. Rajakumar, C. Muralıdharan, V. Balasubramanian, Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints, Transactions of Nonferrous Metals Society of China, 20: 1863–1872, 2010.
  • 47. D. Sethi, U. Acharya, S. Shekhar, B. S. Roy, Applicability of unique scarf joint configuration in friction stir welding of AA6061-T6: Analysis of torque, force, microstructure and mechanical properties, Defence Technology, 18: 567–582, 2022.
  • 48. H. Zhang, S. Chen, Y. Zhang, X. Chen, Effect of high rotational-speed friction-stir welding on microstructure and properties of welded joints of 6061-T6 Al Alloy ultrathin plate, Materials, 14: 6012, 2021.
  • 49. L. Prabhu, S.S. Kumar, S. Krishnamoorthi, A. Anderson, Effect of novel tool path pattern on mechanical properties of friction stir welded AA6061 alloy, Appl Nanosci, 13: 2129–2138, 2023.
  • 50. F.J. Liu, Z.Y. Sun, Y.F. Tuo, Y. Ji, Effect of shoulder geometry and clamping on microstructure evolution and mechanical properties of ultra-thin friction stir-welded Al6061-T6 plates, The International Journal of Advanced Manufacturing Technology, 106: 1465–1476, 2020.
  • 51. H. Hsieh, J.L. Chen, Influence of welding parameters on mechanical properties of friction stir welded 6061-T6 launch box, Mater Trans, 49: 2179–2184, 2008.
  • 52. A. Astarita, A. Squillace, L. Nele, Mechanical characteristics of welded joints of aluminum alloy 6061 T6 formed by arc and friction stir welding, Metal Science and Heat Treatment, 57: 564–569, 2016.
  • 53. A. Banik, T. Debnath, J.D. Barma, S.C. Saha, Effect of square pin tool on friction stir welded AA 6061-T6 from the perspective of revolution pitch, Soldagem & Inspeção, 27: 2706, 2022.
  • 54. A. Banik, J. Deb Barma, S.C. Saha, Effect of threaded pin tool for friction stir welding of AA6061-T6 at varying traverse speeds: Torque and force analysis, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 44: 749–764, 2020.
  • 55. D. Sethi, U. Acharya, S. Kumar, S. Shekhar, Effect of tool rotational speed on friction stir welded AA6061-T6 scarf joint configuration, Adv Compos Hybrid Mater, 5: 2353–2368, 2022.
  • 56. D. Li, X. Yang, L. Cui, F. He, Effect of welding parameters on microstructure and mechanical properties of AA6061-T6 butt welded joints by stationary shoulder friction stir welding, Materials and Design, 64: 251–260, 2014.
  • 57. S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy, Materials Science and Engineering A, 662: 136–143, 2016.

Sürtünme Karıştırma Kaynağı ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi

Yıl 2023, , 167 - 178, 30.12.2023
https://doi.org/10.52795/mateca.1393930

Öz

Sürtünme karıştırma kaynağı (SKK), farklı formlarda tasarlanmış uç ve omuza sahip olan takımın alın, bindirme veya farklı pozisyonlarda yerleştirilen parçaların boyunca dönerek ilerlediği bir kaynak yöntemidir. Aynı zamanda kaynak bölgesinde iyi mekanik özellikler sunan katı hal birleştirme tekniğidir. Önemli avantajlarından dolayı SKK birleştirme yöntemi son yıllarda gelişmekte olup geliştirme, araştırma ve kullanılması sürekli artış göstermektedir. Diğer kaynak yöntemleri ile birleştirilmesinde sıcak çatlama, porozite ve çarpılma gibi problemler yaşanan çeşitli alüminyum alaşım malzemelerde bu birleştirme yönteminin artarak kullanıldığı görülmüştür. Bu çalışmada savunma ve havacılık sanayinde sıklıkla kullanılan AA6061-T6 sacların (0.5mm-6mm) SKK ile alın birleştirmeleri çekme dayanımı yönünden incelenmiştir. Bu amaçla 17 farklı çalışma verisi çekme mukavemetleri yönünden incelenmiş ve istatistiksel olarak değerlendirilmiştir. Çalışmalar neticesinde birleştirme mukavemetlerinin kullanılan sac mukavemetlerine oranla %30-90 aralığında dağılmakla birlikte medyan değerlerinin %60-70 aralığında toplandığı tespit edilmiştir. Çalışmalarda en sık kullanılan 6 mm saclarda ise ortalama mukavemetlerin %75 civarında olduğu belirlenmiştir. Birleştirmelerde tasarımın ve takım geometrisinin en önemli parametreler olarak öne çıktığı görülmüştür.

