Araştırma Makalesi
BibTex RIS Kaynak Göster

An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning

Yıl 2025, Cilt: 6 Sayı: 2, 164 - 183, 30.08.2025
https://doi.org/10.52795/mateca.1644170

Öz

The advancement of technology has provided a new perspective for the manufacturing industry, accelerating research on machinability studies. The evaluation of key output parameters such as cutting force and temperature, surface roughness concerning input parameters (cutting speed, feed, depth of cut) is among the most common and comprehensive research topics in this field. In this study, dry turning operations were performed on Toolox 44 tool steel using input parameters of two varied feed rates (0.17, 0.34 mm/rev), two dissimilar cutting depths (0.2 mm, 0.4 mm), two distinct cutting speeds (40, 60 m/min), two different cutting tool nose radius (0.4 mm, 0.8 mm). The resulting parameters, including cutting temperature, force and surface roughness, were evaluated using graphical analysis and machine learning methods, specifically the decision tree and heat map approaches. The study's findings indicated that as the feed coupled with cutting depth enhanced, the cutting force also increased, whereas higher cutting speeds led to a decrease in the cutting force. Additionally, the reduction in cutting tool nose radius exhibited varying trends depending on different parameter combinations. It was determined that cutting temperature increased with higher feed and cutting depth, while the variation in cutting speed resulted in different increasing or decreasing trends in cutting temperature. The data revealed that surface roughness went up with an augment in feed, while it lowered as the cutting speed was raised. Additionally, an increase in cutting depth reduced surface roughness in the experiment set with a smaller tool nose radius, while it increased surface roughness in the experiment set with a larger tool nose radius. The results of the graphical evaluation were compared with those of another assessment method, namely machine learning, and it was found that there is a consistent level of accuracy between the two approaches. In the experimental setup with a 0.8 mm tool nose radius, cutting force, cutting temperature, and surface roughness increased by 187.73%, 20.05%, and 181.23%, respectively. For the 0.4 mm radius, the respective increases were 325.60%, 20.55%, and 132.52%. These results suggest that the 0.8 mm tool nose radius offers better machinability performance.

Destekleyen Kurum

Hakkari Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

FM24BAP8

Teşekkür

Bu araştırma Hakkari Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP; Proje no. FM24BAP8) tarafından desteklenmiştir.

