Araştırma Makalesi
BibTex RIS Kaynak Göster

Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi

Yıl 2024, Cilt: 5 Sayı: 3, 141 - 154, 30.12.2024
https://doi.org/10.52795/mateca.1529316

Öz

Son yıllarda, araç kazalarında darbe emici görevi yapan çarpışma kutularının, enerji emme kabiliyetlerinin iyileştirilmesine yönelik çalışmalar önemli ölçüde artmıştır. Bu çalışmalar, darbeden kaynaklı oluşan şok dalgalarının araç şasesine verdiği zararı, en aza indirgemeyi amaçlamaktadır. Bu çalışmada, sürtünme kuvvetinin çarpışma kutularının enerji emme kabiliyetleri üzerindeki etkisi incelenmiştir. Bu amaçla, biri normal katlanan, diğeri sürtünme direnci ile enerji emilimi sağlayan iki farklı konfigürasyon modellenmiştir. Tasarlanan modellerle çarpışma senaryosu simüle edilmiş ve temsili modellere eksenel darbe yükü uygulanmıştır. Simülasyonlar, doğrusal olmayan açık yöntem sonlu elemanlar yöntemi (FEM) kullanılarak oluşturulmuştur. Çarpışma senaryosu her iki model için aynı koşullar altında DP600 çelik sac malzeme özellikleri kullanılarak üç farklı kalınlıkta (1.2 mm, 1.4mm ve 1.5mm) analiz edilmiştir. Çarpışma simülasyonlarının sonuçları, sürtünme direncinin, çarpışma kutularının enerji emme davranışları üzerindeki etkilerini incelemek için karşılaştırılmıştır. Analiz sonuçları, sürtünme direnci ile enerji emiliminin çarpışma kutularının darbe sönümleme özelliklerine %16 oranında olumlu katkı sağladığını göstermiştir.