Kaynakça

  • 1. W.M. Thomas, E.D. Nicholas, Friction welding, US Patent 228, 1995.
  • 2. I. Stol, Selecting manufacturing processes for automotive aluminum space frames, Weld J., 73: 57–65, 1994.
  • 3. R. Irving, Interest in welded aluminum automobiles Gathers Momentum worldwide, Weld J., 77: 31–35, 1998.
  • 4. M.R. Johnsen, Friction stir welding takes off at Boeing, Weld J., 78: 35–39, 1999.
  • 5. P.F. Mendez, T.W. Eager, Welding processes for aeronautics, Adv Mater Process, 159: 34-43, 2001.
  • 6. D. Burford, C. Widener, B. Tweedy, Advances in friction stir welding for aerospace applications, Airframer, 14: 3–7, 2007.
  • 7. S. Benavides, Y. Li, L.E. Murr, D. Brown, J.C. McClure, Low temperature friction stir welding of 2024 aluminum, Scr Mater, 41: 809–815, 1999.
  • 8. K.V. Jata, S.L. Semiatin, Continuous dynamic recrystallization during friction stir weldind of high strength aluminum alloys, Scr Mater, 43: 743–749, 2000.
  • 9. G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, F.R. Vega, Microstructural aspects of the friction stir welding of 6061-T6 aluminum, Scr Mater, 37: 355–361, 1997.
  • 10. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum, Scr Mater, 36: 67–75, 1997.
  • 11. M. ÖZDEMİR, Sürtünme karıştırma kaynak yöntemi ile alüminyum malzemelerin kaynaklanabilirliği, Yüksek Lisans, Gazi Üniversitesi, 2003.
  • 12. G. Staniek, W. Hillger, C.D. Donne, Ultrasonic testing on friction stir weldedaluminium alloys, Welding and Cutting, 313–318, 2002.
  • 13. P. Threadgill, Friction stir welds in aluminium alloys- preliminary microstructural assessment, TWI, 2: 513, 1997.
  • 14. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminium, Scr Mater, 36: 690–751, 1997.
  • 15. R.S. Mishra, Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering R. Reports, 50: 1–78, 2005.
  • 16. E. Taban, E. Kaluç, Sürtünen eleman ile kaynak (FSW) yöntemi, Makine Mühendisleri Odası Yayını, Ankara, 2007.
  • 17. B. Christner, J. McCoury, S.C. Higgins, Development and testing of friction stir welding (FSW) as a joining method for primary aircraft structure, 4th International Symposium on Friction Stir Welding, Park City, Utah, 14–16, 2003.
  • 18. B. Christner, M. Hansen, M. Skinner, G.V. Sylva, Friction stir welding system development fort hin-gauge aerospace structures, 4th International Symposium on Friction Stir Welding, Park City, Utah, 2003.
  • 19. G.E. Shepherd, The evaluation of friction stir welded joints on Airbus aircraft wing structure, 4th International Symposium on Friction Stir Welding, Park City, Utah, 2003.
  • 20. D. Lohwasser, Friction stir welding of aerospace alloys, 4th International Symposium on Friction Stir Welding, Park City, Utah, 2003.
  • 21. H.J. Liu, H. Fujii, M. Maeda, K. Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, J. Mater Process Technol, 142: 692–696, 2003.
  • 22. W.M. Thomas, K.I. Johnson, C.S. Wiesner, Friction stir welding-recent developments in tool and process technologies, Adv Eng Mater, 5: 485–490, 2003.
  • 23. H.N.B. Schmidt, T.L. Dickerson, J.H. Hattel, Material flow in butt friction stir welds in AA2024-T3, Acta Mater, 54: 1199–1209, 2006.
  • 24. J.A. Schneider, A.C. Nunes, Characterization of plastic flow and resulting microtextures in a friction stir weld, Metallurgical and Materials Transactions B, 35: 777–783, 2004.
  • 25. P. Heurtier, C. Desrayaud, F. Montheillet, A thermomechanical analysis of the friction stir welding process, Materials Science Forum, 396: 1537–1542, 2002.
  • 26. P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, D. Allehauxet, Mechanical and thermal modelling of friction stir welding, J. Mater Process Technol, 171: 348–357, 2006.
  • 27. A. Sık, M.K. Külekçi, Sürtünme karıştırma kaynağı ile alüminyum alasımı levhalarının birleştirilmesi ve elde edilen kaynaklı bağlantıların özellikleri, Kaynak Teknolojisi IV Ulusal Kongresi, 77–87, 2003.
  • 28. G. Çam, Sürtünme karıştırma kaynağındaki gelişmeler, Kaynak Teknolojisi IV Ulusal Kongresi, 47–64, 2003.
  • 29. H.J. Liu, J.C. Hou, H. Guo, Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy, Mater Des, 50: 872–878, 2013.
  • 30. D. Peng, J. Shen, Q. Tang, C. Wu, Y. Zhou, Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints, Int J Miner Metall Mater, 20: 259–265, 2013.
  • 31. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Smith, C.J. Dawes, Improvements relating to friction stir welding, 1992.
  • 32. W.M. Thomas, I.M. Norris, I.J. Smith, D.G. Staines, Reversal stir welding-feasibility study, 4th International Symposium on Friction Stir Welding, 2003.
  • 33. R.A. Prado, L.E. Murr, D.J. Shindo, K.F. Soto, Tool wear in the friction-stir welding of aluminium alloy 6016+%20 Al2O3: a prelimary study, Scr Mater, 45: 78–80, 2001.