Kaynakça

  • [1] T. T. Le, H. T. Pham, H. Khac Doan, P. G. Asteris, Experimental and computational investigation of the effect of machining parameters on the turning process of C45 steel, Advances in Mechanical Engineering 17(2) (2025). https://doi.org/10.1177/16878132251318170.
  • [2] R. Binali, M. E. Korkmaz, M. T. Özdemir, M. Günay, A Holistic Perspective on Sustainable Machining of Al6082: Synergistic Effects of Nano-Enhanced Bio-Lubricants, Machines 13(4) (2025) 293. https://doi.org/10.3390/machines13040293.
  • [3] A. Ç. Yalçın, F. Şen, B. Divleli, T. Küçükçolak, C. Menşan, R. Binali, Finish turning of AISI 5140 tempered steel to improve machinability for engineering applications: An experimental approach with dry cutting, Doğu Fen Bilimleri Dergisi 6(2) (2024) 1-10. https://doi.org/10.57244/dfbd.1392858.
  • [4] K. Fang, N. Uhan, F. Zhao, J. W. Sutherland, A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction, Journal of Manufacturing Systems 30(4) (2011) 234-240. https://doi.org/10.1016/j.jmsy.2011.08.004.
  • [5] M. K. Gupta, P. Niesłony, M. E. Korkmaz, M. Kuntoğlu, G. M. Królczyk, M. Günay, M. Sarikaya, Comparison of tool wear, surface morphology, specific cutting energy and cutting temperature in machining of titanium alloys under hybrid and green cooling strategies, International Journal of Precision Engineering and Manufacturing-Green Technology, 10(6) (2023) 1393-1406. https://doi.org/10.1007/s40684-023-00512-9.
  • [6] N. Bhanot, P. V. Rao, S. G. Deshmukh, An assessment of sustainability for turning process in an automobile firm, Procedia CIRP, 48 (2016) 538-543. https://doi.org/10.1016/j.procir.2016.03.024.
  • [7] M. Günay, M. E. Korkmaz, N. Yaşar, Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments, Journal of Manufacturing Processes, 56 (2020) 678-687. https://doi.org/10.1016/j.jmapro.2020.05.031.
  • [8] M. A. Makhesana, K. M. Patel, N. D. Ghetiya, R. Binali, M. Kuntoğlu, Evaluation of drilling and hole quality characteristics in green machining aluminium alloys: A new approach towards green machining, Journal of Manufacturing Processes, 129 (2024) 176-186. https://doi.org/10.1016/j.jmapro.2024.08.059.
  • [9] C. N. Madu, Handbook of environmentally conscious manufacturing, Springer Cham, 2001. https://doi.org/10.1007/978-3-030-75834-9.
  • [10] R. Binali, A. D. Patange, M. Kuntoğlu, T. Mikolajczyk, E. Salur, Energy saving by parametric optimization and advanced lubri-cooling techniques in the machining of composites and superalloys: A systematic review, Energies, 15(21) (2022) 8313. https://doi.org/10.3390/en15218313.
  • [11] Y. Isik, Investigating the machinability of tool steels in turning operations, Materials & design, 28(5) (2007) 1417-1424. https://doi.org/10.1016/j.matdes.2006.03.025.
  • [12] L. Dan, J. Mathew, Tool wear and failure monitoring techniques for turning—a review, International Journal of Machine Tools and Manufacture, 30(4) (1990) 579-598. https://doi.org/10.1016/0890-6955(90)90009-8.
  • [13] R. Binali, Experimental and machine learning comparison for measurement the machinability of nickel based alloy in pursuit of sustainability, Measurement, 236 (2024) 115-142. https://doi.org/10.1016/j.measurement.2024.115142.
  • [14] S. Globisch, M. Friedrich, N. Heidemann, F. Döpper, Tool concept for a solid carbide end mill for roughing and finishing of the tool steel Toolox 44, Journal of Manufacturing and Materials Processing, 8(4) (2024) 170. https://doi.org/10.3390/jmmp8040170.
  • [15] S. Naimi, S. M. Hosseini, Tool steels in die-casting utilization and increased mold life, Advances in Mechanical Engineering, 7(1) (2015) 286071. https://doi.org/10.1155/2014/286071.
  • [16] A. M. A. Al-Ahmari, Predictive machinability models for a selected hard material in turning operations, Journal of materials processing technology, 190(1-3) 2007 305-311. https://doi.org/10.1016/j.jmatprotec.2007.02.031.
  • [17] R. Binali, H. Demir, İ. Çiftçi, An Investigation into the Machinability of Hot Work Tool Steel (Toolox 44), 3rd Iron and Steel Symposium(UDCS’17), Karabuk-Turkey, 2017: 441-444.
  • [18] S. M. Darwish, The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy, Journal of Materials Processing Technology, 97(1-3) (2000) 10-18. https://doi.org/10.1016/S0924-0136(99)00365-9.
  • [19] Ş. Bayraktar, G. Uzun, Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4) (2021) 1939-1948. https://doi.org/10.17341/gazimmfd.641824.
  • [20] E. Kuram, N. Ucuncu, Toolox 44 Çeliğinin Tornalanmasında Kesme Hızının, İlerlemenin ve Kesici Uç Burun Radyüsünün Takım Aşınmasına ve Yüzey Pürüzlülüğüne Etkileri, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 12(4) (2024) 1006-1017. https://doi.org/10.29109/gujsc.1530456.
  • [21] M. B. A. Ribeiro, A. J. Souza, H. J. Amorim, Cobem2021-0118 Investigation Of Surface Roughness Generated By End Milling Of Toolox 44®, 26th ABCM International Congress of Mechanical Engineering, Florianópolis, SC, Brazil, 2021: 22-26.
  • [22] A. Panda, S. R. Das, D. Dhupal, Surface roughness analysis for economical feasibility study of coated ceramic tool in hard turning operation, Process Integration and Optimization for Sustainability, 1 (2017) 237-249. https://doi.org/10.1007/s41660-017-0019-9.
  • [23] M. Akgün, Optimization of process parameters affecting cutting force, power consumption and surface roughness using taguchi-based gray relational analysis in turning AISI 1040 steel, Surface Review and Letters, 29(03) (2022) 2250029. https://doi.org/10.1142/S0218625X22500299.
  • [24] T. Mohanraj, P. Ragav, E. S. Gokul, P. Senthil, K. S. R. Anandh, Experimental investigation of coconut oil with nanoboric acid during milling of Inconel 625 using Taguchi-Grey relational analysis, Surface Review and Letters, 28(03) (2021) 2150008. https://doi.org/10.1142/S0218625X21500086.
  • [25] A. S. Rao, Effect of nose radius on the chip morphology, cutting force and tool wear during dry turning of Inconel 718, Tribology-Materials, Surfaces & Interfaces, 17(1) (2023) 62-71. https://doi.org/10.1080/17515831.2022.2160161.
  • [26] Z. A. M. Tagiuri, T. M. Dao, A. M. Samuel, V. Songmene, A numerical model for predicting the effect of tool nose radius on machining process performance during orthogonal cutting of AISI 1045 steel, Materials, 15(9) (2022) 3369. https://doi.org/10.3390/ma15093369.
  • [27] S. R. Das, D. Dhupal, A. Kumar, Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts, Journal of Mechanical Science and Technology, 29 (2015) 4329-4340. https://doi.org/10.1007/s12206-015-0931-2.
  • [28] N. Fang, P. S. Pai, S. Mosquea, Effect of tool edge wear on the cutting forces and vibrations in high-speed finish machining of Inconel 718: an experimental study and wavelet transform analysis, The International Journal of Advanced Manufacturing Technology, 52 (2011) 65-77. https://doi.org/10.1007/s00170-010-2703-6.
  • [29] D. Shah, S. Bhavsar, Effect of tool nose radius and machining parameters on cutting force, cutting temperature and surface roughness–an experimental study of Ti-6Al-4V (ELI), Materials Today: Proceedings, 22 (2020) 1977-1986. https://doi.org/10.1016/j.matpr.2020.03.163.
  • [30] R. K. Bhushan, Impact of nose radius and machining parameters on surface roughness, tool wear and tool life during turning of AA7075/SiC composites for green manufacturing, Mechanics of Advanced Materials and Modern Processes, 6(1) (2020) 1. https://doi.org/10.1186/s40759-020-00045-7.
  • [31] H. Saglam, S. Yaldiz, F. Unsacar, The effect of tool geometry and cutting speed on main cutting force and tool tip temperature, Materials & design, 28(1) (2007) 101-111. https://doi.org/10.1016/j.matdes.2005.05.015.
  • [32] H. Wang, J. Sun, J. Li, L. Lu, N. Li, Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polymer composites, The International Journal of Advanced Manufacturing Technology, 82 (2016) 1517-1525. https://doi.org/10.1007/s00170-015-7479-2.
  • [33] M. Akgün, H. Yurtkuran, H. B. Ulas, AA7075 alaşımının işlenebilirliğine suni yaşlandırmanın etkisinin analizi ve kesme parametrelerinin optimizasyonu, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1) (2020) 75-81. https://doi.org/10.5505/pajes.2019.71224.
  • [34] M. Akgün, H. Demir, and İ. Çiftçi, Optimization of surface roughness in turning Mg2Si particle reinforced magnesium, Politeknik Dergisi, 21(3) (2018) 645-650. https://doi.org/10.2339/politeknik.385481.
  • [35] U. Persson, H. Chandrasekaran. Machinability of martensitic steels in milling and the role of hardness. in Proc. 6th Int. Tooling Conf., Karlstad University, Sweden, 2002: 1225-1236.
  • [36] Ş. Bayraktar, G. Uzun, Experimental study on machinability of pre-hardened Toolox 44 and Nimax mould steels, J. Fac. Eng. Archit. Gazi Univ, 36 (2021) 1939-1947.
  • [37] S. K. Thangarasu, S. Shankar, A. Tony Thomas, G. Sridhar, Prediction of cutting force in turning process-an experimental approach, IOP conference series: materials science and engineering, 310 (2018) 012119. https://doi.org/10.1088/1757-899X/310/1/012119.
  • [38] M. K. Gupta, M. E. Korkmaz, M. Sarıkaya, G. M. Krolczyk, M. Günay, S. Wojciechowski, Cutting forces and temperature measurements in cryogenic assisted turning of AA2024-T351 alloy: An experimentally validated simulation approach, Measurement, 188 (2022) 110594. https://doi.org/10.1016/j.measurement.2021.110594.
  • [39] M. Kuntoğlu, O. Acar, M. K. Gupta, H. Sağlam, M. Sarikaya, K. Giasin, D. Y. Pimenov, Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140. Machines, 9(5) (2021) 90. https://doi.org/10.3390/machines9050090.
  • [40] E. Salur, A. Aslan, M. Kuntoğlu, A. Güneş, Ö. S. Şahin, Optimization of cutting forces during turning of composite materials, Acad. Platf. J. Eng. Sci, 8 (2020) 423-431.
  • [41] T. Szecsi, Cutting force modeling using artificial neural networks, Journal of Materials Processing Technology, 92 (1999) 344-349. https://doi.org/10.1016/S0924-0136(99)00183-1.
  • [42] K. J. S. Kumar, R. N. Marigoudar, Comparative study of cutting force development during the machining of un-hybridized and hybridized ZA43 based metal matrix composites, Journal of the Mechanical Behavior of Materials, 28(1) (2019) 146-152. https://doi.org/10.1515/jmbm-2019-0016.
  • [43] A. Mahamani, Machinability study of Al-5Cu-TiB 2 in-situ metal matrix composites fabricated by flux-assisted synthesis, Journal of Minerals and Materials Characterization and Engineering, 10(13) (2011) 1243-1254.
  • [44] M. Aydın, Ti6Al4V Alaşımının ortogonal tornalanmasında ilerleme hızının kesme kuvveti ve talaş morfolojisi üzerindeki etkilerinin sonlu elemanlar analizi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 12(2) (2024) 567-576. https://doi.org/10.29109/gujsc.1420233.
  • [45] C. Yao, Z. Zhou, J. Zhang, D. Wu, L. Tan, Experimental study on cutting force of face-turning Inconel718 with ceramic tools and carbide tools, Advances in Mechanical Engineering, 9(7) (2017) 9. https://doi.org/10.1177/1687814017716620.
  • [46] J. G. Lima, R. F. Avila, A. M. Abrao, M. Faustino, J. P. Davim, Hard turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel, Journal of Materials Processing Technology, 169(3) (2005) 388-395. https://doi.org/10.1016/j.jmatprotec.2005.04.082.
  • [47] H. Bouchelaghem, M. A. Yallese, T. Mabrouki, A. Amirat, J. F. Rigal, Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3), Machining Science and Technology, 14(4) (2010) 471-501. https://doi.org/10.1080/10910344.2010.533621.
  • [48] K. Kamdani, I. Ashaary, S. Hassan, M. A. Lajis, The effect of cutting force and tool wear in milling INCONEL 718. in Journal of Physics: Conference Series, (2019) 1-6.
  • [49] E. A. Rahim, H. Sasahara, Surface integrity when drilling nickel-based superalloy under MQL suppl, Key Engineering Materials, 443 (2010) 365-370. https://doi.org/10.4028/www.scientific.net/KEM.443.365.
  • [50] A. Taşlıyan, M. Acarer, U. Şeker, H. Gökkaya, B. Demir, Inconel 718 Süper Alaşiminin İşlenmesinde Kesme Parameterelerinin Kesme Kuvveti Üzerindeki Etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22(1) (2007) 1-5.
