[1] R. Binthiya, B. Sarasija, A note on strongly quotient graphs with Harary energyand Harary Estrada index, App. Math. E-Notes . 14, (2014), 97-106.
[2] Z. Cui, B. Liu, On Harary matrix, Harary index and Harary energy, MATCHCommun. Math. Comput. Chem. 68, (2012), 815-823.
[3] D. Cvetkovic, P. Rowlinson, S. Simic, An Introduction to the Theory of GraphSpectra, Cambridge Univ. Press, Cambridge, 2010.
[4] K. C. Das, Maximum eigenvalues of the reciprocal distance matrix,J. Math.Chem. 47, (2010), 21-28.
[5] J. A. De la Pe~na, I. Gutman, J. Rada, Estimating the Estrada Index, Lin.Algebra Appl. 427, (2007) 70-76.
[6] H. Deng, S. Radenkovic, I. Gutman, The Estrada Index, in: D. Cvetkovic, I.Gutman (Eds.), Applications of Graph Spectra, Math. Inst., Belgrade, 2009,123-140.
[7] M. V. Diudea, O. Ivanciuc, S. Nikolic, N. Trinajstic, Matrices of reciprocaldistance, polynomials and derived numbers, MATCH Commun. Math. Comput.Chem. 35, (1997), 41-64.
[8] A. D. Gungor, A. S. Cevik, On the Harary energy and Harary Estrada indexof a graph, MATCH Commun. Math. Comput. Chem. 64, (2010), 280-296.
[9] I. Gutman, M. Milun, N. Trinajstic, Comment on the paper: Properties of thelatent roots of a matrix. Estimation of -electron energies by B. J. McClelland,J. Chem. Phys. 59 (1973), 2772-2774.
[10] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry,Springer, Berlin, 1986.
[11] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A.Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics andApplications, Springer-Verlag, Berlin, (2001), 196-211.
[12] F. Huang, X. Li, S. Wang, On graphs with maximum Harary spectral radius,arXiv:1411.6832v1 [math.CO], 25 Nov 2014.
[13] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Design of topological indices. Part4. Reciprocal distance matrix, related local vertex invariants and topologicalindices,J. Math. Chem. 12, (1993), 309-318.
[14] N. Jafari. Rad, A. Jahanbani, D. A. Mojdeh, Tetracyclic Graphs with MaximalEstrada Index, Discrete Mathematics, Algorithms and Applications, 09 (2017),1750041.
[15] N. Jafari. Rad, A. Jahanbani, R. Hasni, Pentacyclic Graphs with MaximalEstrada Index, Ars Combin,133 (2017), 133-145.
[16] N. Jafari. Rad, A. Jahanbani, I. Gutman, Zagreb Energy and Zagreb EstradaIndex of Graphs,MATCH Commun. Math. Comput. Chem, 79 (2018), 371-386.
[17] A. Jahanbani, Upper bounds for the energy of graphs, MATCH Commun.Math. Comput. Chem. pp. 275-286.
[18] A. Jahanbani, Some new lower bounds for energy of graphs, Applied Mathe-matics and Computation, 296 ( 2017), 233-238.
[19] A. Jahanbani, Lower Bounds for the Energy of Graphs, AKCE InternationalJournal of Graphs and Combinatorics,15 (2018) 88-96.
[20] D. Jenezic, A. Miliccevic, S. Nikolic, N. Trinajstic, Graph Theoretical Matricesin Chemistry, Univ. Kragujevac, Kragujevac, 2007.
[21] X. Li, Y. Shi, I. Gutman, Graph Energy,Springer, New York, 2012.
[22] A. M. Mercer, P. Mercer, Cahys interlace theorem and lower bounds for thespectral radius, Internat. J. Math. and Math. Sci. 23, No. 8 (2000) 563-566.
[23] O. Rojo R. Soto, H. Rojo, Bounds for the spectral radius and the largestsingular value, Computers Math. Applic. 36, (1998) 41-50.
[24] B. Zhou, N. Trinajstic, Maximum eigenvalues of the reciprocal distance matrixand the reverse Wiener matrix,Int. J. Quantum Chem. 108, (2008), 858-864.
