Araştırma Makalesi
BibTex RIS Kaynak Göster

Sensörlerde Nano Bor Nitrür ve Karbon Nanotüp: YSA ile Karşılaştırmalı İnceleme

Yıl 2025, Cilt: 6 Sayı: 3, 248 - 262, 30.12.2025
https://doi.org/10.52795/mateca.1683835

Öz

Karbon nanotüp (CNT) ve nano boyutlu bor nitrür (BN) malzemeler, uyumlulukları ve yapısal çok yönlülükleri nedeniyle sensör geliştirmede yaygın olarak kullanılan destek elemanlarıdır. Literatürde YSA ile fiziksel parametrelerin bu kadar detaylı bir şekilde karşılaştırılarak incelendiği çalışmalara nadiren rastlanmaktadır. Sunulan çalışmada farklı miktarlarda nanomalzemeler, su, gliserol ve jelatin içerikli sensörler hazırlanmıştır. Oluşturulan sensörlerin parlaklık (20°-60°), renk değişimi (ΔE) ve sertlik parametreleri ölçülmüştür. Ölçüm verileri hem istatistiksel yöntemler hem de Çok Katmanlı Algılayıcı (MLP) yapay sinir ağı modeli kullanılarak değerlendirilmiştir. Transfer fonksiyonu olarak Tansig ve performans fonksiyonu olarak ortalama kare hata kullanılmıştır. Hem eğitim hem de test başarısı için en iyi sınıflandırma %99,9 doğrulukla sertlik parametresinde yapılmış, bunu %94,9 doğrulukla ΔE takip etmiştir. ΔE ve parlaklık, 60° test koşullarında 6 ml su ile, 20°'de parlaklık ve sertlik için de 9 ml su ile yapılan deneylerde en etkili ortak yapısal malzemeler olmuştur. ΔE için 0,12 g BN ve 0,06 g CNT ve 60° parlaklık için hem BN hem de CNT için 0,06 g değişimler üzerinde en büyük etkiyi sağlamıştır. Hem BN hem de CNT için 0,06 g'lık deneysel koşullar da sertlik değişimi için en etkili parametreler olmuştur.