  • [51] A. Ebrahimi, M. M. Moshksar, Evaluation of machinability in turning of microalloyed and quenched-tempered steels: Tool wear, statistical analysis, chip morphology, Journal of materials processing technology, 209(2) (2009) 910-921. https://doi.org/10.1016/j.jmatprotec.2008.02.067.
  • [52] K. Shi, D. Zhang, J. Ren, C. Yao, X. Huang, Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool, Advances in Mechanical Engineering, 8(1) (2016). https://doi.org/10.1177/1687814016628392.
  • [53] C. Kalyan, G. L. Samuel, Cutting mode analysis in high speed finish turning of AlMgSi alloy using edge chamfered PCD tools, Journal of Materials Processing Technology, 216 (2015) 146-159. https://doi.org/10.1016/j.jmatprotec.2014.09.003.
  • [54] A. Ercetin, K. Aslantaş, Ö. Özgün, M. Perçin, M. P. G. Chandrashekarappa, Optimization of machining parameters to minimize cutting forces and surface roughness in micro-milling of Mg13Sn alloy, Micromachines, 14(8) (2023) 1590. https://doi.org/10.3390/mi14081590.
  • [55] A. H. Tazehkandi, F. Pilehvarian, B. Davoodi, Experimental investigation on removing cutting fluid from turning of Inconel 725 with coated carbide tools, Journal of Cleaner Production, 80 (2014) 271-281. https://doi.org/10.1016/j.jclepro.2014.05.098.
  • [56] A. H. Tazehkandi, M. Shabgard, G. Kiani, F. Pilehvarian, Investigation of the influences of polycrystalline cubic boron nitride (PCBN) tool on the reduction of cutting fluid consumption and increase of machining parameters range in turning Inconel 783 using spray mode of cutting fluid with compressed air, Journal of Cleaner Production, 135 (2016)1637-1649. https://doi.org/10.1016/j.jclepro.2015.12.102.
  • [57] B. Özlü, Investigation of the effect of cutting parameters on cutting force, surface roughness and chip shape in turning of Sleipner cold work tool steel, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3) (2021) 1241-1251. https://doi.org/10.17341/gazimmfd.668169.
  • [58] I. Ciftci, Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools, Tribology international, 39(6) (2006) 565-569. https://doi.org/10.1016/j.triboint.2005.05.005.
  • [59] K. Kadirgama, K. A. Abou-El-Hossein, M. M. Noor, K. V. Sharma, B. Mohammad, Tool life and wear mechanism when machining Hastelloy C-22HS, Wear, 270(3-4) (2011) 258-268. https://doi.org/10.1016/j.wear.2010.10.067.
  • [60] M. Sima, T. Özel, Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V, International Journal of Machine Tools and Manufacture, 50(11) (2010) 943-960. https://doi.org/10.1016/j.ijmachtools.2010.08.004.
  • [61] S. E. Bernard, R. Selvaganesh, G. Khoshick, D. S. Raj, A novel contact area based analysis to study the thermo-mechanical effect of cutting edge radius using numerical and multi-sensor experimental investigation in turning, Journal of Materials Processing Technology, 293 (2021) 117085. https://doi.org/10.1016/j.jmatprotec.2021.117085.
  • [62] M. Wagih, M. A. Hassan, H. El-Hofy, J. Yan, I. Maher, Effects of process parameters on cutting forces, material removal rate, and specific energy in trochoidal milling, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(7) (2024) 2745-2757. https://doi.org/10.1177/09544062231196991.
  • [63] A. V. Muthusamy Subramanian, M. D. G. Nachimuthu, V. Cinnasamy, Assessment of cutting force and surface roughness in LM6/SiCp using response surface methodology, Journal of applied research and technology, 15(3) (2017) 283-296. https://doi.org/10.1016/j.jart.2017.01.013.
  • [64] S. Vijarangan, D. A. Budan, S. Arunachalam, T. Page, Effect of Fibre Position And Proportion On The Machinability Of GFRP Composites-An FEA And Merchant's Model, i-Manager's Journal on Future Engineering and Technology, 5(1) (2009) 33-43.
  • [65] Z. I. Korka, C. O. Micloşină, V. Cojocaru, An experimental study of the cutting forces in metal turning, Analele Universităłıi “Eftımie Murgu” Reşiła Anul XX, (2) (2013) 25-32.
  • [66] P. Moradpour, F. Scholz, K. Doosthoseini, A. Tarmian, Measurement of wood cutting forces during bandsawing using piezoelectric dynamometer. Drv. Ind, 67 (2016) 79-84.
  • [67] H. Gökkaya, AA5052 Alaşiminin işlenmesinde işleme parametrelerinin kesme kuvveti ve yüzey pürüzlülüğüne etkisinin deneysel olarak incelenmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(3) (2011) 295-301.
  • [68] A. S. Shouckry, The effect of cutting conditions on dimensional accuracy, Wear, 80(2) (1982) 197-205. https://doi.org/10.1016/0043-1648(82)90217-4.
  • [69] E. Usui, T. Shirakashi, T. Kitagawa, Analytical prediction of cutting tool wear, Wear, 100(1-3) (1984) 129-151. https://doi.org/10.1016/0043-1648(84)90010-3.
  • [70] G. Byrne, Thermoelectric signal characteristics and average interfacial temperatures in the machining of metals under geometrically defined conditions, International Journal of Machine Tools and Manufacture, 27(2) 1987 215-224. https://doi.org/10.1016/S0890-6955(87)80051-2.
  • [71] P. D. Muraka, G. Barrow, S. Hinduja, Influence of the process variables on the temperature distribution in orthogonal machining using the finite element method, International Journal of Mechanical Sciences, 21(8) (1979) 445-456. https://doi.org/10.1016/0020-7403(79)90007-9.
  • [72] A. Uysal, Effects of cutting parameters on drilling performance of carbon black–reinforced polymer composite, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(7) (2018) 1133-1142. https://doi.org/10.1177/0954405416662084.
  • [73] U. Çaydaş, M. Çelik, AA 7075-T6 alaşımının delinmesinde kesme parametrelerinin yüzey pürüzlülüğü, takım sıcaklığı ve ilerleme kuvvetine etkilerinin araştırılması, Politeknik Dergisi, 20(2) (2017) 419-425.
  • [74] A. Hosokawa, K. Kosugi, T. Ueda, Turning characteristics of titanium alloy Ti-6Al-4V with high-pressure cutting fluid, CIRP Annals, 71(1) (2022) 81-84. https://doi.org/10.1016/j.cirp.2022.04.064.
  • [75] R. Kumar, A. K. Sahoo, K. Satyanarayana, G. Rao, Some studies on cutting force and temperature in machining Ti-6Al-4V alloy using regression analysis and ANOVA, Int J Ind Eng Comput, 4(3) (2013) 427-436. https://doi.org/ 10.5267/j.ijiec.2013.03.002.
  • [76] H. M. Mohammad, R. H. Ibrahim, Effect Of Cutting Parameters On Surface Roughness And Cutting Tool Temperature In Turning AISI 1045 Steel, University of Thi-Qar Journal for Engineering Sciences, 8(2) (2017) 127-137.
  • [77] J. Rodríguez, P. Muñoz-Escalona, Z. Cassier, Influence of cutting parameters and material properties on cutting temperature when turning stainless steel, Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 26(1) (2011) 71-80.
  • [78] I. Espinoza-Torres, I. Martínez-Ramírez, J. M. Sierra-Hernández, D. Jauregui-Vazquez, M. E. Gutiérrez-Rivera, F. D. J. T. D. Carmen, T. Lozano-Hernández, Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry, Sensors, 23(21) (2023) 8968. https://doi.org/10.3390/s23218968.
  • [79] E. Abdelnasser, A. Barakat, S. Elsanabary, A. Nassef, A. Elkaseer, Precision hard turning of Ti6Al4V using polycrystalline diamond inserts: surface quality, cutting temperature and productivity in conventional and high-speed machining, Materials, 13(24) (2020) 5677. https://doi.org/10.3390/ma13245677.
  • [80] M. Soori, B. Arezoo, Effect of cutting parameters on tool life and cutting temperature in milling of AISI 1038 carbon steel, Journal of New Technology and Materials, 13 (2023) 33-48. https://hal.science/hal-04111841v1.
  • [81] H. B. He, H. Y. Li, J. Yang, X. Y. Zhang, Q. B. Yue, X. Jiang, S. Lyu, A study on major factors influencing dry cutting temperature of AISI 304 stainless steel, International Journal of Precision Engineering and Manufacturing, 18 (2017) 1387-1392. https://doi.org/10.1007/s12541-017-0165-6.
  • [82] S. M. Lubis, S. Darmawan'Adianto. Effect of cutting speed on temperature cutting tools and surface roughness of AISI 4340 steel, in IOP Conference Series: Materials Science and Engineering, (2019) 012053. https://doi.org/ 10.1088/1757-899X/508/1/012053.
  • [83] D. Liu, Y. Zhang, M. Luo, D. Zhang, Investigation of tool wear and chip morphology in dry trochoidal milling of titanium alloy Ti–6Al–4V, Materials, 12(12) (2019) 1937. https://doi.org/10.3390/ma12121937.
  • [84] K. Yang, Y. Liang, K. Zheng, Q. Bai, W. Chen, Tool edge radius effect on cutting temperature in micro-end-milling process, The International Journal of Advanced Manufacturing Technology, 52 (2011) 905-912. https://doi.org/10.1007/s00170-010-2795-z.
  • [85] B. Akın, AISI 316L paslanmaz çeliklerin tornalanmasında yüzey pürüzlülüğünün incelenmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 2014.
  • [86] D. Bajić, B. Lela, D. Živković, Modeling of machined surface roughness and optimization of cutting parameters in face milling, Metalurgija, 47(4) (2008) 331-334.
  • [87] Ü. Karagöz, CNC ile işlemede ahşap malzemenin yüzey kalitesini etkileyen faktörler, Kastamonu University Journal of Forestry Faculty, 11(1) (2011) 18-26.
  • [88] M. Özdemir, Yüzey pürüzlülüğü üzerinde kesme parametrelerinin etki oranlarının Yüzey Yanıt Yöntemi kullanarak Analizi, Gazi University Journal of Science Part C: Design and Technology, 7(3) (2019) 639-648. http://dergipark.gov.tr/gujsc.
  • [89] B. Karayel, M. Nalbant, Ç4140 Malzemesinin Tornalamasinda İlerleme, Kesme Hizi Ve Kesici Takimin Yüzey Pürüzlülüğü, Takim Ömrü Ve Aşinmaya Etkileri, Makine Teknolojileri Elektronik Dergisi, 11(3) (2014) 11-26.
  • [90] N. Kavak, AISI 1040 çeliğinin kuru tornalanmasında yüzey pürüzlülüğünün incelenmesi, Karaelmas Fen ve Mühendislik Dergisi, 2(2) (2012) 24-29.
  • [91] L. Uğur, 7075 Alüminyum Malzemesinin Frezelenmesinde Yüzey Pürüzlülüğünün Yanıt Yüzey Metodu İle Optimizasyonu, Erzincan University Journal of Science and Technology, 12(1) (2019) 326-335.
  • [92] H. Demirpolat, K. Kaya, R. Binali, M. Kuntoğlu, AISI 52100 Rulman Çeliğinin Tornalanmasında İşleme Parametrelerinin Yüzey Pürüzlülüğü, Kesme Sıcaklığı ve Kesme Kuvveti Üzerindeki Etkilerinin İncelenmesi, İmalat Teknolojileri ve Uygulamaları, 4(3) (2023) 179-189. https://doi.org/10.52795/mateca.1393430.
  • [93] M. Nalbant, H. Gökkaya, G. Sur, Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials & design, 28(4) (2007) 1379-1385. https://doi.org/10.1016/j.matdes.2006.01.008.
  • [94] X. Wang, C. X. Feng, Development of empirical models for surface roughness prediction in finish turning, The International Journal of Advanced Manufacturing Technology, 20 (2002) 348-356. https://doi.org/10.1007/s001700200162.
  • [95] A. Hasçelik, K. Aslantaş, Mikro Tornalama İşleminde Kesici Takım Burun Yarıçapının Kesme Kuvvetlerine Etkisi, Journal of Materials and Mechatronics: A, 2(1) (2021) 13-25.
  • [96] R. Binali, H. Demirpolat, M. Kuntoğlu, K. Kaya, Exploring the Tribological Performance of Mist Lubrication Technique on Machinability Characteristics During Turning S235JR Steel, Manufacturing Technologies and Applications, 5(3) (2024) 276-283. https://doi.org/10.52795/mateca.1541090.
  • [97] X. Chuangwen, D. Jianming, C. Yuzhen, L. Huaiyuan, S. Zhicheng, X. Jing, The relationships between cutting parameters, tool wear, cutting force and vibration, Advances in Mechanical Engineering, 10(1) (2018). https://doi.org/10.1177/1687814017750434.
  • [98] M. Özdemir, K. Ercan, B. Büyüker, H. K. Akyıldız, Analysis of the effect of tool nose radius, feed rate, and cutting depth parameters on surface roughness and cutting force in CNC lathe machining of 36CrNiMo4 alloy steel, Gazi University Journal of Science Part A: Engineering and Innovation, 8(2) (2021) 308-317.
  • [99] M. Kuruc, T. Vopát, J. Peterka, M. Necpal, V. Šimna, J. Milde, F. Jurina, The influence of cutting parameters on plastic deformation and chip compression during the turning of C45 medium carbon steel and 62SiMnCr4 tool steel, Materials, 15(2) (2022) 585. https://doi.org/10.3390/ma15020585.
  • [100] J. O'Hara, F. Fang, Advances in micro cutting tool design and fabrication, International journal of Extreme Manufacturing, 1(3) (2019) 032003. https://doi.org/10.1088/2631-7990/ab3e7f.

