Araştırma Makalesi
BibTex RIS Kaynak Göster

A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel

Yıl 2025, Cilt: 6 Sayı: 1, 23 - 32, 30.04.2025

Öz

This study investigates the effect of various machining variables on cutting forces and surface roughness during turning of AISI 5115 steel in dry and MQL environments. While the experiments were carried out using two different feed rates, four different cutting speeds and constant depth of cut, the effects of them and their different levels on surface roughness and cutting forces were analyzed by reference to full factorial experimental design. The prominent findings of the research are as follows: The lowest surface roughness was obtained at 90 m/min cutting speed and 0.15 mm/rev feed rate in both mediums. The lowest cutting force was obtained at 135 m/min cutting speed, 0.15 mm/rev feed rate in dry environment and at 50 m/min cutting speed and 0.15 mm/rev feed rate in MQL environment. It was determined that there was an average 6.90% reduction in cutting force and an average 12.2% reduction in surface roughness in MQL condition. As a result, it was observed that machining in MQL conditions gave better results than dry conditions. These results show that the MQL method improves the machining performance compared to dry machining.

Kaynakça

  • H. Akkuş, AISI 1040 çeliğinin işlenebilirliği sırasında oluşan yüzey pürüzlülüğü değerlerinin farklı tahmin modelleri ile araştırılması, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24(2) (2021) 84-92.
  • M. Yaka, AISI 1040 çeliğinin tornalanmasında yüzey pürüzlülüğünün istatistiksel incelenmesi, Amasya Üniversitesi Fen Bilimleri Enstitüsü, Amasya, 2019.
  • H. Demirpolat, Evaluation of the turning parameters of AISI 5115 steel in dry and MQL cutting environments with the use of a coated carbide cutting insert: An experimental study, Journal of Materials and Mechatronics: A, 5(1) (2024) 168-182.
  • R. Binali, M. Kuntoğlu, An in-depth analysis on the surface roughness variations during turning of GGG50 ductile cast iron, Doğu Fen Bilimleri Dergisi, 5(2) (2022) 41-49.
  • M. Kuntoğlu, et al., Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140, Machines, 9(5) (2021) 90.
  • İ. Asiltürk, A comprehensive analysis of surface roughness, vibration, and acoustic emissions based on machine learning during hard turning of AISI 4140 steel, Metals, 13(2) (2023) 437.
  • M. Kuntoğlu, Measurement and analysis of sustainable indicators in machining of Armox 500T armor steel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(13) (2022) 7330-7349.
  • E. Salur, The effects of MQL and dry environments on tool wear, cutting temperature, and power consumption during end milling of AISI 1040 steel, Metals, 11(11) (2021) 1-16.
  • P. Sivaiah, D. Chakradhar, Effect of cryogenic coolant on turning performance characteristics during machining of 17-4 PH stainless steel: A comparison with MQL, wet, dry machining, CIRP Journal of Manufacturing Science and Technology, 21(2018) 86-96.
  • M. Kuntoğlu, K. Kaya, R. Binali, Investigation of surface roughness changes in the machining of carbon steel under sustainable conditions, In Int. Conf. Pioneer Innov. Stud. of Conferenc, 163-167.
  • D.Y. Pimenov, et al., A comprehensive review of machinability of difficult-to-machine alloys with advanced lubricating and cooling techniques, Tribology International, (2024) 109677.
  • S. Yağmur, AISI 1050 çeliğinin tornalanmasında minimum miktarda yağlamanın (MMY) kesme kuvvetleri ve yüzey pürüzlüğü üzerindeki etkisinin araştırılması, Gazi University Journal of Science Part C: Design and Technology, (2023) 1-1.
  • R. Binali, Experimental and machine learning comparison for measurement the machinability of nickel based alloy in pursuit of sustainability, Measurement, 236 (2024) 115142.
  • R. Binali, et al., Energy saving by parametric optimization and advanced lubri-cooling techniques in the machining of composites and superalloys: A systematic review, Energies, 15(21) (2022) 8313.
  • İ. Yeğen, M. Usta, The effect of salt bath cementation on mechanical behavior of hot-rolled and cold-drawn SAE 8620 and 16MnCr5 steels, Vacuum, 85(3) (2010) 390-396.
  • S. Agarwal, et al., Optimisation of cutting parameters during turning of 16MnCr5 steel using Taguchi technique, International Journal on Interactive Design and Manufacturing (IJIDeM), 18(4) (2024) 2055-2066.
  • C. Baykara, E. Atik, The effect of surface roughness and carburized depth on wear resistance in 16MnCr5 case hardening steel, Industrial Lubrication and Tribology, (2024).
  • S. Arunkumar, et al., Study properties and mechanical behavior of the shaft material 16MnCr5, Materials Today: Proceedings, 37 (2021) 2458-2461.
  • P. Arrabiyeh, et al., Micro grinding 16MnCr5 hardened steel using micro pencil grinding tools with diameters∼ 50 μm, CIRP J Manuf Sci Technol; 27(2019) 1–10.
  • K. Mouralova, et al., Analyzing the surface layer after WEDM depending on the parameters of a machine for the 16MnCr5 steel, Measurement, 94 (2016) 771-779.
  • T. Saini, K. Goyal, D. Bhandari, Multi-response optimization of WEDM parameters on machining 16MnCr5 alloy steel using Taguchi technique. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2 (2019) 35-47.
  • V. Molnar, Experimental Investigation of Tribology-Related Topography Parameters of Hard-Turned and Ground 16MnCr5 Surfaces, Lubricants, 11(6) (2023) 263.