Kaynakça

  • C. Pal, S. Hirayama, S. Narahari, M. Jeyabharath, G. Prakash, V. Kulothungan, An insight of World Health Organization (WHO) accident database by cluster analysis with self-organizing map (SOM), Traffic injury prevention, 19: 15-S20, 2018.
  • A. Jarasuniene, G. Jakubauskas, Improvement of road safety using passive and active intelligent vehicle safety systems, Transport, 22(4): 284-289, 2007.
  • A. Dimas, T. Dirgantara, L. Gunawan, A. Jusuf, I.S. Putra. The effects of spot weld pitch to the axial crushing characteristics of top-hat crash box, Applied Mechanics and Materials, 660: 578-582, 2014.
  • M. Costas, J. Díaz, L.E. Romera, S. Hernández, A. Tielas, Static and dynamic axial crushing analysis of car frontal impact hybrid absorbers, International Journal of Impact Engineering, 62: 166-181, 2013.
  • O. Adanur, Farklı tasarımlarda W kesitlere sahip çarpışma kutuları için darbe sönümleme kabiliyetlerinin deneysel analizi, Yüksek Lisans Tezi, Sakarya Universitesi, Sakarya, Türkiye, 2019.
  • S. Tabacu, Axial crushing of circular structures with rectangular multi-cell insert, Thin-Walled Structures, 95: 297-309, 2015.
  • N. Tanlak, F.O. Sonmez, Optimal shape design of thin-walled tubes under high-velocity axial impact loads, Thin-Walled Structures, 84: 302-312, 2014.
  • A. Tastan, E. Acar, M. A. Güler, Ü. Kılınçkaya, Optimum crashworthiness design of tapered thin-walled tubes with lateral circular cutouts, Thin-Walled Structures, 107: 543-553, 2016.
  • M.M. Davoodi, S.M. Sapuan, R. Yunus, Conceptual design of a polymer composite automotive bumper energy absorber, Materials & Design, 29(7): 1447-1452, 2008.
  • M. Altin, E. Acar, M.A. Guler, Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns, Thin-Walled Structures, 131: 309-323, 2018.
  • A.K. Toksoy, M. Guden, Partial Al foam filling of commercial 1050H14 Al crash boxes: The effect of box column thickness and foam relative density on energy absorption, Thin-Walled Structures, 48(7): 482-494, 2010.
  • M. Altin, M.A. Guler, S.K. Mert, The effect of percent foam fill ratio on the energy absorption capacity of axially compressed thin-walled multi-cell square and circular tubes, International Journal of Mechanical Sciences, 131: 368-379, 2017.
  • E. Acar, B. Yilmaz, M.A. Güler, M. Altin, Multi-fidelity crashworthiness optimization of a bus bumper system under frontal impact, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(9), 2020.
  • N.N. Hussain, S.P. Regalla, Y.V.D. Rao, Study on influence of notch triggers on absorption of energy for composite automobile crash box under impact loads, Materials Today-Proceedings, 38: 3220-3231, 2021.
  • H. Sun, F. Li, K. Shen, Q. Gong, Energy absorption of variable stiffness composite thin-walled tubes on axial impacting, 100386, 2023.
  • G. Zheng, S. Wu, G. Sun, G. Li, Q. Li, Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes, International Journal of Mechanical Sciences, 87: 226-240, 2014.
  • E. Acar, M. Altin, M.A. Guler, Evaluation of various multi-cell design concepts for crashworthiness design of thin-walled aluminum tubes, Thin-Walled Structures, 142: 227-235, 2019.
  • Z. Gao, D.J.E.S. Ruan, Axial crushing of novel hierarchical multi-cell square tubes, 286: 116141, 2023.
  • T.J. Reddy, Y.V.D. Rao, V. Narayanamurthy, Thin-walled structural configurations for enhanced crashworthiness, International Journal of Crashworthiness, 23(1): 57-73, 2018.
  • R.O. Santos, L.B. Silveira, L.P. Moreira, M.C. Cardoso, F.R.F. Silva, A. Santos Paula, D.A. Albertacci, Damage identification parameters of dual-phase 600-800 steels based on experimental void analysis and finite element simulations, Journal of Materials Research and Technology-Jmr&T, 8(1): 644-659, 2019.
  • O. Adanur, F. Varol, Investigation of the effect of friction force on the energy absorption characteristics of thin-walled structures loaded with axial impact force, Materials Today Communications, 106420, 2023.
  • L. Ying, S. Wang, T. Gao, M. Dai, P. Hu, Y. Wang, Crashworthiness analysis and optimization of multi-functional gradient foam-aluminum filled hierarchical thin-walled structures, Thin-Walled Structures, 189, 2023.
  • P. Dalton, R.W.J.P. Hughes, Auditory attentional capture: implicit and explicit approaches, 78: 313-320, 2014.
  • J. Marzbanrad, M. Alijanpour, M.S.J.T. Kiasat, Design and analysis of an automotive bumper beam in low-speed frontal crashes, 47(8-9): 902-911, 2009.
  • S. Reddy, M. Abbasi, M. Fard, Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection, Thin-Walled Structures, 94: 56-66, 2015.
  • F.X. Xu, C. Wang, Dynamic axial crashing of tailor-welded blanks (TWBs) thin-walled structures with top-hat shaped section, Advances in Engineering Software, 96: 70-82, 2016.
  • Z. Wang, Y. Li, D. Ma, X. Wang, Y. Li, T. Suo, A. Manes, Experimental and numerical investigation on the ballistic performance of aluminosilicate glass with different nosed projectiles, 49(11: 17729-17745, 2023.
  • F. Xu, Enhancing material efficiency of energy absorbers through graded thickness structures, Thin-Walled Structures, 97: 250-265, 2015.
  • X. Zhang, M.S. Zhang, Crush resistance of square tubes with various thickness configurations, 107: 58-68, 2016.
  • D.J. Benson, J.O.J. Hallquist, A single surface contact algorithm for the post-buckling analysis of shell structures, 78(2): 141-163, 1990.
  • H. Gedikli, Numerical investigation of axial crushing behavior of a tailor welded tube. Materials & Design, 44: 587-595, 2013.
  • F. Tarlochan, F. Samer, A. M. S. Hamouda, S. Ramesh, K. Khalid, Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Structures, 71: 7-17, 2013.
  • Z. Huang, M. Z. N. Khan, W. Chen, H. Hao, M. Elchalakani, T.M. Pham, Effectiveness of reinforcing methods in enhancing the lateral impact performance of geopolymer concrete column reinforced with BFRP bars, 175: 104544, 2023.
  • E. Chen, G.J.T. Elert, Coefficients of friction for steel, 2004.
  • E. Acar, M.A. Guler, B. Gerçeker, M.E. Cerit, B. Bayram, Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations, Thin-Walled Structures, 49(1): 94-105, 2011.
  • S.A. Keskin, E. Acar, M.A. Güler, M. Altin, Exploring various options for improving crashworthiness performance of rail vehicle crash absorbers with diaphragms, Structural and Multidisciplinary Optimization, 64(5): 3193-3208, 2021.
  • M. Kazemi, J. Serpoush, Energy absorption parameters of multi-cell thin-walled structure with various thicknesses under lateral loading, Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications, 235(3): 513-526, 2021.
  • Q.Q. Li, E. Li, T. Chen, L. Wu, G.Q. Wang, Z.C. He, Improve the frontal crashworthiness of vehicle through the design of front rail, Thin-Walled Structures, 162, 2021.