  • 34. S. Vijayan, R. Raju, S.R.K. Rao, Multi objective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using Taguchi-based grey relation analysis, Mater Manuf Process, 25: 1206–1212, 2010.
  • 35. N.Z. Khan, Z.A. Khan, A.N. Siddiquee, Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength of friction stir welded 6063 aluminium alloy, Mater Today, 2: 1450–1457, 2015.
  • 36. S. Babu, K. Elangovan, V. Balasubramanian, M. Balasubramanian, Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints, Metals Mater Int, 15: 321–330, 2009.
  • 37. J. Mohammadi, Y. Behnamian, A. Mostafaei, H. Izadi, T. Saeid, A.H. Gerlich, Materials characterization friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations, Mater Charact, 101: 189–207, 2015.
  • 38. R.P. Mahto, R. Bhoje, S.K. Pal, H.S. Joshi, S. Das, A study on mechanical properties in friction stir lap welding of AA 6061– T6 and AISI 304, Mater Sci Eng, 652: 136–144, 2016.
  • 39. W.M. Thomas, E.D. Nicholas, S.D. Smith, Friction stir welding- tool developments, TMS Annual Meeting and Exhibition, Aluminium Joining – Emphasizing Laser and Friction stir welding, New Orleans, 2001.
  • 40. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Predicting tensile strength, hardness and corrosion rate of friction stir welded {AA}6061-T6 aluminium alloy joints, Mater Des, 32: 2878–2890, 2011.
  • 41. K. Elangovan, V. Balasubramanian, Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy, Mater Sci Eng A, 459: 7–18, 2007.
  • 42. S. Verma, M. Gupta, J.P. Misra, Friction stir welding of aerospace materials, a State of Art Review, 135–150, 2016.
  • 43. M. Vangalapati, K. Balaji, A. Gopichand, ANN modeling and analysis of friction welded AA6061 aluminum alloy, Mater Today Proc, 18: 3357–3364, 2019.
  • 44. L.N. Semakane, E. Ekınlabı, F. Nemavhola, Material characterization and optimisation of friction stir welds of 6061-T6 aluminium alloy, Masters, University of Johannesburg, 2018.
  • 45. M. Gomathisankar, M. Gangatharan, P. Pitchipoo, A novel optimization of friction stir welding process parameters on aluminum alloy 6061-T6, Mater Today Proc, 5: 14397–14404, 2018.
  • 46. S. Rajakumar, C. Muralıdharan, V. Balasubramanian, Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints, Transactions of Nonferrous Metals Society of China, 20: 1863–1872, 2010.
  • 47. D. Sethi, U. Acharya, S. Shekhar, B. S. Roy, Applicability of unique scarf joint configuration in friction stir welding of AA6061-T6: Analysis of torque, force, microstructure and mechanical properties, Defence Technology, 18: 567–582, 2022.
  • 48. H. Zhang, S. Chen, Y. Zhang, X. Chen, Effect of high rotational-speed friction-stir welding on microstructure and properties of welded joints of 6061-T6 Al Alloy ultrathin plate, Materials, 14: 6012, 2021.
  • 49. L. Prabhu, S.S. Kumar, S. Krishnamoorthi, A. Anderson, Effect of novel tool path pattern on mechanical properties of friction stir welded AA6061 alloy, Appl Nanosci, 13: 2129–2138, 2023.
  • 50. F.J. Liu, Z.Y. Sun, Y.F. Tuo, Y. Ji, Effect of shoulder geometry and clamping on microstructure evolution and mechanical properties of ultra-thin friction stir-welded Al6061-T6 plates, The International Journal of Advanced Manufacturing Technology, 106: 1465–1476, 2020.
  • 51. H. Hsieh, J.L. Chen, Influence of welding parameters on mechanical properties of friction stir welded 6061-T6 launch box, Mater Trans, 49: 2179–2184, 2008.
  • 52. A. Astarita, A. Squillace, L. Nele, Mechanical characteristics of welded joints of aluminum alloy 6061 T6 formed by arc and friction stir welding, Metal Science and Heat Treatment, 57: 564–569, 2016.
  • 53. A. Banik, T. Debnath, J.D. Barma, S.C. Saha, Effect of square pin tool on friction stir welded AA 6061-T6 from the perspective of revolution pitch, Soldagem & Inspeção, 27: 2706, 2022.
  • 54. A. Banik, J. Deb Barma, S.C. Saha, Effect of threaded pin tool for friction stir welding of AA6061-T6 at varying traverse speeds: Torque and force analysis, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 44: 749–764, 2020.
  • 55. D. Sethi, U. Acharya, S. Kumar, S. Shekhar, Effect of tool rotational speed on friction stir welded AA6061-T6 scarf joint configuration, Adv Compos Hybrid Mater, 5: 2353–2368, 2022.
  • 56. D. Li, X. Yang, L. Cui, F. He, Effect of welding parameters on microstructure and mechanical properties of AA6061-T6 butt welded joints by stationary shoulder friction stir welding, Materials and Design, 64: 251–260, 2014.
  • 57. S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy, Materials Science and Engineering A, 662: 136–143, 2016.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kaynak Teknolojileri
Bölüm Derlemeler
Yazarlar