  • R. Carrera Espinoza, et al., Study on the Tribological Properties of DIN 16MnCr5 Steel after Duplex Gas-Nitriding and Pack Boriding, Materials, 17(13) (2024) 3057.
  • J. Jacob, M. Meurer, T. Bergs, Surface Roughness Prediction in Hard Turning (Finishing) of 16MnCr5 Using a Model Ensemble Approach, Procedia CIRP, 126:(2024) 504-507.
  • D. Frölich, et al., Investigation of wear resistance of dry and cryogenic turned metastable austenitic steel shafts and dry turned and ground carburized steel shafts in the radial shaft seal ring system, Wear, 328 (2015) 123-131.
  • V. Molnar, Influence of cutting parameters and tool geometry on topography of hard turned surfaces, Machines, 11(6) (2023) 665.
  • I.P. Balabanov, Y. Balabanova, A. Agayev, Development of a parametric model for calculating cutting forces in external cylindrical turning of 16MNCR5 Steel, Key Engineering Materials, 979:(2024) 11-18.
  • M. Mehmedoviü, et al. Influence of operating regime parameters on white layer formation during a turning process of hardened 16MnCr5 steel, In Proceedings of 10th International Research/Expert Conference "Trends in the Development of Machinery and Associated Technology" TMT.
  • G. Szabó, J. Kundrák, Investigation of residual stresses in case of hard turning of case hardened 16MnCr5 Steel, Key Engineering Materials, 581 (2014) 501-504.
  • V. Molnar, Asymmetric height distribution of surfaces machined by hard turning and grinding. Symmetry, 14(8) (2022) 1591.
  • F. Magalhães, et al., Experimental and numerical analysis of hard turning with multi-chamfered cutting edges, Journal of Manufacturing Processes, 49 (2020) 126-134.
  • Molnár, V., Analyzing surface integrity elements of hard turned 16mncr5 steel. Cutting & Tools in Technological System, 98 (2023) 49-58.
  • R. Meyer, J. Köhler, B. Denkena, Influence of the tool corner radius on the tool wear and process forces during hard turning, The International Journal of Advanced Manufacturing Technology, 58:(2012) 933-940.
  • K. Mondal, et al., An investigation on turning hardened steel using different tool inserts, Materials and Manufacturing Processes, 31(13) (2016) 1770-1781.
  • S. Choudhury, N. Dhar, Study of the behavior of the minimum quantity lubrication (mql) in turning 16MnCr5 steel, Proceedings of the All India Conference on Recent Developments in Manufacturing & Quality Management, India, (2007) 167-177.
  • S.A. Rizvi, W. Ali, Integration of grey-based Taguchi technique for the optimization of process parameters during the turning operation of 16MnCr5 steel, Int J Ind Eng Prod Res, 30(2019) 245-254.
  • J.D. Kechagias, et al., A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy, Measurement, 151(2020) 107213.
  • ISO 3685: Tool-life Testing with Single-point Turning Tools. 1993: International Organization for Standardization (ISO): Geneva, Switzerland.
  • M.A. Makhesana, et al., Evaluation of drilling and hole quality characteristics in green machining aluminium alloys: A new approach towards green machining, Journal of Manufacturing Processes, 129 (2024) 176-186.
  • R.H. Namlu, et al., An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication, Procedia CIRP, 108 (2022) 311-316.
  • O. Öndin, et al., Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel, Tribology International, 148 (2020) 106323.
  • A.K. Sharma, A.K. Tiwari, A.R. Dixit, Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review, Journal of cleaner production, 127 (2016) 1-18.
  • S. Neşeli, S. Yaldız, E. Türkeş, Optimization of tool geometry parameters for turning operations based on the response surface methodology, Measurement, 44(3) (2011) 580-587.
  • R. Binali, Parametric optimization of cutting force and temperature in finite element milling of AISI P20 steel. Journal of Materials and Mechatronics: A, 4(1) (2023) 244-256.
  • F. Kafkas, H. Gürbüz, U. Şeker, Analysis of the effect of tool geometry and machining parameters on surface integrity properties in turning of AISI 316L stainless steel by Taguchi method, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10(3) (2022).
  • M. Pul, H.B. Özerkan, Al 6061 alaşımının işlenmesinde kesme derinliği ve kesici takım geometrisinin yüzey pürüzlülüğüne ve takım aşınma davranışına etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4):(2022) 2013-2024.
  • B. Özlü, H. Demir, M. Türkmen, The effect of mechanical properties and the cutting parameters on machinability of AISI 5140 steel cooled at high cooling rates after hot forging, Politeknik Dergisi, 22(4) (2019) 879-887.
  • Demirpolat, H., et al., AISI 52100 Rulman Çeliğinin Tornalanmasında İşleme Parametrelerinin Yüzey Pürüzlülüğü, Kesme Sıcaklığı ve Kesme Kuvveti Üzerindeki Etkilerinin İncelenmesi. İmalat Teknolojileri ve Uygulamaları, 4(3)179-189.
  • R. Binali, S. Yaldız, S. Neşeli, Finite element analysis and statistical investigation of S960ql structure steel machinability with milling method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(5) (2024) 260.
  • H. Demirpolat, et al., Comparison of tool wear, surface roughness, cutting forces, tool tip temperature, and chip shape during sustainable turning of bearing steel, Materials, 16(12) (2023) 4408.
  • R. Binali, et al., Machinability investigations based on tool wear, surface roughness, cutting temperature, chip morphology and material removal rate during dry and MQL-assisted milling of Nimax mold steel, Lubricants, 11(3)(2023) 101.