Kaynakça

  • W.-Y. Ko, L.-T. Huang, K.-J. Lin, Green technique solvent-free fabrication of silver nanoparticle–carbon nanotube flexible films for wearable sensors, Sens Actuators A Phys 317 (2021) 112437. https://doi.org/10.1016/j.sna.2020.112437.
  • Y.-T. Lai, J.-C. Kuo, Y.-J. Yang, A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes, Sens Actuators A Phys 215 (2014) 83–88. https://doi.org/10.1016/j.sna.2013.12.021.
  • T. Uygunoğlu, B. Şimşek, U. Fidan, Piezoresistive and capacitive cement-based stress sensors designed by incorporating carbon nanotubes doped with graphene nanopowder for structural health monitoring, Sens Actuators A Phys 374 (2024) 115491. https://doi.org/10.1016/j.sna.2024.115491.
  • M. Ylönen, A. Torkkeli, H. Kattelus, In situ boron-doped LPCVD polysilicon with low tensile stress for MEMS applications, Sens Actuators A Phys 109 (2003) 79–87. https://doi.org/10.1016/j.sna.2003.09.017.
  • B. Balkanlı, N. Yuksel, M.F. Fellah, Neurotransmitter amino acid adsorption on metal doped boron nitride nanosheets as biosensor: DFT study on neural disease prediagnosis system, Sens Actuators A Phys 366 (2024) 114980. https://doi.org/10.1016/j.sna.2023.114980.
  • A. Yücel, Ç.V. Yıldırım, AA2024 Alaşımının tornalanmasında nanoakışkan konsantrasyon oranı ve mmy parametrelerinin yüzey pürüzlülüğü ve kesme sıcaklığı üzerindeki etkisi, Manufacturing Technologies and Applications 1 (2020) 18–32.
  • A. Çakır Şencan, M. Çelik, E.N. Selayet Saraç, Tornalama işleminde uygulanan MMY tekniğinde kullanılan nanoakışkanların işleme performansına etkisi: çevre dostu işleme üzerine bir inceleme, Manufacturing Technologies and Applications 2 (2021) 47–66. https://doi.org/10.52795/mateca.1020081.
  • N. Kaynak, Fonksiyonel çok katmanlı karbon nanotüpler, Fen Bilimleri Enstitüsü, 2014.
  • T. Han, A. Nag, S. Chandra Mukhopadhyay, Y. Xu, Carbon nanotubes and its gas-sensing applications: A review, Sens Actuators A Phys 291 (2019) 107–143. https://doi.org/10.1016/j.sna.2019.03.053.
  • B. Mei, Y. Qin, S. Agbolaghi, A review on supramolecules/nanocomposites based on carbonic precursors and dielectric/conductive polymers and their applications, Materials Science and Engineering: B 269 (2021) 115181. https://doi.org/10.1016/j.mseb.2021.115181.
  • İ. Topcu, Karbon nanotüp takviyeli alüminyum matriksli almg/knt kompozitlerinin mekanik davranışlarının incelenmesi, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4 (2018) 99–109. https://doi.org/10.28979/comufbed.359796.
  • Z. Zhao, K. Teng, N. Li, X. Li, Z. Xu, L. Chen, J. Niu, H. Fu, L. Zhao, Y. Liu, Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface, Compos Struct 159 (2017) 761–772. https://doi.org/10.1016/j.compstruct.2016.10.022.
  • D.C. Ferrier, K.C. Honeychurch, Carbon Nanotube (CNT)-Based Biosensors, Biosensors (Basel) 11 (2021) 486. https://doi.org/10.3390/bios11120486.
  • S. Rathinavel, K. Priyadharshini, D. Panda, A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application, Materials Science and Engineering: B 268 (2021) 115095. https://doi.org/10.1016/j.mseb.2021.115095.
  • Y. zhang, C. Qin, Y. Wang, J. Cao, Metal clusters modified hexagonal boron nitride for adsorption and sensing of lithium batteries thermal runaway gases, Sens Actuators A Phys 379 (2024) 115929. https://doi.org/10.1016/j.sna.2024.115929.
  • R. İnan, Nanokompozit tekstil yüzeylerinin iletken hale getirilmesi ve sensör özelliği kazandırılması , Doktora Tezi, Marmara Üniversitesi, 2024.
  • G.I. Giannopoulos, On the buckling of hexagonal boron nitride nanoribbons via structural mechanics, Superlattices Microstruct 115 (2018) 1–9. https://doi.org/10.1016/j.spmi.2018.01.016.