Çetin Batuk 0009-0003-2104-8994

Hüseyin Demirtaş 0000-0002-2442-2158

Erken Görünüm Tarihi 30 Aralık 2023
Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 21 Kasım 2023
Kabul Tarihi 19 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Batuk, Ç., & Demirtaş, H. (2023). Sürtünme Karıştırma Kaynağı ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi. İmalat Teknolojileri Ve Uygulamaları, 4(3), 167-178. https://doi.org/10.52795/mateca.1393930
AMA Batuk Ç, Demirtaş H. Sürtünme Karıştırma Kaynağı ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi. MATECA. Aralık 2023;4(3):167-178. doi:10.52795/mateca.1393930
Chicago Batuk, Çetin, ve Hüseyin Demirtaş. “Sürtünme Karıştırma Kaynağı Ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi”. İmalat Teknolojileri Ve Uygulamaları 4, sy. 3 (Aralık 2023): 167-78. https://doi.org/10.52795/mateca.1393930.
EndNote Batuk Ç, Demirtaş H (01 Aralık 2023) Sürtünme Karıştırma Kaynağı ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi. İmalat Teknolojileri ve Uygulamaları 4 3 167–178.
IEEE Ç. Batuk ve H. Demirtaş, “Sürtünme Karıştırma Kaynağı ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi”, MATECA, c. 4, sy. 3, ss. 167–178, 2023, doi: 10.52795/mateca.1393930.
ISNAD Batuk, Çetin - Demirtaş, Hüseyin. “Sürtünme Karıştırma Kaynağı Ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi”. İmalat Teknolojileri ve Uygulamaları 4/3 (Aralık 2023), 167-178. https://doi.org/10.52795/mateca.1393930.
JAMA Batuk Ç, Demirtaş H. Sürtünme Karıştırma Kaynağı ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi. MATECA. 2023;4:167–178.
MLA Batuk, Çetin ve Hüseyin Demirtaş. “Sürtünme Karıştırma Kaynağı Ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi”. İmalat Teknolojileri Ve Uygulamaları, c. 4, sy. 3, 2023, ss. 167-78, doi:10.52795/mateca.1393930.
Vancouver Batuk Ç, Demirtaş H. Sürtünme Karıştırma Kaynağı ile Birleştirilmiş 6061 Alüminyum Alaşımlı Sacların Mekanik Özellikler Yönünden İncelenmesi. MATECA. 2023;4(3):167-78.