MQL Uygulaması ile AISI 5115 Çeliğinin Tornalama Performansının Değerlendirilmesi

Yıl 2025, Cilt: 6 Sayı: 1, 23 - 32, 30.04.2025

Öz

Bu çalışma, AISI 5115 çeliğinin kuru ve MQL ortamlarında tornalanması sırasında çeşitli işleme değişkenlerinin kesme kuvvetleri ve yüzey pürüzlülüğü üzerindeki etkisini araştırmaktadır. Deneyler iki farklı ilerleme, dört farklı kesme hızı ve sabit kesme derinliği kullanılarak gerçekleştirilirken parametrelerin ve farklı seviyelerinin yüzey pürüzlülüğü ve kesme kuvvetleri üzerindeki etkisi tam faktöriyel deney tasarımı referans alınarak analiz edilmiştir. Araştırmanın öne çıkan bulguları aşağıdaki gibidir: En düşük yüzey pürüzlülüğü her iki ortamda da 90 m/dak kesme hızı ve 0,15 mm/dev ilerleme hızında elde edilmiştir. En düşük kesme kuvveti, kuru ortamda 135 m/dak kesme hızı ve 0.15 mm/dev ilerleme hızında, MQL ortamında ise 50 m/dak kesme hızı ve 0.15 mm/dev ilerleme hızında elde edilmiştir. MQL koşulunda kesme kuvvetinde ortalama %6,90 ve yüzey pürüzlülüğünde ortalama %12,2 azalma olduğu tespit edilmiştir. Sonuç olarak, MQL koşullarında işlemenin kuru koşullara göre daha iyi sonuçlar verdiği gözlemlenmiştir. Bu sonuçlar, MQL yöntemininkuru işlemeye nazaran işleme performansını iyileştirdiğini göstermektedir.