  • Y. Göncü, M. Geçgin, F. Bakan, N. Ay, Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate, Materials Science and Engineering: C 79 (2017) 343–353. https://doi.org/10.1016/j.msec.2017.05.023.
  • T. Han, F. Scarpa, N.L. Allan, Super stretchable hexagonal boron nitride Kirigami, Thin Solid Films 632 (2017) 35–43. https://doi.org/10.1016/j.tsf.2017.03.059.
  • D.M. Lima, A.C. Chinellato, M. Champeau, Boron nitride-based nanocomposite hydrogels: preparation, properties and applications, Soft Matter 17 (2021) 4475–4488. https://doi.org/10.1039/D1SM00212K.
  • R.B. Alam, Md.H. Ahmad, M.R. Islam, Effect of MWCNT nanofiller on the dielectric performance of bio-inspired gelatin-based nanocomposites, RSC Adv 12 (2022) 14686–14697. https://doi.org/10.1039/D2RA01508K.
  • R.B. Alam, Md.H. Ahmad, M.R. Islam, Bio-inspired gelatin/single-walled carbon nanotube nanocomposite for transient electrochemical energy storage: An approach towards eco-friendly and sustainable energy system, Heliyon 7 (2021) e07468. https://doi.org/10.1016/j.heliyon.2021.e07468.
  • S. Sankaran, K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, M. Faisal, S.K.K. Pasha, Electrical and Electromagnetic Interference (EMI) shielding properties of hexagonal boron nitride nanoparticles reinforced polyvinylidene fluoride nanocomposite films, Polymer-Plastics Technology and Materials 58 (2019) 1191–1209. https://doi.org/10.1080/03602559.2018.1542725.
  • S.O. Akinnawo, Advance nanocomposites from biopolymers and fillers: sources, characterization, and end-use applications, Polymer-Plastics Technology and Materials 63 (2024) 570–604. https://doi.org/10.1080/25740881.2023.2296659.
  • H. Gergeroglu, S. Yildirim, M.F. Ebeoglugil, Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60), SN Appl Sci 2 (2020) 603. https://doi.org/10.1007/s42452-020-2404-1.
  • M. Emanet, Ö. Sen, I.Ç. Taşkin, M. Çulha, Synthesis, functionalization, and bioapplications of two-dimensional boron nitride nanomaterials, Front Bioeng Biotechnol 7 (2019) 363. https://doi.org/10.3389/fbioe.2019.00363.
  • Y. Li, Z. Han, D. Wang, M. Tao, Preparation of hexagonal boron nitride nanosheets in low eutectic solvent and its application for dye adsorption, Colloids Surf A Physicochem Eng Asp 700 (2024) 134813. https://doi.org/10.1016/j.colsurfa.2024.134813.
  • T. Li, Z. Tang, Z. Huang, J. Yu, A comparison between the mechanical and thermal properties of single-walled carbon nanotubes and boron nitride nanotubes, Physica E Low Dimens Syst Nanostruct 85 (2017) 137–142. https://doi.org/10.1016/j.physe.2016.08.012.
  • L. Algharagholy, T. Pope, Q. Al-Galiby, H. Sadeghi, S.W.D. Bailey, C.J. Lambert, Sensing single molecules with carbon–boron-nitride nanotubes, J Mater Chem C Mater 3 (2015) 10273–10276. https://doi.org/10.1039/C5TC02284C.
  • Y. Zhan, E. Lago, C. Santillo, A.E. Del Río Castillo, S. Hao, G.G. Buonocore, Z. Chen, H. Xia, M. Lavorgna, F. Bonaccorso, An anisotropic layer-by-layer carbon nanotube/boron nitride/rubber composite and its application in electromagnetic shielding, Nanoscale 12 (2020) 7782–7791. https://doi.org/10.1039/C9NR10672C.
  • C. Yuan, A. Tony, R. Yin, K. Wang, W. Zhang, Tactile and thermal sensors built from carbon–polymer nanocomposites—A Critical Review, Sensors 21 (2021) 1234. https://doi.org/10.3390/s21041234.
  • V.D.N. Bezzon, T.L.A. Montanheiro, B.R.C. de Menezes, R.G. Ribas, V.A.N. Righetti, K.F. Rodrigues, G.P. Thim, Carbon nanostructure-based sensors: A brief review on recent advances, Advances in Materials Science and Engineering 2019 (2019) 1–21. https://doi.org/10.1155/2019/4293073.