Farklı Burun Yarıçapına Sahip Kesici Takımlarla Toolox 44 Sıcak İş Takım Çeliğinin Makine Öğrenimi Kullanılarak İşlenebilirliğinin İncelenmesi

Yıl 2025, Cilt: 6 Sayı: 2, 164 - 183, 30.08.2025
https://doi.org/10.52795/mateca.1644170

Öz

Teknolojinin ilerlemesi, imalat endüstrisi için yeni bir bakış açısı sağlayarak, işlenebilirlik çalışmaları üzerine yapılan araştırmaları hızlandırmıştır. Kesme kuvveti ve sıcaklığı, yüzey pürüzlülüğü gibi temel çıktı parametrelerinin girdi parametreleri (kesme hızı, ilerleme, kesme derinliği) açısından değerlendirilmesi bu alandaki en yaygın ve kapsamlı araştırma konularındandır. Bu çalışmada, Toolox 44 takım çeliği üzerinde iki farklı ilerleme hızı (0,17, 0,34 mm/dev), iki farklı kesme derinliği (0,2 mm, 0,4 mm), iki farklı kesme hızı (40, 60 m/dak), iki farklı kesici takım uç yarıçapı (0,4 mm, 0,8 mm) girdi parametreleri kullanılarak kuru tornalama işlemleri gerçekleştirilmiştir. Kesme sıcaklığı, kuvvet ve yüzey pürüzlülüğü dahil olmak üzere ortaya çıkan parametreler, grafiksel analiz ve makine öğrenmesi yöntemleri, özellikle karar ağacı ve ısı haritası yaklaşımları kullanılarak değerlendirilmiştir. Çalışmanın bulguları, kesme derinliğiyle birleştirilen ilerleme arttıkça kesme kuvvetinin de arttığını, buna karşın daha yüksek kesme hızlarının kesme kuvvetinde bir azalmaya yol açtığını göstermiştir. Ek olarak, kesici takım uç yarıçapındaki azalma farklı parametre kombinasyonlarına bağlı olarak farklı eğilimler sergiledi. Kesme sıcaklığının daha yüksek ilerleme ve kesme derinliği ile arttığı, kesme hızındaki değişimin ise kesme sıcaklığında farklı artan veya azalan eğilimlere yol açtığı belirlendi. Veriler, yüzey pürüzlülüğünün ilerlemedeki artışla arttığını, kesme hızı arttıkça ise azaldığını ortaya koydu. Ek olarak, kesme derinliğindeki artış, daha küçük takım uç yarıçapına sahip deney setinde yüzey pürüzlülüğünü azaltırken, daha büyük takım uç yarıçapına sahip deney setinde yüzey pürüzlülüğünü artırdı. Grafiksel değerlendirmenin sonuçları, başka bir değerlendirme yöntemi olan makine öğrenmesinin sonuçlarıyla karşılaştırıldı ve iki yaklaşım arasında tutarlı bir doğruluk düzeyi olduğu bulundu. 0,8 mm takım ucu yarıçaplı deneysel kurulumda, kesme kuvveti, kesme sıcaklığı ve yüzey pürüzlülüğü sırasıyla %187,73, %20,05 ve %181,23 oranında arttı. 0,4 mm yarıçap için sırasıyla artışlar %325,60, %20,55 ve %132,52 oldu. Bu sonuçlar, 0,8 mm takım ucu yarıçapının daha iyi işlenebilirlik performansı sunduğunu göstermektedir.