Kaynakça

  • H. Akkuş, AISI 1040 çeliğinin işlenebilirliği sırasında oluşan yüzey pürüzlülüğü değerlerinin farklı tahmin modelleri ile araştırılması, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24(2) (2021) 84-92.
  • M. Yaka, AISI 1040 çeliğinin tornalanmasında yüzey pürüzlülüğünün istatistiksel incelenmesi, Amasya Üniversitesi Fen Bilimleri Enstitüsü, Amasya, 2019.
  • H. Demirpolat, Evaluation of the turning parameters of AISI 5115 steel in dry and MQL cutting environments with the use of a coated carbide cutting insert: An experimental study, Journal of Materials and Mechatronics: A, 5(1) (2024) 168-182.
  • R. Binali, M. Kuntoğlu, An in-depth analysis on the surface roughness variations during turning of GGG50 ductile cast iron, Doğu Fen Bilimleri Dergisi, 5(2) (2022) 41-49.
  • M. Kuntoğlu, et al., Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140, Machines, 9(5) (2021) 90.
  • İ. Asiltürk, A comprehensive analysis of surface roughness, vibration, and acoustic emissions based on machine learning during hard turning of AISI 4140 steel, Metals, 13(2) (2023) 437.
  • M. Kuntoğlu, Measurement and analysis of sustainable indicators in machining of Armox 500T armor steel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(13) (2022) 7330-7349.
  • E. Salur, The effects of MQL and dry environments on tool wear, cutting temperature, and power consumption during end milling of AISI 1040 steel, Metals, 11(11) (2021) 1-16.
  • P. Sivaiah, D. Chakradhar, Effect of cryogenic coolant on turning performance characteristics during machining of 17-4 PH stainless steel: A comparison with MQL, wet, dry machining, CIRP Journal of Manufacturing Science and Technology, 21(2018) 86-96.
  • M. Kuntoğlu, K. Kaya, R. Binali, Investigation of surface roughness changes in the machining of carbon steel under sustainable conditions, In Int. Conf. Pioneer Innov. Stud. of Conferenc, 163-167.
  • D.Y. Pimenov, et al., A comprehensive review of machinability of difficult-to-machine alloys with advanced lubricating and cooling techniques, Tribology International, (2024) 109677.
  • S. Yağmur, AISI 1050 çeliğinin tornalanmasında minimum miktarda yağlamanın (MMY) kesme kuvvetleri ve yüzey pürüzlüğü üzerindeki etkisinin araştırılması, Gazi University Journal of Science Part C: Design and Technology, (2023) 1-1.
  • R. Binali, Experimental and machine learning comparison for measurement the machinability of nickel based alloy in pursuit of sustainability, Measurement, 236 (2024) 115142.
  • R. Binali, et al., Energy saving by parametric optimization and advanced lubri-cooling techniques in the machining of composites and superalloys: A systematic review, Energies, 15(21) (2022) 8313.
  • İ. Yeğen, M. Usta, The effect of salt bath cementation on mechanical behavior of hot-rolled and cold-drawn SAE 8620 and 16MnCr5 steels, Vacuum, 85(3) (2010) 390-396.
  • S. Agarwal, et al., Optimisation of cutting parameters during turning of 16MnCr5 steel using Taguchi technique, International Journal on Interactive Design and Manufacturing (IJIDeM), 18(4) (2024) 2055-2066.
  • C. Baykara, E. Atik, The effect of surface roughness and carburized depth on wear resistance in 16MnCr5 case hardening steel, Industrial Lubrication and Tribology, (2024).
  • S. Arunkumar, et al., Study properties and mechanical behavior of the shaft material 16MnCr5, Materials Today: Proceedings, 37 (2021) 2458-2461.
  • P. Arrabiyeh, et al., Micro grinding 16MnCr5 hardened steel using micro pencil grinding tools with diameters∼ 50 μm, CIRP J Manuf Sci Technol; 27(2019) 1–10.
  • K. Mouralova, et al., Analyzing the surface layer after WEDM depending on the parameters of a machine for the 16MnCr5 steel, Measurement, 94 (2016) 771-779.
  • T. Saini, K. Goyal, D. Bhandari, Multi-response optimization of WEDM parameters on machining 16MnCr5 alloy steel using Taguchi technique. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2 (2019) 35-47.
  • V. Molnar, Experimental Investigation of Tribology-Related Topography Parameters of Hard-Turned and Ground 16MnCr5 Surfaces, Lubricants, 11(6) (2023) 263.
  • R. Carrera Espinoza, et al., Study on the Tribological Properties of DIN 16MnCr5 Steel after Duplex Gas-Nitriding and Pack Boriding, Materials, 17(13) (2024) 3057.
  • J. Jacob, M. Meurer, T. Bergs, Surface Roughness Prediction in Hard Turning (Finishing) of 16MnCr5 Using a Model Ensemble Approach, Procedia CIRP, 126:(2024) 504-507.
  • D. Frölich, et al., Investigation of wear resistance of dry and cryogenic turned metastable austenitic steel shafts and dry turned and ground carburized steel shafts in the radial shaft seal ring system, Wear, 328 (2015) 123-131.
  • V. Molnar, Influence of cutting parameters and tool geometry on topography of hard turned surfaces, Machines, 11(6) (2023) 665.
