Research Article
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 1, 64 - 69, 30.04.2017
https://doi.org/10.36753/mathenot.421700

Abstract

References

  • [1] Alzer, H., Inequalities for Euler’s gamma function, Forum Math., 20(6)(2008), 955–1004.
  • [2] Anderson, G.D. and Qiu, S.-L., A monotonicity property of the gamma function, Proc. Amer. Math. Soc., 125(1997), 3355–3362.
  • [3] Anderson, G.D., Vamanamurthy, M. K. and Vuorinen, M., Special functions of quasiconformal theory, Exposition. Math., 7(1989), 97-136.
  • [4] Batir, N., Inequalities for the gamma function, Arch. Math., 91(2008), 554–563.
  • [5] Chaudhry, M.A. and Zubair, S.M., Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55(1994), 99–124.
  • [6] Chaudhry, M.A., Qadir, A., Rafique, M. and Zubair, S.M., Extension of Euler’s beta function, J. Comput. Appl. Math., 78(1997), 19–32.
  • [7] Chaudhry, M.A. and Zubair, S.M., On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms, J. Comput. Appl. Math., 59(1995), 253–284.
  • [8] Chaudhry, M.A. and Zubair, S.M., Extended incomplete gamma functions with applications, J. Math. Anal. Appl., 274(2002), 725–745.
  • [9] Conway, J.H. and Guy, R.K., The book of numbers, Springer-Verlag, New York, 1996.
  • [10] Dil, A. and Mezö, I., A symmetric algorithm hyperharmonic and Fibonacci numbers, Appl. Math. Comput., 206(2008), 942–951.
  • [11] Graham, R.L., Knuth, D.E. and Patashnik, O., Concrete mathematics, Addison Wesley, 1993.
  • [12] Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1958.

On the hyper-gamma function

Year 2017, Volume: 5 Issue: 1, 64 - 69, 30.04.2017
https://doi.org/10.36753/mathenot.421700

Abstract

In this paper, we introduce a new generalization for the gamma function as hyper-gamma function. Some
identities and integral representation are obtained for the this new generalization.

References

  • [1] Alzer, H., Inequalities for Euler’s gamma function, Forum Math., 20(6)(2008), 955–1004.
  • [2] Anderson, G.D. and Qiu, S.-L., A monotonicity property of the gamma function, Proc. Amer. Math. Soc., 125(1997), 3355–3362.
  • [3] Anderson, G.D., Vamanamurthy, M. K. and Vuorinen, M., Special functions of quasiconformal theory, Exposition. Math., 7(1989), 97-136.
  • [4] Batir, N., Inequalities for the gamma function, Arch. Math., 91(2008), 554–563.
  • [5] Chaudhry, M.A. and Zubair, S.M., Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55(1994), 99–124.
  • [6] Chaudhry, M.A., Qadir, A., Rafique, M. and Zubair, S.M., Extension of Euler’s beta function, J. Comput. Appl. Math., 78(1997), 19–32.
  • [7] Chaudhry, M.A. and Zubair, S.M., On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms, J. Comput. Appl. Math., 59(1995), 253–284.
  • [8] Chaudhry, M.A. and Zubair, S.M., Extended incomplete gamma functions with applications, J. Math. Anal. Appl., 274(2002), 725–745.
  • [9] Conway, J.H. and Guy, R.K., The book of numbers, Springer-Verlag, New York, 1996.
  • [10] Dil, A. and Mezö, I., A symmetric algorithm hyperharmonic and Fibonacci numbers, Appl. Math. Comput., 206(2008), 942–951.
  • [11] Graham, R.L., Knuth, D.E. and Patashnik, O., Concrete mathematics, Addison Wesley, 1993.
  • [12] Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1958.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa Bahşi

Süleyman Solak

Publication Date April 30, 2017
Submission Date February 18, 2016
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Bahşi, M., & Solak, S. (2017). On the hyper-gamma function. Mathematical Sciences and Applications E-Notes, 5(1), 64-69. https://doi.org/10.36753/mathenot.421700
AMA Bahşi M, Solak S. On the hyper-gamma function. Math. Sci. Appl. E-Notes. April 2017;5(1):64-69. doi:10.36753/mathenot.421700
Chicago Bahşi, Mustafa, and Süleyman Solak. “On the Hyper-Gamma Function”. Mathematical Sciences and Applications E-Notes 5, no. 1 (April 2017): 64-69. https://doi.org/10.36753/mathenot.421700.
EndNote Bahşi M, Solak S (April 1, 2017) On the hyper-gamma function. Mathematical Sciences and Applications E-Notes 5 1 64–69.
IEEE M. Bahşi and S. Solak, “On the hyper-gamma function”, Math. Sci. Appl. E-Notes, vol. 5, no. 1, pp. 64–69, 2017, doi: 10.36753/mathenot.421700.
ISNAD Bahşi, Mustafa - Solak, Süleyman. “On the Hyper-Gamma Function”. Mathematical Sciences and Applications E-Notes 5/1 (April 2017), 64-69. https://doi.org/10.36753/mathenot.421700.
JAMA Bahşi M, Solak S. On the hyper-gamma function. Math. Sci. Appl. E-Notes. 2017;5:64–69.
MLA Bahşi, Mustafa and Süleyman Solak. “On the Hyper-Gamma Function”. Mathematical Sciences and Applications E-Notes, vol. 5, no. 1, 2017, pp. 64-69, doi:10.36753/mathenot.421700.
Vancouver Bahşi M, Solak S. On the hyper-gamma function. Math. Sci. Appl. E-Notes. 2017;5(1):64-9.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.