  • N. Boroznina, I. Zaporotskova, S. Boroznin, L. Kozhitov, P. Zaporotskov, Comparative analysis of sensory activity of carbon and boron nitride nanotubes with boundary modification, International Journal of Theoretical and Applied Nanotechnology 8 (2020) 21–28. https://doi.org/10.11159/ijtan.2020.004.
  • I.M. Patil, M. Lokanathan, B. Ganesan, A. Swami, B. Kakade, Carbon nanotube/boron nitride nanocomposite as a significant bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Chemistry – A European Journal 23 (2017) 676–683. https://doi.org/10.1002/chem.201604231.
  • S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H.T. Luong, F.-S. Sheu, Advances in carbon nanotube based electrochemical sensors for bioanalytical applications, Biotechnol Adv 29 (2011) 169–188. https://doi.org/10.1016/j.biotechadv.2010.10.002.
  • P. Bahrami Miyanji, D. Semnani, A. Hossein Ravandi, S. Karbasi, A. Fakhrali, S. Mohammadi, Fabrication and characterization of chitosan-gelatin/single-walled carbon nanotubes electrospun composite scaffolds for cartilage tissue engineering applications, Polym Adv Technol 33 (2022) 81–95. https://doi.org/10.1002/pat.5492.
  • R.B. Alam, Md.H. Ahmad, S.F.U. Farhad, M.R. Islam, Significantly improved dielectric performance of bio-inspired gelatin/single-walled carbon nanotube nanocomposite, J Appl Phys (2022) 131. https://doi.org/10.1063/5.0077896.
  • R.B. Alam, Md.H. Ahmad, S.M.N. Sakib Pias, E. Mahmud, M.R. Islam, Improved optical, electrical, and thermal properties of bio-inspired gelatin/SWCNT composite, AIP Adv (2022) 12. https://doi.org/10.1063/5.0089118.
  • Z. Yang, S. Chaieb, Y. Hemar, Gelatin-Based Nanocomposites: A Review, Polymer Reviews 61 (2021) 765–813. https://doi.org/10.1080/15583724.2021.1897995.
  • J. Hassan, S. Naz, A. Haider, A. Raza, A. Ul-Hamid, U. Qumar, J. Haider, S. Goumri-Said, M.B. Kanoun, M. Ikram, h-BN nanosheets doped with transition metals for environmental remediation; a DFT approach and molecular docking analysis, Materials Science and Engineering: B 272 (2021) 115365. https://doi.org/10.1016/j.mseb.2021.115365.
  • S. Vairagade, N. Kumar, R.P. Singh, Recent advancements and applications in thermally conductive polymer nanocomposites, Polymer-Plastics Technology and Materials 63 (2024) 1371–1420. https://doi.org/10.1080/25740881.2024.2330699.
  • C. Söğütlü, A. Sönmez, Değişik koruyucular ile işlem görmüş bazı yerli ağaçlarda UV ışınlarının renk değiştirici etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 21 (2013) 151–160.
  • C. Kumah, N. Zhang, R.K. Raji, R. Pan, Color Measurement of Segmented Printed Fabric Patterns in Lab Color Space from RGB Digital Images, Journal of Textile Science and Technology 05 (2019) 1–18. https://doi.org/10.4236/jtst.2019.51001.
  • F. Tarlak, M. Özdemir, M. Melikoğlu, Computer vision system approach in colour measurements of foods: Part II. validation of methodology with real foods, Food Science and Technology 36 (2016) 499–504. https://doi.org/10.1590/1678-457X.02616.
  • P.J. Baldevbhai, Color Image Segmentation for Medical Images using L*a*b* Color Space, IOSR Journal of Electronics and Communication Engineering 1 (2012) 24–45. https://doi.org/10.9790/2834-0122445.
  • N. Fdhal, M. Kyan, D. Androutsos, A. Sharma, Color Space Transformation from RGB to CIELAB Using Neural Networks, in: Advances in Multimedia Information Processing - PCM 2009, 2009: pp. 1011–1017. https://doi.org/10.1007/978-3-642-10467-1_97.
  • G.I. Giannopoulos, On the buckling of hexagonal boron nitride nanoribbons via structural mechanics, Superlattices Microstruct 115 (2018) 1–9. https://doi.org/10.1016/j.spmi.2018.01.016.

Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN

Yıl 2025, Cilt: 6 Sayı: 3, 248 - 262, 30.12.2025
https://doi.org/10.52795/mateca.1683835

Öz

Carbon nanotube (CNT) and nanosized boron nitride (BN) materials are widely used support elements in sensor development due to their compatibility and structural versatility. Studies examining physical parameters in such a detailed comparison with ANN are rarely encountered in the literature. The presented study prepared sensors with different amounts of nanomaterials, water, glycerol and gelatin content. The created sensors' glossiness (20°-60°), colour change (ΔE) and hardness parameters were measured. The measurement data were evaluated using statistical methods and the Multilayer Perceptron (MLP) artificial neural network model. Tansig was used as the transfer function, and the mean square error was used as the performance function. The best classification for training and test success was made in the hardness parameter with 99.9% accuracy, followed by ΔE with 94.9% accuracy. ΔE and glossiness were the most effective common structural materials for the experiments with 6 ml of water at 60° test conditions and 9 ml of water for glossiness at 20° and hardness. For ΔE, 0.12 g BN and 0.06 g CNT and for 60° gloss, 0.06 g for both BN and CNT provided the most significant effect on the changes. The experimental conditions of 0.06 g for BN and CNT were also the most influential parameters for the hardness change.

Kaynakça

  • W.-Y. Ko, L.-T. Huang, K.-J. Lin, Green technique solvent-free fabrication of silver nanoparticle–carbon nanotube flexible films for wearable sensors, Sens Actuators A Phys 317 (2021) 112437. https://doi.org/10.1016/j.sna.2020.112437.
  • Y.-T. Lai, J.-C. Kuo, Y.-J. Yang, A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes, Sens Actuators A Phys 215 (2014) 83–88. https://doi.org/10.1016/j.sna.2013.12.021.
  • T. Uygunoğlu, B. Şimşek, U. Fidan, Piezoresistive and capacitive cement-based stress sensors designed by incorporating carbon nanotubes doped with graphene nanopowder for structural health monitoring, Sens Actuators A Phys 374 (2024) 115491. https://doi.org/10.1016/j.sna.2024.115491.
  • M. Ylönen, A. Torkkeli, H. Kattelus, In situ boron-doped LPCVD polysilicon with low tensile stress for MEMS applications, Sens Actuators A Phys 109 (2003) 79–87. https://doi.org/10.1016/j.sna.2003.09.017.
  • B. Balkanlı, N. Yuksel, M.F. Fellah, Neurotransmitter amino acid adsorption on metal doped boron nitride nanosheets as biosensor: DFT study on neural disease prediagnosis system, Sens Actuators A Phys 366 (2024) 114980. https://doi.org/10.1016/j.sna.2023.114980.
  • A. Yücel, Ç.V. Yıldırım, AA2024 Alaşımının tornalanmasında nanoakışkan konsantrasyon oranı ve mmy parametrelerinin yüzey pürüzlülüğü ve kesme sıcaklığı üzerindeki etkisi, Manufacturing Technologies and Applications 1 (2020) 18–32.
  • A. Çakır Şencan, M. Çelik, E.N. Selayet Saraç, Tornalama işleminde uygulanan MMY tekniğinde kullanılan nanoakışkanların işleme performansına etkisi: çevre dostu işleme üzerine bir inceleme, Manufacturing Technologies and Applications 2 (2021) 47–66. https://doi.org/10.52795/mateca.1020081.
  • N. Kaynak, Fonksiyonel çok katmanlı karbon nanotüpler, Fen Bilimleri Enstitüsü, 2014.
  • T. Han, A. Nag, S. Chandra Mukhopadhyay, Y. Xu, Carbon nanotubes and its gas-sensing applications: A review, Sens Actuators A Phys 291 (2019) 107–143. https://doi.org/10.1016/j.sna.2019.03.053.
  • B. Mei, Y. Qin, S. Agbolaghi, A review on supramolecules/nanocomposites based on carbonic precursors and dielectric/conductive polymers and their applications, Materials Science and Engineering: B 269 (2021) 115181. https://doi.org/10.1016/j.mseb.2021.115181.
  • İ. Topcu, Karbon nanotüp takviyeli alüminyum matriksli almg/knt kompozitlerinin mekanik davranışlarının incelenmesi, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4 (2018) 99–109. https://doi.org/10.28979/comufbed.359796.
  • Z. Zhao, K. Teng, N. Li, X. Li, Z. Xu, L. Chen, J. Niu, H. Fu, L. Zhao, Y. Liu, Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface, Compos Struct 159 (2017) 761–772. https://doi.org/10.1016/j.compstruct.2016.10.022.