  • I.P. Balabanov, Y. Balabanova, A. Agayev, Development of a parametric model for calculating cutting forces in external cylindrical turning of 16MNCR5 Steel, Key Engineering Materials, 979:(2024) 11-18.
  • M. Mehmedoviü, et al. Influence of operating regime parameters on white layer formation during a turning process of hardened 16MnCr5 steel, In Proceedings of 10th International Research/Expert Conference "Trends in the Development of Machinery and Associated Technology" TMT.
  • G. Szabó, J. Kundrák, Investigation of residual stresses in case of hard turning of case hardened 16MnCr5 Steel, Key Engineering Materials, 581 (2014) 501-504.
  • V. Molnar, Asymmetric height distribution of surfaces machined by hard turning and grinding. Symmetry, 14(8) (2022) 1591.
  • F. Magalhães, et al., Experimental and numerical analysis of hard turning with multi-chamfered cutting edges, Journal of Manufacturing Processes, 49 (2020) 126-134.
  • Molnár, V., Analyzing surface integrity elements of hard turned 16mncr5 steel. Cutting & Tools in Technological System, 98 (2023) 49-58.
  • R. Meyer, J. Köhler, B. Denkena, Influence of the tool corner radius on the tool wear and process forces during hard turning, The International Journal of Advanced Manufacturing Technology, 58:(2012) 933-940.
  • K. Mondal, et al., An investigation on turning hardened steel using different tool inserts, Materials and Manufacturing Processes, 31(13) (2016) 1770-1781.
  • S. Choudhury, N. Dhar, Study of the behavior of the minimum quantity lubrication (mql) in turning 16MnCr5 steel, Proceedings of the All India Conference on Recent Developments in Manufacturing & Quality Management, India, (2007) 167-177.
  • S.A. Rizvi, W. Ali, Integration of grey-based Taguchi technique for the optimization of process parameters during the turning operation of 16MnCr5 steel, Int J Ind Eng Prod Res, 30(2019) 245-254.
  • J.D. Kechagias, et al., A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy, Measurement, 151(2020) 107213.
  • ISO 3685: Tool-life Testing with Single-point Turning Tools. 1993: International Organization for Standardization (ISO): Geneva, Switzerland.
  • M.A. Makhesana, et al., Evaluation of drilling and hole quality characteristics in green machining aluminium alloys: A new approach towards green machining, Journal of Manufacturing Processes, 129 (2024) 176-186.
  • R.H. Namlu, et al., An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication, Procedia CIRP, 108 (2022) 311-316.
  • O. Öndin, et al., Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel, Tribology International, 148 (2020) 106323.
  • A.K. Sharma, A.K. Tiwari, A.R. Dixit, Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review, Journal of cleaner production, 127 (2016) 1-18.
  • S. Neşeli, S. Yaldız, E. Türkeş, Optimization of tool geometry parameters for turning operations based on the response surface methodology, Measurement, 44(3) (2011) 580-587.
  • R. Binali, Parametric optimization of cutting force and temperature in finite element milling of AISI P20 steel. Journal of Materials and Mechatronics: A, 4(1) (2023) 244-256.
  • F. Kafkas, H. Gürbüz, U. Şeker, Analysis of the effect of tool geometry and machining parameters on surface integrity properties in turning of AISI 316L stainless steel by Taguchi method, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10(3) (2022).
  • M. Pul, H.B. Özerkan, Al 6061 alaşımının işlenmesinde kesme derinliği ve kesici takım geometrisinin yüzey pürüzlülüğüne ve takım aşınma davranışına etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4):(2022) 2013-2024.
  • B. Özlü, H. Demir, M. Türkmen, The effect of mechanical properties and the cutting parameters on machinability of AISI 5140 steel cooled at high cooling rates after hot forging, Politeknik Dergisi, 22(4) (2019) 879-887.
  • Demirpolat, H., et al., AISI 52100 Rulman Çeliğinin Tornalanmasında İşleme Parametrelerinin Yüzey Pürüzlülüğü, Kesme Sıcaklığı ve Kesme Kuvveti Üzerindeki Etkilerinin İncelenmesi. İmalat Teknolojileri ve Uygulamaları, 4(3)179-189.
  • R. Binali, S. Yaldız, S. Neşeli, Finite element analysis and statistical investigation of S960ql structure steel machinability with milling method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(5) (2024) 260.
  • H. Demirpolat, et al., Comparison of tool wear, surface roughness, cutting forces, tool tip temperature, and chip shape during sustainable turning of bearing steel, Materials, 16(12) (2023) 4408.
  • R. Binali, et al., Machinability investigations based on tool wear, surface roughness, cutting temperature, chip morphology and material removal rate during dry and MQL-assisted milling of Nimax mold steel, Lubricants, 11(3)(2023) 101.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, İmalat Süreçleri ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Bahar Sayın Kul 0000-0002-7899-7088