Proje Numarası

FM24BAP8

Kaynakça

  • [1] T. T. Le, H. T. Pham, H. Khac Doan, P. G. Asteris, Experimental and computational investigation of the effect of machining parameters on the turning process of C45 steel, Advances in Mechanical Engineering 17(2) (2025). https://doi.org/10.1177/16878132251318170.
  • [2] R. Binali, M. E. Korkmaz, M. T. Özdemir, M. Günay, A Holistic Perspective on Sustainable Machining of Al6082: Synergistic Effects of Nano-Enhanced Bio-Lubricants, Machines 13(4) (2025) 293. https://doi.org/10.3390/machines13040293.
  • [3] A. Ç. Yalçın, F. Şen, B. Divleli, T. Küçükçolak, C. Menşan, R. Binali, Finish turning of AISI 5140 tempered steel to improve machinability for engineering applications: An experimental approach with dry cutting, Doğu Fen Bilimleri Dergisi 6(2) (2024) 1-10. https://doi.org/10.57244/dfbd.1392858.
  • [4] K. Fang, N. Uhan, F. Zhao, J. W. Sutherland, A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction, Journal of Manufacturing Systems 30(4) (2011) 234-240. https://doi.org/10.1016/j.jmsy.2011.08.004.
  • [5] M. K. Gupta, P. Niesłony, M. E. Korkmaz, M. Kuntoğlu, G. M. Królczyk, M. Günay, M. Sarikaya, Comparison of tool wear, surface morphology, specific cutting energy and cutting temperature in machining of titanium alloys under hybrid and green cooling strategies, International Journal of Precision Engineering and Manufacturing-Green Technology, 10(6) (2023) 1393-1406. https://doi.org/10.1007/s40684-023-00512-9.
  • [6] N. Bhanot, P. V. Rao, S. G. Deshmukh, An assessment of sustainability for turning process in an automobile firm, Procedia CIRP, 48 (2016) 538-543. https://doi.org/10.1016/j.procir.2016.03.024.
  • [7] M. Günay, M. E. Korkmaz, N. Yaşar, Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments, Journal of Manufacturing Processes, 56 (2020) 678-687. https://doi.org/10.1016/j.jmapro.2020.05.031.
  • [8] M. A. Makhesana, K. M. Patel, N. D. Ghetiya, R. Binali, M. Kuntoğlu, Evaluation of drilling and hole quality characteristics in green machining aluminium alloys: A new approach towards green machining, Journal of Manufacturing Processes, 129 (2024) 176-186. https://doi.org/10.1016/j.jmapro.2024.08.059.
  • [9] C. N. Madu, Handbook of environmentally conscious manufacturing, Springer Cham, 2001. https://doi.org/10.1007/978-3-030-75834-9.
  • [10] R. Binali, A. D. Patange, M. Kuntoğlu, T. Mikolajczyk, E. Salur, Energy saving by parametric optimization and advanced lubri-cooling techniques in the machining of composites and superalloys: A systematic review, Energies, 15(21) (2022) 8313. https://doi.org/10.3390/en15218313.
  • [11] Y. Isik, Investigating the machinability of tool steels in turning operations, Materials & design, 28(5) (2007) 1417-1424. https://doi.org/10.1016/j.matdes.2006.03.025.
  • [12] L. Dan, J. Mathew, Tool wear and failure monitoring techniques for turning—a review, International Journal of Machine Tools and Manufacture, 30(4) (1990) 579-598. https://doi.org/10.1016/0890-6955(90)90009-8.
  • [13] R. Binali, Experimental and machine learning comparison for measurement the machinability of nickel based alloy in pursuit of sustainability, Measurement, 236 (2024) 115-142. https://doi.org/10.1016/j.measurement.2024.115142.
  • [14] S. Globisch, M. Friedrich, N. Heidemann, F. Döpper, Tool concept for a solid carbide end mill for roughing and finishing of the tool steel Toolox 44, Journal of Manufacturing and Materials Processing, 8(4) (2024) 170. https://doi.org/10.3390/jmmp8040170.
  • [15] S. Naimi, S. M. Hosseini, Tool steels in die-casting utilization and increased mold life, Advances in Mechanical Engineering, 7(1) (2015) 286071. https://doi.org/10.1155/2014/286071.
  • [16] A. M. A. Al-Ahmari, Predictive machinability models for a selected hard material in turning operations, Journal of materials processing technology, 190(1-3) 2007 305-311. https://doi.org/10.1016/j.jmatprotec.2007.02.031.
  • [17] R. Binali, H. Demir, İ. Çiftçi, An Investigation into the Machinability of Hot Work Tool Steel (Toolox 44), 3rd Iron and Steel Symposium(UDCS’17), Karabuk-Turkey, 2017: 441-444.
  • [18] S. M. Darwish, The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy, Journal of Materials Processing Technology, 97(1-3) (2000) 10-18. https://doi.org/10.1016/S0924-0136(99)00365-9.
  • [19] Ş. Bayraktar, G. Uzun, Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4) (2021) 1939-1948. https://doi.org/10.17341/gazimmfd.641824.
  • [20] E. Kuram, N. Ucuncu, Toolox 44 Çeliğinin Tornalanmasında Kesme Hızının, İlerlemenin ve Kesici Uç Burun Radyüsünün Takım Aşınmasına ve Yüzey Pürüzlülüğüne Etkileri, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 12(4) (2024) 1006-1017. https://doi.org/10.29109/gujsc.1530456.
  • [21] M. B. A. Ribeiro, A. J. Souza, H. J. Amorim, Cobem2021-0118 Investigation Of Surface Roughness Generated By End Milling Of Toolox 44®, 26th ABCM International Congress of Mechanical Engineering, Florianópolis, SC, Brazil, 2021: 22-26.
  • [22] A. Panda, S. R. Das, D. Dhupal, Surface roughness analysis for economical feasibility study of coated ceramic tool in hard turning operation, Process Integration and Optimization for Sustainability, 1 (2017) 237-249. https://doi.org/10.1007/s41660-017-0019-9.
  • [23] M. Akgün, Optimization of process parameters affecting cutting force, power consumption and surface roughness using taguchi-based gray relational analysis in turning AISI 1040 steel, Surface Review and Letters, 29(03) (2022) 2250029. https://doi.org/10.1142/S0218625X22500299.
  • [24] T. Mohanraj, P. Ragav, E. S. Gokul, P. Senthil, K. S. R. Anandh, Experimental investigation of coconut oil with nanoboric acid during milling of Inconel 625 using Taguchi-Grey relational analysis, Surface Review and Letters, 28(03) (2021) 2150008. https://doi.org/10.1142/S0218625X21500086.
  • [25] A. S. Rao, Effect of nose radius on the chip morphology, cutting force and tool wear during dry turning of Inconel 718, Tribology-Materials, Surfaces & Interfaces, 17(1) (2023) 62-71. https://doi.org/10.1080/17515831.2022.2160161.
  • [26] Z. A. M. Tagiuri, T. M. Dao, A. M. Samuel, V. Songmene, A numerical model for predicting the effect of tool nose radius on machining process performance during orthogonal cutting of AISI 1045 steel, Materials, 15(9) (2022) 3369. https://doi.org/10.3390/ma15093369.
  • [27] S. R. Das, D. Dhupal, A. Kumar, Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts, Journal of Mechanical Science and Technology, 29 (2015) 4329-4340. https://doi.org/10.1007/s12206-015-0931-2.
  • [28] N. Fang, P. S. Pai, S. Mosquea, Effect of tool edge wear on the cutting forces and vibrations in high-speed finish machining of Inconel 718: an experimental study and wavelet transform analysis, The International Journal of Advanced Manufacturing Technology, 52 (2011) 65-77. https://doi.org/10.1007/s00170-010-2703-6.
  • [29] D. Shah, S. Bhavsar, Effect of tool nose radius and machining parameters on cutting force, cutting temperature and surface roughness–an experimental study of Ti-6Al-4V (ELI), Materials Today: Proceedings, 22 (2020) 1977-1986. https://doi.org/10.1016/j.matpr.2020.03.163.
  • [30] R. K. Bhushan, Impact of nose radius and machining parameters on surface roughness, tool wear and tool life during turning of AA7075/SiC composites for green manufacturing, Mechanics of Advanced Materials and Modern Processes, 6(1) (2020) 1. https://doi.org/10.1186/s40759-020-00045-7.
  • [31] H. Saglam, S. Yaldiz, F. Unsacar, The effect of tool geometry and cutting speed on main cutting force and tool tip temperature, Materials & design, 28(1) (2007) 101-111. https://doi.org/10.1016/j.matdes.2005.05.015.
  • [32] H. Wang, J. Sun, J. Li, L. Lu, N. Li, Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polymer composites, The International Journal of Advanced Manufacturing Technology, 82 (2016) 1517-1525. https://doi.org/10.1007/s00170-015-7479-2.
  • [33] M. Akgün, H. Yurtkuran, H. B. Ulas, AA7075 alaşımının işlenebilirliğine suni yaşlandırmanın etkisinin analizi ve kesme parametrelerinin optimizasyonu, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1) (2020) 75-81. https://doi.org/10.5505/pajes.2019.71224.