  • D.C. Ferrier, K.C. Honeychurch, Carbon Nanotube (CNT)-Based Biosensors, Biosensors (Basel) 11 (2021) 486. https://doi.org/10.3390/bios11120486.
  • S. Rathinavel, K. Priyadharshini, D. Panda, A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application, Materials Science and Engineering: B 268 (2021) 115095. https://doi.org/10.1016/j.mseb.2021.115095.
  • Y. zhang, C. Qin, Y. Wang, J. Cao, Metal clusters modified hexagonal boron nitride for adsorption and sensing of lithium batteries thermal runaway gases, Sens Actuators A Phys 379 (2024) 115929. https://doi.org/10.1016/j.sna.2024.115929.
  • R. İnan, Nanokompozit tekstil yüzeylerinin iletken hale getirilmesi ve sensör özelliği kazandırılması , Doktora Tezi, Marmara Üniversitesi, 2024.
  • G.I. Giannopoulos, On the buckling of hexagonal boron nitride nanoribbons via structural mechanics, Superlattices Microstruct 115 (2018) 1–9. https://doi.org/10.1016/j.spmi.2018.01.016.
  • Y. Göncü, M. Geçgin, F. Bakan, N. Ay, Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate, Materials Science and Engineering: C 79 (2017) 343–353. https://doi.org/10.1016/j.msec.2017.05.023.
  • T. Han, F. Scarpa, N.L. Allan, Super stretchable hexagonal boron nitride Kirigami, Thin Solid Films 632 (2017) 35–43. https://doi.org/10.1016/j.tsf.2017.03.059.
  • D.M. Lima, A.C. Chinellato, M. Champeau, Boron nitride-based nanocomposite hydrogels: preparation, properties and applications, Soft Matter 17 (2021) 4475–4488. https://doi.org/10.1039/D1SM00212K.
  • R.B. Alam, Md.H. Ahmad, M.R. Islam, Effect of MWCNT nanofiller on the dielectric performance of bio-inspired gelatin-based nanocomposites, RSC Adv 12 (2022) 14686–14697. https://doi.org/10.1039/D2RA01508K.
  • R.B. Alam, Md.H. Ahmad, M.R. Islam, Bio-inspired gelatin/single-walled carbon nanotube nanocomposite for transient electrochemical energy storage: An approach towards eco-friendly and sustainable energy system, Heliyon 7 (2021) e07468. https://doi.org/10.1016/j.heliyon.2021.e07468.
  • S. Sankaran, K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, M. Faisal, S.K.K. Pasha, Electrical and Electromagnetic Interference (EMI) shielding properties of hexagonal boron nitride nanoparticles reinforced polyvinylidene fluoride nanocomposite films, Polymer-Plastics Technology and Materials 58 (2019) 1191–1209. https://doi.org/10.1080/03602559.2018.1542725.
  • S.O. Akinnawo, Advance nanocomposites from biopolymers and fillers: sources, characterization, and end-use applications, Polymer-Plastics Technology and Materials 63 (2024) 570–604. https://doi.org/10.1080/25740881.2023.2296659.
  • H. Gergeroglu, S. Yildirim, M.F. Ebeoglugil, Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60), SN Appl Sci 2 (2020) 603. https://doi.org/10.1007/s42452-020-2404-1.
  • M. Emanet, Ö. Sen, I.Ç. Taşkin, M. Çulha, Synthesis, functionalization, and bioapplications of two-dimensional boron nitride nanomaterials, Front Bioeng Biotechnol 7 (2019) 363. https://doi.org/10.3389/fbioe.2019.00363.
  • Y. Li, Z. Han, D. Wang, M. Tao, Preparation of hexagonal boron nitride nanosheets in low eutectic solvent and its application for dye adsorption, Colloids Surf A Physicochem Eng Asp 700 (2024) 134813. https://doi.org/10.1016/j.colsurfa.2024.134813.
  • T. Li, Z. Tang, Z. Huang, J. Yu, A comparison between the mechanical and thermal properties of single-walled carbon nanotubes and boron nitride nanotubes, Physica E Low Dimens Syst Nanostruct 85 (2017) 137–142. https://doi.org/10.1016/j.physe.2016.08.012.
  • L. Algharagholy, T. Pope, Q. Al-Galiby, H. Sadeghi, S.W.D. Bailey, C.J. Lambert, Sensing single molecules with carbon–boron-nitride nanotubes, J Mater Chem C Mater 3 (2015) 10273–10276. https://doi.org/10.1039/C5TC02284C.
  • Y. Zhan, E. Lago, C. Santillo, A.E. Del Río Castillo, S. Hao, G.G. Buonocore, Z. Chen, H. Xia, M. Lavorgna, F. Bonaccorso, An anisotropic layer-by-layer carbon nanotube/boron nitride/rubber composite and its application in electromagnetic shielding, Nanoscale 12 (2020) 7782–7791. https://doi.org/10.1039/C9NR10672C.