[1] R. Binthiya, B. Sarasija, A note on strongly quotient graphs with Harary energyand Harary Estrada index, App. Math. E-Notes . 14, (2014), 97-106.
[2] Z. Cui, B. Liu, On Harary matrix, Harary index and Harary energy, MATCHCommun. Math. Comput. Chem. 68, (2012), 815-823.
[3] D. Cvetkovic, P. Rowlinson, S. Simic, An Introduction to the Theory of GraphSpectra, Cambridge Univ. Press, Cambridge, 2010.
[4] K. C. Das, Maximum eigenvalues of the reciprocal distance matrix,J. Math.Chem. 47, (2010), 21-28.
[5] J. A. De la Pe~na, I. Gutman, J. Rada, Estimating the Estrada Index, Lin.Algebra Appl. 427, (2007) 70-76.
[6] H. Deng, S. Radenkovic, I. Gutman, The Estrada Index, in: D. Cvetkovic, I.Gutman (Eds.), Applications of Graph Spectra, Math. Inst., Belgrade, 2009,123-140.
[7] M. V. Diudea, O. Ivanciuc, S. Nikolic, N. Trinajstic, Matrices of reciprocaldistance, polynomials and derived numbers, MATCH Commun. Math. Comput.Chem. 35, (1997), 41-64.
[8] A. D. Gungor, A. S. Cevik, On the Harary energy and Harary Estrada indexof a graph, MATCH Commun. Math. Comput. Chem. 64, (2010), 280-296.
[9] I. Gutman, M. Milun, N. Trinajstic, Comment on the paper: Properties of thelatent roots of a matrix. Estimation of -electron energies by B. J. McClelland,J. Chem. Phys. 59 (1973), 2772-2774.
[10] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry,Springer, Berlin, 1986.
[11] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A.Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics andApplications, Springer-Verlag, Berlin, (2001), 196-211.
[12] F. Huang, X. Li, S. Wang, On graphs with maximum Harary spectral radius,arXiv:1411.6832v1 [math.CO], 25 Nov 2014.
[13] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Design of topological indices. Part4. Reciprocal distance matrix, related local vertex invariants and topologicalindices,J. Math. Chem. 12, (1993), 309-318.
[14] N. Jafari. Rad, A. Jahanbani, D. A. Mojdeh, Tetracyclic Graphs with MaximalEstrada Index, Discrete Mathematics, Algorithms and Applications, 09 (2017),1750041.
[15] N. Jafari. Rad, A. Jahanbani, R. Hasni, Pentacyclic Graphs with MaximalEstrada Index, Ars Combin,133 (2017), 133-145.
[16] N. Jafari. Rad, A. Jahanbani, I. Gutman, Zagreb Energy and Zagreb EstradaIndex of Graphs,MATCH Commun. Math. Comput. Chem, 79 (2018), 371-386.
[17] A. Jahanbani, Upper bounds for the energy of graphs, MATCH Commun.Math. Comput. Chem. pp. 275-286.
[18] A. Jahanbani, Some new lower bounds for energy of graphs, Applied Mathe-matics and Computation, 296 ( 2017), 233-238.
[19] A. Jahanbani, Lower Bounds for the Energy of Graphs, AKCE InternationalJournal of Graphs and Combinatorics,15 (2018) 88-96.
[20] D. Jenezic, A. Miliccevic, S. Nikolic, N. Trinajstic, Graph Theoretical Matricesin Chemistry, Univ. Kragujevac, Kragujevac, 2007.
[21] X. Li, Y. Shi, I. Gutman, Graph Energy,Springer, New York, 2012.
[22] A. M. Mercer, P. Mercer, Cahys interlace theorem and lower bounds for thespectral radius, Internat. J. Math. and Math. Sci. 23, No. 8 (2000) 563-566.
[23] O. Rojo R. Soto, H. Rojo, Bounds for the spectral radius and the largestsingular value, Computers Math. Applic. 36, (1998) 41-50.
[24] B. Zhou, N. Trinajstic, Maximum eigenvalues of the reciprocal distance matrixand the reverse Wiener matrix,Int. J. Quantum Chem. 108, (2008), 858-864.