Research Article
BibTex RIS Cite

Year 2018, Volume: 6 Issue: 1, 37 - 42, 27.04.2018
https://doi.org/10.36753/mathenot.421754
https://izlik.org/JA89XU34ST

Abstract

References

  • [1] https://en.wikipedia.org/wiki/Square_root_of_a_matrix.
  • [2] https://ro.wikipedia.org/wiki/Positive-definite_matrix.
  • [3] Anghel, N., Square roots of real 2 × 2 matrices, Gaz. Mat. Ser. B 118 (2013), no. 11, 489-491.
  • [4] Anghel, N., Square roots of real 3x3 matrices vs. quartic polynomials with real zero, An. Stiin¸t. Univ. “Ovidius” Constanta, Ser. Mat. 25 (2017), no. 3, 45-58.
  • [5] Crasmareanu, M., A new method to obtain Pythagorean triple preserving matrices, Missouri J. Math. Sci. 14 (2002), no. 3, 149-158. MR 1929067(2003h:15041), Zbl 1032.15007.
  • [6] M. Crasmareanu, M. and Hre¸tcanu, Cristina-Elena, Golden differential geometry, Chaos, Solitons & Fractals 38 (2008), no. 5, 1229-1238. MR 2456523(2009k:53059).
  • [7] Reyes, E., Cruceanu, V. and Gadea, P. M., Structures of electromagnetic type on vector bundle, J. Phys. A, Math. Gen. 32 (1999), no. 20, 3805-3814. Zbl 0969.53041.
  • [8] Stakhov A. and Aranson S., The “golden” non-Euclidean geometry. Hilbert’s fourth problem, “golden” dynamical systems, and the fine-structure constant. With the assistance of Scott Olsen. Series on Analysis, Applications and Computation 7. Hackensack, NJ: World Scientific, 2017. Zbl 1351.51002.

New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications

Year 2018, Volume: 6 Issue: 1, 37 - 42, 27.04.2018
https://doi.org/10.36753/mathenot.421754
https://izlik.org/JA89XU34ST

Abstract

We present a new study on the square roots of real 2 × 2 matrices with a special view towards examples,
some of them inspired by geometry. 

References

  • [1] https://en.wikipedia.org/wiki/Square_root_of_a_matrix.
  • [2] https://ro.wikipedia.org/wiki/Positive-definite_matrix.
  • [3] Anghel, N., Square roots of real 2 × 2 matrices, Gaz. Mat. Ser. B 118 (2013), no. 11, 489-491.
  • [4] Anghel, N., Square roots of real 3x3 matrices vs. quartic polynomials with real zero, An. Stiin¸t. Univ. “Ovidius” Constanta, Ser. Mat. 25 (2017), no. 3, 45-58.
  • [5] Crasmareanu, M., A new method to obtain Pythagorean triple preserving matrices, Missouri J. Math. Sci. 14 (2002), no. 3, 149-158. MR 1929067(2003h:15041), Zbl 1032.15007.
  • [6] M. Crasmareanu, M. and Hre¸tcanu, Cristina-Elena, Golden differential geometry, Chaos, Solitons & Fractals 38 (2008), no. 5, 1229-1238. MR 2456523(2009k:53059).
  • [7] Reyes, E., Cruceanu, V. and Gadea, P. M., Structures of electromagnetic type on vector bundle, J. Phys. A, Math. Gen. 32 (1999), no. 20, 3805-3814. Zbl 0969.53041.
  • [8] Stakhov A. and Aranson S., The “golden” non-Euclidean geometry. Hilbert’s fourth problem, “golden” dynamical systems, and the fine-structure constant. With the assistance of Scott Olsen. Series on Analysis, Applications and Computation 7. Hackensack, NJ: World Scientific, 2017. Zbl 1351.51002.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mircea Crasmareanu

Andrei Plugariu

Submission Date November 9, 2017
Publication Date April 27, 2018
DOI https://doi.org/10.36753/mathenot.421754
IZ https://izlik.org/JA89XU34ST
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Crasmareanu, M., & Plugariu, A. (2018). New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Mathematical Sciences and Applications E-Notes, 6(1), 37-42. https://doi.org/10.36753/mathenot.421754
AMA 1.Crasmareanu M, Plugariu A. New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Math. Sci. Appl. E-Notes. 2018;6(1):37-42. doi:10.36753/mathenot.421754
Chicago Crasmareanu, Mircea, and Andrei Plugariu. 2018. “New Aspects on Square Roots of a Real 2 X 2 Matrix and Their Geometric Applications”. Mathematical Sciences and Applications E-Notes 6 (1): 37-42. https://doi.org/10.36753/mathenot.421754.
EndNote Crasmareanu M, Plugariu A (April 1, 2018) New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Mathematical Sciences and Applications E-Notes 6 1 37–42.
IEEE [1]M. Crasmareanu and A. Plugariu, “New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications”, Math. Sci. Appl. E-Notes, vol. 6, no. 1, pp. 37–42, Apr. 2018, doi: 10.36753/mathenot.421754.
ISNAD Crasmareanu, Mircea - Plugariu, Andrei. “New Aspects on Square Roots of a Real 2 X 2 Matrix and Their Geometric Applications”. Mathematical Sciences and Applications E-Notes 6/1 (April 1, 2018): 37-42. https://doi.org/10.36753/mathenot.421754.
JAMA 1.Crasmareanu M, Plugariu A. New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Math. Sci. Appl. E-Notes. 2018;6:37–42.
MLA Crasmareanu, Mircea, and Andrei Plugariu. “New Aspects on Square Roots of a Real 2 X 2 Matrix and Their Geometric Applications”. Mathematical Sciences and Applications E-Notes, vol. 6, no. 1, Apr. 2018, pp. 37-42, doi:10.36753/mathenot.421754.
Vancouver 1.Crasmareanu M, Plugariu A. New Aspects on Square Roots of a Real 2 x 2 Matrix and Their Geometric Applications. Math. Sci. Appl. E-Notes [Internet]. 2018 Apr. 1;6(1):37-42. Available from: https://izlik.org/JA89XU34ST

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.