Derleme
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler

Yıl 2021, Cilt 2, Sayı 1, 61 - 74, 30.04.2021

Öz

Küreselleşen, nüfus oranı hızla artan, sosyal olarak gelişen ve ekonomik olarak büyüyen dünyamızda ulaştırma sektöründeki hız, emniyet, kalite ve konfor gibi faktörler havayolu taşımacılığını diğer ulaşım sistemlerine (karayolu, demiryolu, denizyolu vb.) göre ön plana çıkarmaktadır. Havayolu taşımacılığının diğer ulaşım sistemleri içerisindeki artarak büyüyen payı havacılık faaliyetlerindeki güvenli, etkin ve emniyetli uçuş koşullarının sağlanmasını da zorunlu kılmaktadır. Sivil havacılıkta yürütülen bakım, onarım ve yenileme (BOY) faaliyetleri, uçuş güvenliği açısından birincil düzeyde öneme sahiptir. BOY faaliyetleri aynı zamanda kamu/özel havayolu şirketleri için maliyet ve planlama yönüyle de hata toleransının minimum seviyede tutulması gereken bir süreçtir. BOY faaliyetlerinin şirketlerin toplam giderleri içerisindeki payı %10 ila %20 arasında değişen oranları bulurken, tüm dünyadaki havayolu şirketlerinin 2019 yılı içindeki BOY faaliyet giderleri %4’e yakın bir yıllık büyüme oranı ile 70 milyar USD’a yaklaşmıştır. Artan nüfus hızıyla birlikte küresel pazarın son derece dinamik bir yapıya kavuşması sonucunda üretim-tedarik sürelerinin hızlanması ve maliyetlerin düşürülmesi yönündeki baskı artmış, bunun sonucu olarak da imalat, tedarik ve lojistik gibi konularda son yıllarda gelişen elektronik ve dijital teknolojilerden daha fazla faydalanma ihtiyacı ortaya çıkmıştır. Bu çalışmada, tüm dünyadaki sivil havacılık otoritelerinin yön verdiği BOY faaliyetlerine ait temel bilgiler verilerek, BOY faaliyetlerinin optimizasyon ve Endüstri 4.0 adaptasyonuna ilişkin güncel ilerlemeler değerlendirilerek, sunulmuştur.