Effect of Friction Force on Energy Absorption Properties of Crushboxes

Yıl 2024, Cilt: 5 Sayı: 3, 141 - 154, 30.12.2024
https://doi.org/10.52795/mateca.1529316

Öz

In recent years, studies on improving the energy absorption capacity of crash boxes, which act as shock absorbers in vehicle accidents, have increased significantly. These studies aim to minimize the damage caused by shock waves resulting from the impact to the vehicle chassis. For this purpose, two different configurations were modelled, one of which is normally folded and the other is energy absorption with friction resistance. The crash scenario was simulated with the designed models and axial impact load was applied to the representative models. Simulations were created using the nonlinear explicit method finite element method (FEM). The crash scenario was analyzed for both models under the same conditions using DP600 steel sheet material properties with three different thicknesses (1.2 mm, 1.4mm and 1.5mm). The results of crash simulations were compared to examine the effects of friction force on the energy absorption behaviors of crash boxes. The analysis results showed that energy absorption by friction resistance contributes positively to the impact absorbing properties of crash boxes by %16.

Kaynakça

  • C. Pal, S. Hirayama, S. Narahari, M. Jeyabharath, G. Prakash, V. Kulothungan, An insight of World Health Organization (WHO) accident database by cluster analysis with self-organizing map (SOM), Traffic injury prevention, 19: 15-S20, 2018.
  • A. Jarasuniene, G. Jakubauskas, Improvement of road safety using passive and active intelligent vehicle safety systems, Transport, 22(4): 284-289, 2007.
  • A. Dimas, T. Dirgantara, L. Gunawan, A. Jusuf, I.S. Putra. The effects of spot weld pitch to the axial crushing characteristics of top-hat crash box, Applied Mechanics and Materials, 660: 578-582, 2014.
  • M. Costas, J. Díaz, L.E. Romera, S. Hernández, A. Tielas, Static and dynamic axial crushing analysis of car frontal impact hybrid absorbers, International Journal of Impact Engineering, 62: 166-181, 2013.
  • O. Adanur, Farklı tasarımlarda W kesitlere sahip çarpışma kutuları için darbe sönümleme kabiliyetlerinin deneysel analizi, Yüksek Lisans Tezi, Sakarya Universitesi, Sakarya, Türkiye, 2019.
  • S. Tabacu, Axial crushing of circular structures with rectangular multi-cell insert, Thin-Walled Structures, 95: 297-309, 2015.
  • N. Tanlak, F.O. Sonmez, Optimal shape design of thin-walled tubes under high-velocity axial impact loads, Thin-Walled Structures, 84: 302-312, 2014.
  • A. Tastan, E. Acar, M. A. Güler, Ü. Kılınçkaya, Optimum crashworthiness design of tapered thin-walled tubes with lateral circular cutouts, Thin-Walled Structures, 107: 543-553, 2016.
  • M.M. Davoodi, S.M. Sapuan, R. Yunus, Conceptual design of a polymer composite automotive bumper energy absorber, Materials & Design, 29(7): 1447-1452, 2008.
  • M. Altin, E. Acar, M.A. Guler, Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns, Thin-Walled Structures, 131: 309-323, 2018.
  • A.K. Toksoy, M. Guden, Partial Al foam filling of commercial 1050H14 Al crash boxes: The effect of box column thickness and foam relative density on energy absorption, Thin-Walled Structures, 48(7): 482-494, 2010.
  • M. Altin, M.A. Guler, S.K. Mert, The effect of percent foam fill ratio on the energy absorption capacity of axially compressed thin-walled multi-cell square and circular tubes, International Journal of Mechanical Sciences, 131: 368-379, 2017.
  • E. Acar, B. Yilmaz, M.A. Güler, M. Altin, Multi-fidelity crashworthiness optimization of a bus bumper system under frontal impact, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(9), 2020.
  • N.N. Hussain, S.P. Regalla, Y.V.D. Rao, Study on influence of notch triggers on absorption of energy for composite automobile crash box under impact loads, Materials Today-Proceedings, 38: 3220-3231, 2021.
  • H. Sun, F. Li, K. Shen, Q. Gong, Energy absorption of variable stiffness composite thin-walled tubes on axial impacting, 100386, 2023.