  • C. Yuan, A. Tony, R. Yin, K. Wang, W. Zhang, Tactile and thermal sensors built from carbon–polymer nanocomposites—A Critical Review, Sensors 21 (2021) 1234. https://doi.org/10.3390/s21041234.
  • V.D.N. Bezzon, T.L.A. Montanheiro, B.R.C. de Menezes, R.G. Ribas, V.A.N. Righetti, K.F. Rodrigues, G.P. Thim, Carbon nanostructure-based sensors: A brief review on recent advances, Advances in Materials Science and Engineering 2019 (2019) 1–21. https://doi.org/10.1155/2019/4293073.
  • N. Boroznina, I. Zaporotskova, S. Boroznin, L. Kozhitov, P. Zaporotskov, Comparative analysis of sensory activity of carbon and boron nitride nanotubes with boundary modification, International Journal of Theoretical and Applied Nanotechnology 8 (2020) 21–28. https://doi.org/10.11159/ijtan.2020.004.
  • I.M. Patil, M. Lokanathan, B. Ganesan, A. Swami, B. Kakade, Carbon nanotube/boron nitride nanocomposite as a significant bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Chemistry – A European Journal 23 (2017) 676–683. https://doi.org/10.1002/chem.201604231.
  • S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H.T. Luong, F.-S. Sheu, Advances in carbon nanotube based electrochemical sensors for bioanalytical applications, Biotechnol Adv 29 (2011) 169–188. https://doi.org/10.1016/j.biotechadv.2010.10.002.
  • P. Bahrami Miyanji, D. Semnani, A. Hossein Ravandi, S. Karbasi, A. Fakhrali, S. Mohammadi, Fabrication and characterization of chitosan-gelatin/single-walled carbon nanotubes electrospun composite scaffolds for cartilage tissue engineering applications, Polym Adv Technol 33 (2022) 81–95. https://doi.org/10.1002/pat.5492.
  • R.B. Alam, Md.H. Ahmad, S.F.U. Farhad, M.R. Islam, Significantly improved dielectric performance of bio-inspired gelatin/single-walled carbon nanotube nanocomposite, J Appl Phys (2022) 131. https://doi.org/10.1063/5.0077896.
  • R.B. Alam, Md.H. Ahmad, S.M.N. Sakib Pias, E. Mahmud, M.R. Islam, Improved optical, electrical, and thermal properties of bio-inspired gelatin/SWCNT composite, AIP Adv (2022) 12. https://doi.org/10.1063/5.0089118.
  • Z. Yang, S. Chaieb, Y. Hemar, Gelatin-Based Nanocomposites: A Review, Polymer Reviews 61 (2021) 765–813. https://doi.org/10.1080/15583724.2021.1897995.
  • J. Hassan, S. Naz, A. Haider, A. Raza, A. Ul-Hamid, U. Qumar, J. Haider, S. Goumri-Said, M.B. Kanoun, M. Ikram, h-BN nanosheets doped with transition metals for environmental remediation; a DFT approach and molecular docking analysis, Materials Science and Engineering: B 272 (2021) 115365. https://doi.org/10.1016/j.mseb.2021.115365.
  • S. Vairagade, N. Kumar, R.P. Singh, Recent advancements and applications in thermally conductive polymer nanocomposites, Polymer-Plastics Technology and Materials 63 (2024) 1371–1420. https://doi.org/10.1080/25740881.2024.2330699.
  • C. Söğütlü, A. Sönmez, Değişik koruyucular ile işlem görmüş bazı yerli ağaçlarda UV ışınlarının renk değiştirici etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 21 (2013) 151–160.
  • C. Kumah, N. Zhang, R.K. Raji, R. Pan, Color Measurement of Segmented Printed Fabric Patterns in Lab Color Space from RGB Digital Images, Journal of Textile Science and Technology 05 (2019) 1–18. https://doi.org/10.4236/jtst.2019.51001.
  • F. Tarlak, M. Özdemir, M. Melikoğlu, Computer vision system approach in colour measurements of foods: Part II. validation of methodology with real foods, Food Science and Technology 36 (2016) 499–504. https://doi.org/10.1590/1678-457X.02616.
  • P.J. Baldevbhai, Color Image Segmentation for Medical Images using L*a*b* Color Space, IOSR Journal of Electronics and Communication Engineering 1 (2012) 24–45. https://doi.org/10.9790/2834-0122445.
  • N. Fdhal, M. Kyan, D. Androutsos, A. Sharma, Color Space Transformation from RGB to CIELAB Using Neural Networks, in: Advances in Multimedia Information Processing - PCM 2009, 2009: pp. 1011–1017. https://doi.org/10.1007/978-3-642-10467-1_97.
  • G.I. Giannopoulos, On the buckling of hexagonal boron nitride nanoribbons via structural mechanics, Superlattices Microstruct 115 (2018) 1–9. https://doi.org/10.1016/j.spmi.2018.01.016.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomedikal Mühendisliğinde Biyomateryaller
Bölüm Araştırma Makalesi
Yazarlar