Kaynakça

  • 1. İnternet: European union: air safety statistics in the EU https://ec.europa.eu/eurostat/statistics-explained/index.php/Air_safety_statistics_in_the_EU Erişim: 01.05.2020.
  • 2. De Graaff, A., 2001. Aviation safety, an introduction. Air & Space Europe, 3(3-4), 203-205. doi:10.1016/s1290-0958(01)90095-4.
  • 3. Ceruti, A., Marzocca, P., Liverani, A., Bil, C., 2019. Maintenance in aeronautics in an Industry 4.0 context: The role of Augmented Reality and Additive Manufacturing, Journal of Computational Design and Engineering, 6, 516-526.
  • 4. Regattieri, A., Gamberi, M., Gamberini, R., Manzini, R., 2005. Managing lumpy demand for aircraft spare parts. Journal of Air Transport Management, 11(6), 426-431.
  • 5. Karaoglanli, A. C., Grund, T., Turk, A., Lampke, T., 2019. A comparative study of oxidation kinetics and thermal cyclic performance of thermal barrier coatings (TBCs). Surface & Coatings Technology, 371, 47-67.
  • 6. İnternet: Maintaining airworthiness with a strong aircraft maintenance program https://www.intelligent-aerospace.com/commercial/article/16544919/maintaining-airworthiness-with-a-strong-aircraft-maintenance-program Erişim: 01.05.2020.
  • 7. İnternet: FAA, Continuous airworthiness maintenance program (CAMP) guidance and policy https://www.faa.gov/documentLibrary/media/Notice/N_8900.516.pdf Erişim: 01.05.2020.
  • 8. Marx, D. A., Graeber, R., R.C., 1993. Human error in aircraft maintenance. Seattle, Washington: Boeing Commercial Airplane Group, 131-144.
  • 9. Lei, G., Shuguang, Z., Peng, T., Yi, Lu., 2014. An integrated graphic–taxonomic–associative approach to analyze human factors in aviation accidents. Chinese Journal of Aeronautics. 27 (2), 226-240.
  • 10. İnternet: Background to the development of annex 1-personnel licensing. Training Manual (ICAO) PartD-1 Aircraft maintenance. http://www.aviationchief.com/uploads/9/2/0/9/92098238/icao_doc_7192_-_training_manual_-_part_d1_-_acft_maintenance_-_2nd_edition_-_2004.pdf. Erişim: 01.05.2020.
  • 11. Uhlmann, E., Bilz, M., Baumgarten J., 2013. MRO-challenge and chance for sustainable enterprises, Procedia CIRP, 11, 239-244.
  • 12. İnternet: CASA, Becoming a licensed aircraft maintenance engineer (LAME) https://www.casa.gov.au/standard-page/becoming-licensed-aircraft-maintenance-engineer-lame Erişim: 01.05.2020.
  • 13. İnternet: FAA, Technical implementation procedures for airworthiness and environmental certification, https://www.faa.gov/aircraft/air_cert/international/bilateral_agreements/baa_basa_listing/media/EUTIP_Rev6_w_amdt1_amdt2.pdf Erişim: 01.05.2020.
  • 14. İnternet: The difference between line, base and component maintenance, https://blog.dviation.com/2018/11/14/the-difference-between-line-base-and-component-maintenance/ Erişim: 01.05.2020.
  • 15. Shaukat, S., Katscher, M., Wu, C.L., Delgado, F., Larrain, H., 2020. Aircraft line maintenance scheduling and optimization, Journal of Air Transport Management, 89, 2020, 101914.
  • 16. Kritzinger, D., 2017. Aircraft system safety assessments for initial airworthiness certification, Chapter 11: Continuing Safety. Woodhead Publishing, 371-385.
  • 17. İnternet: Sustainment of commercial aircraft gas turbine engines: an organizational and cognitive engineering approach, https://core.ac.uk/download/pdf/18321856.pdf Erişim: 01.05.2020.
  • 18. Geng, J., Tian, X., Bai, M., Jia, X., Liu, X., 2014. A design method for three-dimensional maintenance, repair, and overhaul job card of complex products. Computers in Industry. 65 (1), 200-209.
  • 19. İnternet: The Importance of MRO, https://www.mane.co.uk/news/the-importance-of-mro-145171/ Erişim: 01.05.2020.
  • 20. Ucler, C., Gok, O., 2015. Innovating general aviation MRO's through IT: The sky aircraft management system-SAMS, Procedia-Social and Behavioral Sciences, 195, 1503-1513.
  • 21. Benito, A., Alonso, G., 2018. Energy efficiency in air transportation. Chapter 7: Maintenance. Butterworth-Heinemann, Oxford.
  • 22. Florio F. D., 2016. Chapter 5 - Type certification, airworthiness (Third Edition), Butterworth-Heinemann, 85-122.
  • 23. Florio, F. D., 2016. An introduction to aircraft certification and operations. Third Edition. Butterworth-Heinemann, Oxford.
  • 24. Kasturi, E., Devi, S. P., Kiran, S. V., Manivannan, S., 2016. Airline route profitability analysis and optimization using BIG DATA analytics on aviation data sets under heuristic techniques. Procedia Computer Science, 87, 86-92.