  • G. Zheng, S. Wu, G. Sun, G. Li, Q. Li, Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes, International Journal of Mechanical Sciences, 87: 226-240, 2014.
  • E. Acar, M. Altin, M.A. Guler, Evaluation of various multi-cell design concepts for crashworthiness design of thin-walled aluminum tubes, Thin-Walled Structures, 142: 227-235, 2019.
  • Z. Gao, D.J.E.S. Ruan, Axial crushing of novel hierarchical multi-cell square tubes, 286: 116141, 2023.
  • T.J. Reddy, Y.V.D. Rao, V. Narayanamurthy, Thin-walled structural configurations for enhanced crashworthiness, International Journal of Crashworthiness, 23(1): 57-73, 2018.
  • R.O. Santos, L.B. Silveira, L.P. Moreira, M.C. Cardoso, F.R.F. Silva, A. Santos Paula, D.A. Albertacci, Damage identification parameters of dual-phase 600-800 steels based on experimental void analysis and finite element simulations, Journal of Materials Research and Technology-Jmr&T, 8(1): 644-659, 2019.
  • O. Adanur, F. Varol, Investigation of the effect of friction force on the energy absorption characteristics of thin-walled structures loaded with axial impact force, Materials Today Communications, 106420, 2023.
  • L. Ying, S. Wang, T. Gao, M. Dai, P. Hu, Y. Wang, Crashworthiness analysis and optimization of multi-functional gradient foam-aluminum filled hierarchical thin-walled structures, Thin-Walled Structures, 189, 2023.
  • P. Dalton, R.W.J.P. Hughes, Auditory attentional capture: implicit and explicit approaches, 78: 313-320, 2014.
  • J. Marzbanrad, M. Alijanpour, M.S.J.T. Kiasat, Design and analysis of an automotive bumper beam in low-speed frontal crashes, 47(8-9): 902-911, 2009.
  • S. Reddy, M. Abbasi, M. Fard, Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection, Thin-Walled Structures, 94: 56-66, 2015.
  • F.X. Xu, C. Wang, Dynamic axial crashing of tailor-welded blanks (TWBs) thin-walled structures with top-hat shaped section, Advances in Engineering Software, 96: 70-82, 2016.
  • Z. Wang, Y. Li, D. Ma, X. Wang, Y. Li, T. Suo, A. Manes, Experimental and numerical investigation on the ballistic performance of aluminosilicate glass with different nosed projectiles, 49(11: 17729-17745, 2023.
  • F. Xu, Enhancing material efficiency of energy absorbers through graded thickness structures, Thin-Walled Structures, 97: 250-265, 2015.
  • X. Zhang, M.S. Zhang, Crush resistance of square tubes with various thickness configurations, 107: 58-68, 2016.
  • D.J. Benson, J.O.J. Hallquist, A single surface contact algorithm for the post-buckling analysis of shell structures, 78(2): 141-163, 1990.
  • H. Gedikli, Numerical investigation of axial crushing behavior of a tailor welded tube. Materials & Design, 44: 587-595, 2013.
  • F. Tarlochan, F. Samer, A. M. S. Hamouda, S. Ramesh, K. Khalid, Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Structures, 71: 7-17, 2013.
  • Z. Huang, M. Z. N. Khan, W. Chen, H. Hao, M. Elchalakani, T.M. Pham, Effectiveness of reinforcing methods in enhancing the lateral impact performance of geopolymer concrete column reinforced with BFRP bars, 175: 104544, 2023.
  • E. Chen, G.J.T. Elert, Coefficients of friction for steel, 2004.
  • E. Acar, M.A. Guler, B. Gerçeker, M.E. Cerit, B. Bayram, Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations, Thin-Walled Structures, 49(1): 94-105, 2011.
  • S.A. Keskin, E. Acar, M.A. Güler, M. Altin, Exploring various options for improving crashworthiness performance of rail vehicle crash absorbers with diaphragms, Structural and Multidisciplinary Optimization, 64(5): 3193-3208, 2021.
  • M. Kazemi, J. Serpoush, Energy absorption parameters of multi-cell thin-walled structure with various thicknesses under lateral loading, Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications, 235(3): 513-526, 2021.
  • Q.Q. Li, E. Li, T. Chen, L. Wu, G.Q. Wang, Z.C. He, Improve the frontal crashworthiness of vehicle through the design of front rail, Thin-Walled Structures, 162, 2021.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları, Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Araştırma Makaleleri
Yazarlar