  • [34] M. Akgün, H. Demir, and İ. Çiftçi, Optimization of surface roughness in turning Mg2Si particle reinforced magnesium, Politeknik Dergisi, 21(3) (2018) 645-650. https://doi.org/10.2339/politeknik.385481.
  • [35] U. Persson, H. Chandrasekaran. Machinability of martensitic steels in milling and the role of hardness. in Proc. 6th Int. Tooling Conf., Karlstad University, Sweden, 2002: 1225-1236.
  • [36] Ş. Bayraktar, G. Uzun, Experimental study on machinability of pre-hardened Toolox 44 and Nimax mould steels, J. Fac. Eng. Archit. Gazi Univ, 36 (2021) 1939-1947.
  • [37] S. K. Thangarasu, S. Shankar, A. Tony Thomas, G. Sridhar, Prediction of cutting force in turning process-an experimental approach, IOP conference series: materials science and engineering, 310 (2018) 012119. https://doi.org/10.1088/1757-899X/310/1/012119.
  • [38] M. K. Gupta, M. E. Korkmaz, M. Sarıkaya, G. M. Krolczyk, M. Günay, S. Wojciechowski, Cutting forces and temperature measurements in cryogenic assisted turning of AA2024-T351 alloy: An experimentally validated simulation approach, Measurement, 188 (2022) 110594. https://doi.org/10.1016/j.measurement.2021.110594.
  • [39] M. Kuntoğlu, O. Acar, M. K. Gupta, H. Sağlam, M. Sarikaya, K. Giasin, D. Y. Pimenov, Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140. Machines, 9(5) (2021) 90. https://doi.org/10.3390/machines9050090.
  • [40] E. Salur, A. Aslan, M. Kuntoğlu, A. Güneş, Ö. S. Şahin, Optimization of cutting forces during turning of composite materials, Acad. Platf. J. Eng. Sci, 8 (2020) 423-431.
  • [41] T. Szecsi, Cutting force modeling using artificial neural networks, Journal of Materials Processing Technology, 92 (1999) 344-349. https://doi.org/10.1016/S0924-0136(99)00183-1.
  • [42] K. J. S. Kumar, R. N. Marigoudar, Comparative study of cutting force development during the machining of un-hybridized and hybridized ZA43 based metal matrix composites, Journal of the Mechanical Behavior of Materials, 28(1) (2019) 146-152. https://doi.org/10.1515/jmbm-2019-0016.
  • [43] A. Mahamani, Machinability study of Al-5Cu-TiB 2 in-situ metal matrix composites fabricated by flux-assisted synthesis, Journal of Minerals and Materials Characterization and Engineering, 10(13) (2011) 1243-1254.
  • [44] M. Aydın, Ti6Al4V Alaşımının ortogonal tornalanmasında ilerleme hızının kesme kuvveti ve talaş morfolojisi üzerindeki etkilerinin sonlu elemanlar analizi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 12(2) (2024) 567-576. https://doi.org/10.29109/gujsc.1420233.
  • [45] C. Yao, Z. Zhou, J. Zhang, D. Wu, L. Tan, Experimental study on cutting force of face-turning Inconel718 with ceramic tools and carbide tools, Advances in Mechanical Engineering, 9(7) (2017) 9. https://doi.org/10.1177/1687814017716620.
  • [46] J. G. Lima, R. F. Avila, A. M. Abrao, M. Faustino, J. P. Davim, Hard turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel, Journal of Materials Processing Technology, 169(3) (2005) 388-395. https://doi.org/10.1016/j.jmatprotec.2005.04.082.
  • [47] H. Bouchelaghem, M. A. Yallese, T. Mabrouki, A. Amirat, J. F. Rigal, Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3), Machining Science and Technology, 14(4) (2010) 471-501. https://doi.org/10.1080/10910344.2010.533621.
  • [48] K. Kamdani, I. Ashaary, S. Hassan, M. A. Lajis, The effect of cutting force and tool wear in milling INCONEL 718. in Journal of Physics: Conference Series, (2019) 1-6.
  • [49] E. A. Rahim, H. Sasahara, Surface integrity when drilling nickel-based superalloy under MQL suppl, Key Engineering Materials, 443 (2010) 365-370. https://doi.org/10.4028/www.scientific.net/KEM.443.365.
  • [50] A. Taşlıyan, M. Acarer, U. Şeker, H. Gökkaya, B. Demir, Inconel 718 Süper Alaşiminin İşlenmesinde Kesme Parameterelerinin Kesme Kuvveti Üzerindeki Etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22(1) (2007) 1-5.
  • [51] A. Ebrahimi, M. M. Moshksar, Evaluation of machinability in turning of microalloyed and quenched-tempered steels: Tool wear, statistical analysis, chip morphology, Journal of materials processing technology, 209(2) (2009) 910-921. https://doi.org/10.1016/j.jmatprotec.2008.02.067.
  • [52] K. Shi, D. Zhang, J. Ren, C. Yao, X. Huang, Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool, Advances in Mechanical Engineering, 8(1) (2016). https://doi.org/10.1177/1687814016628392.
  • [53] C. Kalyan, G. L. Samuel, Cutting mode analysis in high speed finish turning of AlMgSi alloy using edge chamfered PCD tools, Journal of Materials Processing Technology, 216 (2015) 146-159. https://doi.org/10.1016/j.jmatprotec.2014.09.003.
  • [54] A. Ercetin, K. Aslantaş, Ö. Özgün, M. Perçin, M. P. G. Chandrashekarappa, Optimization of machining parameters to minimize cutting forces and surface roughness in micro-milling of Mg13Sn alloy, Micromachines, 14(8) (2023) 1590. https://doi.org/10.3390/mi14081590.
  • [55] A. H. Tazehkandi, F. Pilehvarian, B. Davoodi, Experimental investigation on removing cutting fluid from turning of Inconel 725 with coated carbide tools, Journal of Cleaner Production, 80 (2014) 271-281. https://doi.org/10.1016/j.jclepro.2014.05.098.
  • [56] A. H. Tazehkandi, M. Shabgard, G. Kiani, F. Pilehvarian, Investigation of the influences of polycrystalline cubic boron nitride (PCBN) tool on the reduction of cutting fluid consumption and increase of machining parameters range in turning Inconel 783 using spray mode of cutting fluid with compressed air, Journal of Cleaner Production, 135 (2016)1637-1649. https://doi.org/10.1016/j.jclepro.2015.12.102.
  • [57] B. Özlü, Investigation of the effect of cutting parameters on cutting force, surface roughness and chip shape in turning of Sleipner cold work tool steel, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3) (2021) 1241-1251. https://doi.org/10.17341/gazimmfd.668169.
  • [58] I. Ciftci, Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools, Tribology international, 39(6) (2006) 565-569. https://doi.org/10.1016/j.triboint.2005.05.005.
  • [59] K. Kadirgama, K. A. Abou-El-Hossein, M. M. Noor, K. V. Sharma, B. Mohammad, Tool life and wear mechanism when machining Hastelloy C-22HS, Wear, 270(3-4) (2011) 258-268. https://doi.org/10.1016/j.wear.2010.10.067.
  • [60] M. Sima, T. Özel, Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V, International Journal of Machine Tools and Manufacture, 50(11) (2010) 943-960. https://doi.org/10.1016/j.ijmachtools.2010.08.004.
  • [61] S. E. Bernard, R. Selvaganesh, G. Khoshick, D. S. Raj, A novel contact area based analysis to study the thermo-mechanical effect of cutting edge radius using numerical and multi-sensor experimental investigation in turning, Journal of Materials Processing Technology, 293 (2021) 117085. https://doi.org/10.1016/j.jmatprotec.2021.117085.
  • [62] M. Wagih, M. A. Hassan, H. El-Hofy, J. Yan, I. Maher, Effects of process parameters on cutting forces, material removal rate, and specific energy in trochoidal milling, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(7) (2024) 2745-2757. https://doi.org/10.1177/09544062231196991.
  • [63] A. V. Muthusamy Subramanian, M. D. G. Nachimuthu, V. Cinnasamy, Assessment of cutting force and surface roughness in LM6/SiCp using response surface methodology, Journal of applied research and technology, 15(3) (2017) 283-296. https://doi.org/10.1016/j.jart.2017.01.013.
  • [64] S. Vijarangan, D. A. Budan, S. Arunachalam, T. Page, Effect of Fibre Position And Proportion On The Machinability Of GFRP Composites-An FEA And Merchant's Model, i-Manager's Journal on Future Engineering and Technology, 5(1) (2009) 33-43.
  • [65] Z. I. Korka, C. O. Micloşină, V. Cojocaru, An experimental study of the cutting forces in metal turning, Analele Universităłıi “Eftımie Murgu” Reşiła Anul XX, (2) (2013) 25-32.
  • [66] P. Moradpour, F. Scholz, K. Doosthoseini, A. Tarmian, Measurement of wood cutting forces during bandsawing using piezoelectric dynamometer. Drv. Ind, 67 (2016) 79-84.