Kübra Keser 0000-0001-7215-7232

Zafer Kaya 0000-0002-5489-3997

Gönderilme Tarihi 25 Nisan 2025
Kabul Tarihi 1 Eylül 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 3

Kaynak Göster

APA Keser, K., & Kaya, Z. (2025). Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN. Manufacturing Technologies and Applications, 6(3), 248-262. https://doi.org/10.52795/mateca.1683835
AMA Keser K, Kaya Z. Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN. MATECA. Aralık 2025;6(3):248-262. doi:10.52795/mateca.1683835
Chicago Keser, Kübra, ve Zafer Kaya. “Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN”. Manufacturing Technologies and Applications 6, sy. 3 (Aralık 2025): 248-62. https://doi.org/10.52795/mateca.1683835.
EndNote Keser K, Kaya Z (01 Aralık 2025) Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN. Manufacturing Technologies and Applications 6 3 248–262.
IEEE K. Keser ve Z. Kaya, “Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN”, MATECA, c. 6, sy. 3, ss. 248–262, 2025, doi: 10.52795/mateca.1683835.
ISNAD Keser, Kübra - Kaya, Zafer. “Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN”. Manufacturing Technologies and Applications 6/3 (Aralık2025), 248-262. https://doi.org/10.52795/mateca.1683835.
JAMA Keser K, Kaya Z. Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN. MATECA. 2025;6:248–262.
MLA Keser, Kübra ve Zafer Kaya. “Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN”. Manufacturing Technologies and Applications, c. 6, sy. 3, 2025, ss. 248-62, doi:10.52795/mateca.1683835.
Vancouver Keser K, Kaya Z. Nano Boron Nitride and Carbon Nanotube in Sensors: Comparative Investigation with ANN. MATECA. 2025;6(3):248-62.