[1] Alzer, H., Inequalities for Euler’s gamma function, Forum Math., 20(6)(2008), 955–1004.
[2] Anderson, G.D. and Qiu, S.-L., A monotonicity property of the gamma function, Proc. Amer. Math. Soc.,
125(1997), 3355–3362.
[3] Anderson, G.D., Vamanamurthy, M. K. and Vuorinen, M., Special functions of quasiconformal theory, Exposition.
Math., 7(1989), 97-136.
[4] Batir, N., Inequalities for the gamma function, Arch. Math., 91(2008), 554–563.
[5] Chaudhry, M.A. and Zubair, S.M., Generalized incomplete gamma functions with applications, J. Comput.
Appl. Math., 55(1994), 99–124.
[6] Chaudhry, M.A., Qadir, A., Rafique, M. and Zubair, S.M., Extension of Euler’s beta function, J. Comput. Appl.
Math., 78(1997), 19–32.
[7] Chaudhry, M.A. and Zubair, S.M., On the decomposition of generalized incomplete gamma functions with
applications to Fourier transforms, J. Comput. Appl. Math., 59(1995), 253–284.
[8] Chaudhry, M.A. and Zubair, S.M., Extended incomplete gamma functions with applications, J. Math. Anal.
Appl., 274(2002), 725–745.
[9] Conway, J.H. and Guy, R.K., The book of numbers, Springer-Verlag, New York, 1996.
[10] Dil, A. and Mezö, I., A symmetric algorithm hyperharmonic and Fibonacci numbers, Appl. Math. Comput.,
206(2008), 942–951.
In this paper, we introduce a new generalization for the gamma function as hyper-gamma function. Some
identities and integral representation are obtained for the this new generalization.
[1] Alzer, H., Inequalities for Euler’s gamma function, Forum Math., 20(6)(2008), 955–1004.
[2] Anderson, G.D. and Qiu, S.-L., A monotonicity property of the gamma function, Proc. Amer. Math. Soc.,
125(1997), 3355–3362.
[3] Anderson, G.D., Vamanamurthy, M. K. and Vuorinen, M., Special functions of quasiconformal theory, Exposition.
Math., 7(1989), 97-136.
[4] Batir, N., Inequalities for the gamma function, Arch. Math., 91(2008), 554–563.
[5] Chaudhry, M.A. and Zubair, S.M., Generalized incomplete gamma functions with applications, J. Comput.
Appl. Math., 55(1994), 99–124.
[6] Chaudhry, M.A., Qadir, A., Rafique, M. and Zubair, S.M., Extension of Euler’s beta function, J. Comput. Appl.
Math., 78(1997), 19–32.
[7] Chaudhry, M.A. and Zubair, S.M., On the decomposition of generalized incomplete gamma functions with
applications to Fourier transforms, J. Comput. Appl. Math., 59(1995), 253–284.
[8] Chaudhry, M.A. and Zubair, S.M., Extended incomplete gamma functions with applications, J. Math. Anal.
Appl., 274(2002), 725–745.
[9] Conway, J.H. and Guy, R.K., The book of numbers, Springer-Verlag, New York, 1996.
[10] Dil, A. and Mezö, I., A symmetric algorithm hyperharmonic and Fibonacci numbers, Appl. Math. Comput.,
206(2008), 942–951.
Bahşi, M., & Solak, S. (2017). On the hyper-gamma function. Mathematical Sciences and Applications E-Notes, 5(1), 64-69. https://doi.org/10.36753/mathenot.421700
AMA
Bahşi M, Solak S. On the hyper-gamma function. Math. Sci. Appl. E-Notes. April 2017;5(1):64-69. doi:10.36753/mathenot.421700
Chicago
Bahşi, Mustafa, and Süleyman Solak. “On the Hyper-Gamma Function”. Mathematical Sciences and Applications E-Notes 5, no. 1 (April 2017): 64-69. https://doi.org/10.36753/mathenot.421700.
EndNote
Bahşi M, Solak S (April 1, 2017) On the hyper-gamma function. Mathematical Sciences and Applications E-Notes 5 1 64–69.
IEEE
M. Bahşi and S. Solak, “On the hyper-gamma function”, Math. Sci. Appl. E-Notes, vol. 5, no. 1, pp. 64–69, 2017, doi: 10.36753/mathenot.421700.
ISNAD
Bahşi, Mustafa - Solak, Süleyman. “On the Hyper-Gamma Function”. Mathematical Sciences and Applications E-Notes 5/1 (April 2017), 64-69. https://doi.org/10.36753/mathenot.421700.
JAMA
Bahşi M, Solak S. On the hyper-gamma function. Math. Sci. Appl. E-Notes. 2017;5:64–69.
MLA
Bahşi, Mustafa and Süleyman Solak. “On the Hyper-Gamma Function”. Mathematical Sciences and Applications E-Notes, vol. 5, no. 1, 2017, pp. 64-69, doi:10.36753/mathenot.421700.
Vancouver
Bahşi M, Solak S. On the hyper-gamma function. Math. Sci. Appl. E-Notes. 2017;5(1):64-9.