  • [67] H. Gökkaya, AA5052 Alaşiminin işlenmesinde işleme parametrelerinin kesme kuvveti ve yüzey pürüzlülüğüne etkisinin deneysel olarak incelenmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(3) (2011) 295-301.
  • [68] A. S. Shouckry, The effect of cutting conditions on dimensional accuracy, Wear, 80(2) (1982) 197-205. https://doi.org/10.1016/0043-1648(82)90217-4.
  • [69] E. Usui, T. Shirakashi, T. Kitagawa, Analytical prediction of cutting tool wear, Wear, 100(1-3) (1984) 129-151. https://doi.org/10.1016/0043-1648(84)90010-3.
  • [70] G. Byrne, Thermoelectric signal characteristics and average interfacial temperatures in the machining of metals under geometrically defined conditions, International Journal of Machine Tools and Manufacture, 27(2) 1987 215-224. https://doi.org/10.1016/S0890-6955(87)80051-2.
  • [71] P. D. Muraka, G. Barrow, S. Hinduja, Influence of the process variables on the temperature distribution in orthogonal machining using the finite element method, International Journal of Mechanical Sciences, 21(8) (1979) 445-456. https://doi.org/10.1016/0020-7403(79)90007-9.
  • [72] A. Uysal, Effects of cutting parameters on drilling performance of carbon black–reinforced polymer composite, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(7) (2018) 1133-1142. https://doi.org/10.1177/0954405416662084.
  • [73] U. Çaydaş, M. Çelik, AA 7075-T6 alaşımının delinmesinde kesme parametrelerinin yüzey pürüzlülüğü, takım sıcaklığı ve ilerleme kuvvetine etkilerinin araştırılması, Politeknik Dergisi, 20(2) (2017) 419-425.
  • [74] A. Hosokawa, K. Kosugi, T. Ueda, Turning characteristics of titanium alloy Ti-6Al-4V with high-pressure cutting fluid, CIRP Annals, 71(1) (2022) 81-84. https://doi.org/10.1016/j.cirp.2022.04.064.
  • [75] R. Kumar, A. K. Sahoo, K. Satyanarayana, G. Rao, Some studies on cutting force and temperature in machining Ti-6Al-4V alloy using regression analysis and ANOVA, Int J Ind Eng Comput, 4(3) (2013) 427-436. https://doi.org/ 10.5267/j.ijiec.2013.03.002.
  • [76] H. M. Mohammad, R. H. Ibrahim, Effect Of Cutting Parameters On Surface Roughness And Cutting Tool Temperature In Turning AISI 1045 Steel, University of Thi-Qar Journal for Engineering Sciences, 8(2) (2017) 127-137.
  • [77] J. Rodríguez, P. Muñoz-Escalona, Z. Cassier, Influence of cutting parameters and material properties on cutting temperature when turning stainless steel, Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 26(1) (2011) 71-80.
  • [78] I. Espinoza-Torres, I. Martínez-Ramírez, J. M. Sierra-Hernández, D. Jauregui-Vazquez, M. E. Gutiérrez-Rivera, F. D. J. T. D. Carmen, T. Lozano-Hernández, Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry, Sensors, 23(21) (2023) 8968. https://doi.org/10.3390/s23218968.
  • [79] E. Abdelnasser, A. Barakat, S. Elsanabary, A. Nassef, A. Elkaseer, Precision hard turning of Ti6Al4V using polycrystalline diamond inserts: surface quality, cutting temperature and productivity in conventional and high-speed machining, Materials, 13(24) (2020) 5677. https://doi.org/10.3390/ma13245677.
  • [80] M. Soori, B. Arezoo, Effect of cutting parameters on tool life and cutting temperature in milling of AISI 1038 carbon steel, Journal of New Technology and Materials, 13 (2023) 33-48. https://hal.science/hal-04111841v1.
  • [81] H. B. He, H. Y. Li, J. Yang, X. Y. Zhang, Q. B. Yue, X. Jiang, S. Lyu, A study on major factors influencing dry cutting temperature of AISI 304 stainless steel, International Journal of Precision Engineering and Manufacturing, 18 (2017) 1387-1392. https://doi.org/10.1007/s12541-017-0165-6.
  • [82] S. M. Lubis, S. Darmawan'Adianto. Effect of cutting speed on temperature cutting tools and surface roughness of AISI 4340 steel, in IOP Conference Series: Materials Science and Engineering, (2019) 012053. https://doi.org/ 10.1088/1757-899X/508/1/012053.
  • [83] D. Liu, Y. Zhang, M. Luo, D. Zhang, Investigation of tool wear and chip morphology in dry trochoidal milling of titanium alloy Ti–6Al–4V, Materials, 12(12) (2019) 1937. https://doi.org/10.3390/ma12121937.
  • [84] K. Yang, Y. Liang, K. Zheng, Q. Bai, W. Chen, Tool edge radius effect on cutting temperature in micro-end-milling process, The International Journal of Advanced Manufacturing Technology, 52 (2011) 905-912. https://doi.org/10.1007/s00170-010-2795-z.
  • [85] B. Akın, AISI 316L paslanmaz çeliklerin tornalanmasında yüzey pürüzlülüğünün incelenmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 2014.
  • [86] D. Bajić, B. Lela, D. Živković, Modeling of machined surface roughness and optimization of cutting parameters in face milling, Metalurgija, 47(4) (2008) 331-334.
  • [87] Ü. Karagöz, CNC ile işlemede ahşap malzemenin yüzey kalitesini etkileyen faktörler, Kastamonu University Journal of Forestry Faculty, 11(1) (2011) 18-26.
  • [88] M. Özdemir, Yüzey pürüzlülüğü üzerinde kesme parametrelerinin etki oranlarının Yüzey Yanıt Yöntemi kullanarak Analizi, Gazi University Journal of Science Part C: Design and Technology, 7(3) (2019) 639-648. http://dergipark.gov.tr/gujsc.
  • [89] B. Karayel, M. Nalbant, Ç4140 Malzemesinin Tornalamasinda İlerleme, Kesme Hizi Ve Kesici Takimin Yüzey Pürüzlülüğü, Takim Ömrü Ve Aşinmaya Etkileri, Makine Teknolojileri Elektronik Dergisi, 11(3) (2014) 11-26.
  • [90] N. Kavak, AISI 1040 çeliğinin kuru tornalanmasında yüzey pürüzlülüğünün incelenmesi, Karaelmas Fen ve Mühendislik Dergisi, 2(2) (2012) 24-29.
  • [91] L. Uğur, 7075 Alüminyum Malzemesinin Frezelenmesinde Yüzey Pürüzlülüğünün Yanıt Yüzey Metodu İle Optimizasyonu, Erzincan University Journal of Science and Technology, 12(1) (2019) 326-335.
  • [92] H. Demirpolat, K. Kaya, R. Binali, M. Kuntoğlu, AISI 52100 Rulman Çeliğinin Tornalanmasında İşleme Parametrelerinin Yüzey Pürüzlülüğü, Kesme Sıcaklığı ve Kesme Kuvveti Üzerindeki Etkilerinin İncelenmesi, İmalat Teknolojileri ve Uygulamaları, 4(3) (2023) 179-189. https://doi.org/10.52795/mateca.1393430.
  • [93] M. Nalbant, H. Gökkaya, G. Sur, Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials & design, 28(4) (2007) 1379-1385. https://doi.org/10.1016/j.matdes.2006.01.008.
  • [94] X. Wang, C. X. Feng, Development of empirical models for surface roughness prediction in finish turning, The International Journal of Advanced Manufacturing Technology, 20 (2002) 348-356. https://doi.org/10.1007/s001700200162.
  • [95] A. Hasçelik, K. Aslantaş, Mikro Tornalama İşleminde Kesici Takım Burun Yarıçapının Kesme Kuvvetlerine Etkisi, Journal of Materials and Mechatronics: A, 2(1) (2021) 13-25.
  • [96] R. Binali, H. Demirpolat, M. Kuntoğlu, K. Kaya, Exploring the Tribological Performance of Mist Lubrication Technique on Machinability Characteristics During Turning S235JR Steel, Manufacturing Technologies and Applications, 5(3) (2024) 276-283. https://doi.org/10.52795/mateca.1541090.
  • [97] X. Chuangwen, D. Jianming, C. Yuzhen, L. Huaiyuan, S. Zhicheng, X. Jing, The relationships between cutting parameters, tool wear, cutting force and vibration, Advances in Mechanical Engineering, 10(1) (2018). https://doi.org/10.1177/1687814017750434.
  • [98] M. Özdemir, K. Ercan, B. Büyüker, H. K. Akyıldız, Analysis of the effect of tool nose radius, feed rate, and cutting depth parameters on surface roughness and cutting force in CNC lathe machining of 36CrNiMo4 alloy steel, Gazi University Journal of Science Part A: Engineering and Innovation, 8(2) (2021) 308-317.
  • [99] M. Kuruc, T. Vopát, J. Peterka, M. Necpal, V. Šimna, J. Milde, F. Jurina, The influence of cutting parameters on plastic deformation and chip compression during the turning of C45 medium carbon steel and 62SiMnCr4 tool steel, Materials, 15(2) (2022) 585. https://doi.org/10.3390/ma15020585.
  • [100] J. O'Hara, F. Fang, Advances in micro cutting tool design and fabrication, International journal of Extreme Manufacturing, 1(3) (2019) 032003. https://doi.org/10.1088/2631-7990/ab3e7f.
Toplam 100 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İmalat Süreçleri ve Teknolojileri, Yapay Zeka (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Kübra Kaya 0000-0002-9971-8826