Ayşe Sena Yamaner 0009-0009-0536-996X

Gönderilme Tarihi 22 Ekim 2024
Kabul Tarihi 14 Aralık 2024
Erken Görünüm Tarihi 30 Nisan 2025
Yayımlanma Tarihi 30 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Sayın Kul, B., & Yamaner, A. S. (2025). A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel. Manufacturing Technologies and Applications, 6(1), 23-32.
AMA Sayın Kul B, Yamaner AS. A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel. MATECA. Nisan 2025;6(1):23-32.
Chicago Sayın Kul, Bahar, ve Ayşe Sena Yamaner. “A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel”. Manufacturing Technologies and Applications 6, sy. 1 (Nisan 2025): 23-32.
EndNote Sayın Kul B, Yamaner AS (01 Nisan 2025) A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel. Manufacturing Technologies and Applications 6 1 23–32.
IEEE B. Sayın Kul ve A. S. Yamaner, “A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel”, MATECA, c. 6, sy. 1, ss. 23–32, 2025.
ISNAD Sayın Kul, Bahar - Yamaner, Ayşe Sena. “A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel”. Manufacturing Technologies and Applications 6/1 (Nisan2025), 23-32.
JAMA Sayın Kul B, Yamaner AS. A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel. MATECA. 2025;6:23–32.
MLA Sayın Kul, Bahar ve Ayşe Sena Yamaner. “A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel”. Manufacturing Technologies and Applications, c. 6, sy. 1, 2025, ss. 23-32.
Vancouver Sayın Kul B, Yamaner AS. A Comparative Evaluation of Dry-MQL Turning Applications for AISI 5115 Steel. MATECA. 2025;6(1):23-32.