  • 25. West, D., Bradley, J., 2008. Airline flight networks, cycle times, and profitability: 2004-2006. Operations Management Research. 1, 129-140.
  • 26. Wang, Y., Shi, Y., Cai, M., Xu, W., Yu, Q., 2019. Efficiency optimized fuel supply strategy of aircraft engine based on air-fuel ratio control, Chinese Journal of Aeronautics, 32 (2), 489-498.
  • 27. Taylor, J.C., 2000. The evolution and effectiveness of Maintenance Resource Management (MRM), International Journal of Industrial Ergonomics, 26 (2) 201-215.
  • 28. Seymour, K., Held, M., Georges, G., Boulouchos, K., 2020. Fuel estimation in air transportation: Modeling global fuel consumption for commercial aviation. Transportation Research Part D: Transport and Environment, 88, 102528.
  • 29. Lee, M., Li, L.K.B., Song, W., 2019. Analysis of direct operating cost of wide-body passenger aircraft: A parametric study based on Hong Kong. Chinese Journal of Aeronautics, 32 (5), 1222-1243.
  • 30. İnternet: ICAO global reporting format. Introducing reporting of runway condition relevant for aircraft-performance.https://www.icao.int/EURNAT/Other%20Meetings%20Seminars%20and%20Workshops/GRF%20Workshop%20(Helsinki)/GRF%20wkshp%20Hels%20PPT02.pdf Erişim: 01.05.2020.
  • 31. Fernández-Montesinos, M. A., Janssens, P., Vingerhoeds R.A., 1994. Enhancing aircraft engine condition monitoring, IFAC Proceedings, 27 (16), 161-166.
  • 32. Gudmundsson, S., 2014. Chapter 7- Selecting the power plant, Editor(s): Snorri Gudmundsson, General Aviation Aircraft Design, Butterworth-Heinemann, 181-234.
  • 33. Caetano, M., Jorge, Claudio., 2019. Innovation system in air transport management. Journal of Information Systems and Technology Management, 16.
  • 34. Filho, V.F.F, Ribeiro, R.F. G., Lacava, P.T., 2019. Turbofan engine performance optimization based on aircraft cruise thrust level. J Braz. Soc. Mech. Sci. Eng. 41, 64.
  • 35. Bushnell, D.M., 2003. Aircraft drag reduction-a review, Journal of Aerospace Engineering: 25th Anniversary Collection, 217(1), 1-18.
  • 36. Baker C., Johnson T., Flynn D., Hemida H., Quinn A., Soper D., Sterling M., 2019. Train Aerodynamics, Chapter 7 - Aerodynamic drag, Editor(s): Chris Baker, Terry Johnson, Dominic Flynn, Hassan Hemida, Andrew Quinn, David Soper, Mark Sterling, , Butterworth-Heinemann, 129-149.
  • 37. Adam P., Jiří, Č., Vojtěch, K., 2016. Calibration and its use in measuring fuel consumption with the can-bus network. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64, 503-507.
  • 38. Kuo, C.C., Shyu, J.Z., Ding, K., 2019. Industrial revitalization via industry 4.0-A comparative policy analysis among China, Germany and the USA, Global Transitions, 1, 3-14.
  • 39. Cozmiuc, D., Petrisor, I., 2018. Industrie 4.0 by Siemens: Steps made today. Journal of Cases on Information Technology, 20 (2), 30-48.
  • 40. Miller, A. M., Alvarez, R., Hartman, N., 2018. Towards an extended model-based definition for the digital twin. Computer-Aided Design and Applications, 15(6), 880–891.
  • 41. Hold, P., Erol, S., Reisinger, G., Sihn, W., 2017. Planning and evaluation of digital assistance systems. Procedia Manufacturing, 9, 143-150.
  • 42. Marcon, P., Zezulka, F., Vesely, I., Szabo, Z., Roubal, Z., Sajdl, O., Dohnal, P., 2017. Communication technology for industry 4.0. Progress in Electromagnetics Research Symposium, 2017, 1694–1697.
  • 43. Vaidya, S., Ambad, P., Bhosle, S., 2018. Industry 4.0 – A Glimpse, Procedia Manufacturing, 20, 233-238.
  • 44. İnternet: Federal Aviation Administration (2018). FAA-H-8083-30A, Aviation maintenance technician handbook-General.https://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/ Erişim: 01.05.2020.
  • 45. İnternet: EU, Interim evaluation of the clean sky 2 joint undertaking (2014-2016) operating under horizon 2020 experts group report. https://ec.europa.eu/research/evaluations/pdf/cs2.pdf Erişim: 01.05.2020.
  • 46. French, R., Marin-Reyes, H., Benakis, M., 2019. Transfer analysis of human engineering skills for adaptive robotic additive manufacturing in the aerospace repair and overhaul industry, Advances in Intelligent Systems and Computing, 793, AHFE International conference on human aspects of advanced manufacturing, and ahfe international conference on additive manufacturing, modeling systems and 3d prototyping, 2018; Orlando; United States; 21 July 2018 through 25 July 2018.
  • 47. Valdes, R.A., Comendador, V.F.G., Sanz, A.R., Castan, J.P., 2017. Aviation 4.0: More safety through automation and digitization. DOI: 10.5772/intechopen.73688.