Ömer Adanur 0000-0001-5591-9661

Cihan Yakupoğlu 0000-0003-3596-9623

İbrahim Acar 0000-0001-9248-2972

Faruk Varol 0000-0003-2952-2251

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 6 Ağustos 2024
Kabul Tarihi 17 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 3

Kaynak Göster

APA Adanur, Ö., Yakupoğlu, C., Acar, İ., Varol, F. (2024). Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi. Manufacturing Technologies and Applications, 5(3), 141-154. https://doi.org/10.52795/mateca.1529316
AMA Adanur Ö, Yakupoğlu C, Acar İ, Varol F. Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi. MATECA. Aralık 2024;5(3):141-154. doi:10.52795/mateca.1529316
Chicago Adanur, Ömer, Cihan Yakupoğlu, İbrahim Acar, ve Faruk Varol. “Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi”. Manufacturing Technologies and Applications 5, sy. 3 (Aralık 2024): 141-54. https://doi.org/10.52795/mateca.1529316.
EndNote Adanur Ö, Yakupoğlu C, Acar İ, Varol F (01 Aralık 2024) Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi. Manufacturing Technologies and Applications 5 3 141–154.
IEEE Ö. Adanur, C. Yakupoğlu, İ. Acar, ve F. Varol, “Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi”, MATECA, c. 5, sy. 3, ss. 141–154, 2024, doi: 10.52795/mateca.1529316.
ISNAD Adanur, Ömer vd. “Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi”. Manufacturing Technologies and Applications 5/3 (Aralık 2024), 141-154. https://doi.org/10.52795/mateca.1529316.
JAMA Adanur Ö, Yakupoğlu C, Acar İ, Varol F. Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi. MATECA. 2024;5:141–154.
MLA Adanur, Ömer vd. “Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi”. Manufacturing Technologies and Applications, c. 5, sy. 3, 2024, ss. 141-54, doi:10.52795/mateca.1529316.
Vancouver Adanur Ö, Yakupoğlu C, Acar İ, Varol F. Sürtünme Kuvvetinin Çarpışma Kutularının Enerji Soğurma Özelliklerine Etkisi. MATECA. 2024;5(3):141-54.