Tayfun Çetin 0009-0003-3089-0489

Rüstem Binali 0000-0003-0775-3817

Hakan Gündoğmuş 0000-0003-4118-0207

Proje Numarası FM24BAP8
Erken Görünüm Tarihi 26 Ağustos 2025
Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 21 Şubat 2025
Kabul Tarihi 3 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kaya, K., Çetin, T., Binali, R., Gündoğmuş, H. (2025). An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning. Manufacturing Technologies and Applications, 6(2), 164-183. https://doi.org/10.52795/mateca.1644170
AMA Kaya K, Çetin T, Binali R, Gündoğmuş H. An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning. MATECA. Ağustos 2025;6(2):164-183. doi:10.52795/mateca.1644170
Chicago Kaya, Kübra, Tayfun Çetin, Rüstem Binali, ve Hakan Gündoğmuş. “An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning”. Manufacturing Technologies and Applications 6, sy. 2 (Ağustos 2025): 164-83. https://doi.org/10.52795/mateca.1644170.
EndNote Kaya K, Çetin T, Binali R, Gündoğmuş H (01 Ağustos 2025) An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning. Manufacturing Technologies and Applications 6 2 164–183.
IEEE K. Kaya, T. Çetin, R. Binali, ve H. Gündoğmuş, “An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning”, MATECA, c. 6, sy. 2, ss. 164–183, 2025, doi: 10.52795/mateca.1644170.
ISNAD Kaya, Kübra vd. “An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning”. Manufacturing Technologies and Applications 6/2 (Ağustos2025), 164-183. https://doi.org/10.52795/mateca.1644170.
JAMA Kaya K, Çetin T, Binali R, Gündoğmuş H. An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning. MATECA. 2025;6:164–183.
MLA Kaya, Kübra vd. “An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning”. Manufacturing Technologies and Applications, c. 6, sy. 2, 2025, ss. 164-83, doi:10.52795/mateca.1644170.
Vancouver Kaya K, Çetin T, Binali R, Gündoğmuş H. An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning. MATECA. 2025;6(2):164-83.