  • 48. Testoni, N., Marchi L. D., Marzani, A., 2016. Detection and characterization of delaminations in composite plates via air-coupled probes and warped-domain filtering. Composite Structures, 153 (2016), 773-781.
  • 49. Borello, F., Cestino, E., Frulla, G., 2010. Structural uncertainty effect on classical wing flutter characteristics, Journal of Aerospace Engineering, 23 (4), 327-338.
  • 50. Eschen, H., Kötter, T., Rodeck, R., Harnisch, M., Schüpptuhl, T., 2018. Augmented and virtual reality for inspection and maintenance processes in the aviation industry. Procedia Manufacturing 19, 156-163.
  • 51. D’Anniballe, A., Silva, J., Marzocca, P., Ceruti, A., 2020. The role of augmented reality in air accident investigation and practitioner training. Reliability Engineering & System Safety 204, 107149.
  • 52. Ceruti, A., Liverani, A., Marzocca, P., 2015. A 3D user and maintenance manual for UAVs and commercial aircraft based on augmented reality, SAE Technical Paper 2015-01-2473.
  • 53. De Crescenzio, F., Fantini, M., Persiani, F., Luigi Di S., & Pietro A., Salti, S., 2011. Augmented reality for aircraft maintenance training and operations support. Computer Graphics and Applications, IEEE. 31. 96-101.
  • 54. Gisario, A., Kazarian, M., Martina, F., Mehrpouya, M., 2019. Metal additive manufacturing in the commercial aviation industry: A review. Journal of Manufacturing Systems, 53, 124-149.
  • 55. Saadlaoui, Y., Milan, J.L., Rossi, J.M., Chabrand, P., 2017. Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes. Manufacturing Systems. 43 (1), 178-186.
  • 56. İnternet: How the digital twin makes the aftermarket more profitable. https://blogs.3ds.com/northamerica/digital-twin-overhauls-aftermarket-for-enhanced-servitization/Erişim: 01.05.2020.
  • 57. İnternet: It’s a twin-win with digital! https://www.aero-mag.com/ifs-mro-digital-twin-aerospace-15052020/ Erişim: 01.05.2020.
  • 58. İnternet: Rapid expansion of global aviation industry propels investment https://oxfordbusinessgroup.com/overview/skybound-rapid-expansion-global-aviation-industry-propels-investment-6 Erişim: 01.05.2020.
  • 59. Ghadge, D.A. Er, M., Moradlou, H., Goswami, M., 2020. The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management. ahead-of-print. Doi: 10.1108/JMTM-10-2019-0368.
  • 60. Ahmadi, A., Soleimanmeigouni I., Block, J., Letot, C., 2016. Optimum failure management strategy for periodically inspected units with imperfect maintenance. IFAC-Papers online, 49-12, 799-804.
  • 61. Bierer, A., Götze, U., Köhler, S., Lindner, R., 2016. Control and evaluation concept for smart MRO approaches. 13th Global Conference on Sustainable Manufacturing-Decoupling Growth from Resource Use. Procedia CIRP, 40, 699-704.
  • 62. Chen, J., Gusikhin, O., Finkenstaedt, W., Liu, Y.N., 2019. Maintenance, repair, and operations parts inventory management in the era of industry 4.0. IFAC Papers Online, 52-13, 171-176.
  • 63. Denkena, B., Nyhuis, P., Bergmann, B., Nübel, N., Lucht, T., 2019. Towards an autonomous maintenance, repair and overhaul process: Exemplary holistic data management approach for the regeneration of aero-engine blades. 19th Machining Innovations Conference for Aerospace Industry 2019 (MIC 2019), November 27th-28th 2019, Hannover, Germany. Procedia Manufacturing, 40, 77-82.
  • 64. Dinis, D., Barbosa-Povoa, A., Teixeira, A. P., 2019a. Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks. Computers & Industrial Engineering, 128, 920-936.
  • 65. Dinis, D., Barbosa-Povoa, A., Teixeira, A. P., 2019b. A supporting framework for maintenance capacity planning and scheduling: Development and application in the aircraft MRO industry. International Journal of Production Economics, 218, 1-15.
  • 66. Novák, A., Sedlácková, A. N., Bugaj, M., Kandera, B., Lusiak, T., 2020. Use of unmanned aerial vehicles in aircraft maintenance. 9th International Conference on Air Transport-INAIR 2020, Challenges of Aviation Development. Transportation Research Procedia, 51, 160-170.
  • 67. Oyesola, M. O., Mpofu, K., Mathe, R. N., Daniyan, A., 2020. Hybrid-additive manufacturing cost model: A sustainable Through-Life Engineering support for Maintenance Repair Overhaul in the Aerospace. Hybrid-additive manufacturing cost model: A sustainable Through-Life. 8th International Conference on Through-Life Engineering Service-TESConf 2019, October 27-29, 2019. Procedia Manufacturing, 49, 199-205.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Hava ve Uzay
Bölüm Derlemeler
Yazarlar

