Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 49 - 60, 28.11.2022
https://doi.org/10.56193/matim.1094133

Öz

Kaynakça

  • [1] Vieira, L. C., Longo, M., & Mura, M. (2021). Are the European manufacturing and energy sectors on track for achieving net-zero emissions in 2050? An empirical analysis. Energy Policy, 156, 112464.
  • [2] Chaurey, S., Kalpande, S. D., Gupta, R. C., & Toke, L. K. (2021). A review on the identification of total productive maintenance critical success factors for effective implementation in the manufacturing sector. Journal of Quality in Maintenance Engineering.
  • [3] Jin, Z., Hewitt-Dundas, N., & Thompson, N. J. (2004). Innovativeness and performance: evidence from manufacturing sectors. Journal of Strategic Marketing, 12(4), 255-266.
  • [4] Terziovski, M. (2010). Innovation practice and its performance implications in small and medium enterprises (SMEs) in the manufacturing sector: a resource‐based view. Strategic management journal, 31(8), 892-902.
  • [5] Dewangan, D. K., Agrawal, R., & Sharma, V. (2015). Enablers for competitiveness of Indian manufacturing sector: an ISM-fuzzy MICMAC analysis. Procedia-Social and Behavioral Sciences, 189, 416-432.
  • [6] Bickauske, D., Simanaviciene, Z., Jakubavicius, A., Vilys, M., & Mykhalchyshyna, L. (2020). Analysis and perspectives of the level of enterprises digitalization (Lithuanian manufacturing sector case). Independent Journal of Management & Production, 11(9), 2291-2307.
  • [7] Yurdakul, M., & İç, Y. T. (2018). Development of a multi-level performance measurement model for manufacturing companies using a modified version of the fuzzy TOPSIS approach. Soft Computing, 22(22), 7491-7503.
  • [8] İç, Y. T., & Yurdakul, M. (2021). Development of a new trapezoidal fuzzy AHP-TOPSIS hybrid approach for manufacturing firm performance measurement. Granular Computing, 6(4), 915-929.
  • [9] Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191). Springer, Berlin, Heidelberg.

Orta ve Yüksek Teknoloji Ürünleri Üreten İmalat Sektörlerinin Son On Yıldaki Performansının Değerlendirilmesi

Yıl 2022, , 49 - 60, 28.11.2022
https://doi.org/10.56193/matim.1094133

Öz

Ekonomik gelişmelere paralel olarak imalat sektörlerinin gelişimi de sürmektedir. Türkiye ekonomisi son on yıllık süreçte özellikle ileri teknoloji ürünü ürünlerin üretimine odaklanarak, yüksek katma değerli ürün ihracatına yönelmektedir. Bu kapsamda imalat sektörleri düşük, orta ve ileri teknoloji üreten sektörler olarak gruplanmakta ve özellikle ileri teknoloji ürünleri üreten sektörler desteklenmeye çalışılmaktadır. Bu çalışmada son on yıllık süreçte Türkiye ekonomisinin makro göstergeleri kullanılarak özellikle orta ve ileri teknoloji üreten imalat sektörlerinin performans gelişimi analiz edilmiştir. Bu amaçla çok ölçütlü karar verme yöntemlerinden biri olan TOPSIS yöntemi kullanılmıştır. TOPSIS yöntemiyle alternatif imalat sektörleri makroekonomik göstergeler bazında farklı senaryolara göre sıralanmıştır.

Kaynakça

  • [1] Vieira, L. C., Longo, M., & Mura, M. (2021). Are the European manufacturing and energy sectors on track for achieving net-zero emissions in 2050? An empirical analysis. Energy Policy, 156, 112464.
  • [2] Chaurey, S., Kalpande, S. D., Gupta, R. C., & Toke, L. K. (2021). A review on the identification of total productive maintenance critical success factors for effective implementation in the manufacturing sector. Journal of Quality in Maintenance Engineering.
  • [3] Jin, Z., Hewitt-Dundas, N., & Thompson, N. J. (2004). Innovativeness and performance: evidence from manufacturing sectors. Journal of Strategic Marketing, 12(4), 255-266.
  • [4] Terziovski, M. (2010). Innovation practice and its performance implications in small and medium enterprises (SMEs) in the manufacturing sector: a resource‐based view. Strategic management journal, 31(8), 892-902.
  • [5] Dewangan, D. K., Agrawal, R., & Sharma, V. (2015). Enablers for competitiveness of Indian manufacturing sector: an ISM-fuzzy MICMAC analysis. Procedia-Social and Behavioral Sciences, 189, 416-432.
  • [6] Bickauske, D., Simanaviciene, Z., Jakubavicius, A., Vilys, M., & Mykhalchyshyna, L. (2020). Analysis and perspectives of the level of enterprises digitalization (Lithuanian manufacturing sector case). Independent Journal of Management & Production, 11(9), 2291-2307.
  • [7] Yurdakul, M., & İç, Y. T. (2018). Development of a multi-level performance measurement model for manufacturing companies using a modified version of the fuzzy TOPSIS approach. Soft Computing, 22(22), 7491-7503.
  • [8] İç, Y. T., & Yurdakul, M. (2021). Development of a new trapezoidal fuzzy AHP-TOPSIS hybrid approach for manufacturing firm performance measurement. Granular Computing, 6(4), 915-929.
  • [9] Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191). Springer, Berlin, Heidelberg.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma, Geliştirme ve Uygulama Makaleleri
Yazarlar

Yusuf Tansel İç 0000-0001-9274-7467

Yayımlanma Tarihi 28 Kasım 2022
Gönderilme Tarihi 27 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

Vancouver İç YT. Orta ve Yüksek Teknoloji Ürünleri Üreten İmalat Sektörlerinin Son On Yıldaki Performansının Değerlendirilmesi. MATİM. 2022;20(2):49-60.