Abdullah Cahit KARAOĞLANLI (Sorumlu Yazar)
BARTIN UNIVERSITY
0000-0002-1750-7989
Türkiye

Yayımlanma Tarihi 30 Nisan 2021
Yayınlandığı Sayı Yıl 2021, Cilt 2, Sayı 1

Kaynak Göster

Bibtex @derleme { mateca914672, journal = {İmalat Teknolojileri ve Uygulamaları}, issn = {}, eissn = {2717-7475}, address = {Karabük Üniversitesi Demir-Çelik Kampüsü Mühendislik Fakültesi Balıklarkayası Mevkii 78050 KARABÜK}, publisher = {Mustafa GÜNAY}, year = {2021}, volume = {2}, pages = {61 - 74}, doi = {}, title = {Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler}, key = {cite}, author = {Karaoğlanlı, Abdullah Cahit} }
APA Karaoğlanlı, A. C. (2021). Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler . İmalat Teknolojileri ve Uygulamaları , 2 (1) , 61-74 . Retrieved from https://dergipark.org.tr/tr/pub/mateca/issue/62181/914672
MLA Karaoğlanlı, A. C. "Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler" . İmalat Teknolojileri ve Uygulamaları 2 (2021 ): 61-74 <https://dergipark.org.tr/tr/pub/mateca/issue/62181/914672>
Chicago Karaoğlanlı, A. C. "Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler". İmalat Teknolojileri ve Uygulamaları 2 (2021 ): 61-74
RIS TY - JOUR T1 - Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler AU - Abdullah Cahit Karaoğlanlı Y1 - 2021 PY - 2021 N1 - DO - T2 - İmalat Teknolojileri ve Uygulamaları JF - Journal JO - JOR SP - 61 EP - 74 VL - 2 IS - 1 SN - -2717-7475 M3 - UR - Y2 - 2021 ER -
EndNote %0 İmalat Teknolojileri ve Uygulamaları Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler %A Abdullah Cahit Karaoğlanlı %T Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler %D 2021 %J İmalat Teknolojileri ve Uygulamaları %P -2717-7475 %V 2 %N 1 %R %U
ISNAD Karaoğlanlı, Abdullah Cahit . "Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler". İmalat Teknolojileri ve Uygulamaları 2 / 1 (Nisan 2021): 61-74 .
AMA Karaoğlanlı A. C. Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler. İmalat Teknolojileri ve Uygulamaları. 2021; 2(1): 61-74.
Vancouver Karaoğlanlı A. C. Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler. İmalat Teknolojileri ve Uygulamaları. 2021; 2(1): 61-74.
IEEE A. C. Karaoğlanlı , "Sivil Havacılıkta Bakım, Onarım ve Yenileme (BOY) Faaliyetleri, Havacılık 4.0 ve Yeni Trendler", İmalat Teknolojileri ve Uygulamaları, c. 2, sayı. 1, ss. 61-74, Nis. 2021