Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Springback in Diaphragm Sheet Forming Process for 15-5PH Material Using Numerical and Experimental Design Methods

Yıl 2024, , 93 - 102, 29.11.2024
https://doi.org/10.56193/matim.1543433

Öz

Diaphragm sheet metal forming is a widely used forming method in aviation. In this process, the sheet metal is attached to the mold, placed in the form machine, and gas pressure is applied. The diaphragm, which swells under the influence of the gas, transmits the pressure to the sheet surface and enables the mold to take its shape. In this method, one of the behaviors that occur in the sheet metal at the end of the process is springback. Mold design is carried out by taking this amount of springback into consideration. Some prominent parameters in the amount of springback are bend radyus, bend angle, material thickness, and material type. Our study examined the springback behavior of diaphragm forming of 15-5PH stainless steel, widely used in the aviation industry. For experimental studies, the material thickness was determined as 0.813 mm, 1.27 mm, 1.6 mm, and 2 mm. At the end of the study, a mathematical expression was obtained that gives the springback rate of 15-5PH material with an accuracy of over 90%, depending on the process parameters. In addition, the main effects of the operating parameters on the springback behavior were determined by the Taguchi Method based ANOVA

Kaynakça

  • 1. Yu, F., et al., Double diaphragm forming simulation using a global-to-local modelling strategy for detailed defect detection in large structures. Composites Part A: Applied Science and Manufacturing, 2021. 147: p. 106457.
  • 2. Internet: Azo Materials.Stainless Steel - Grade 301. https://www.azom.com/article.aspx?ArticleID=960, Access Date: November 17, 2024.
  • 3. Kumat, S.S. and P.S. Shiakolas, Design, Prototyping, and Characterization of a Micro-Force Sensor Intended for Tissue Assessment in Confined Spaces. IEEE Sensors Journal, 2024.
  • 4. Internet: Azo Materials. Editorial Feature AISI 4140 Alloy Steel. https://www.azom.com/article.aspx?ArticleID=6769. Access Date: November 17, 2024.
  • 5. Codolini, A., et al., Characterisation of process-induced variability in wrinkle defects during double diaphragm forming of non-crimp fabric. Composites Part B: Engineering, 2024. 281: p. 111549.
  • 6. Yanagimoto, J., K. Oyamada, and T. Nakagawa, Springback of high-strength steel after hot and warm sheet formings. CIRP annals, 2005. 54(1): p. 213-216.
  • 7. Yang, X., et al., Prediction of springback in air-bending of Advanced High Strength steel (DP780) considering Young׳ s modulus variation and with a piecewise hardening function. International Journal of Mechanical Sciences, 2016. 105: p. 266-272.
  • 8. Hassan, H.U., et al., Accurate springback prediction in deep drawing using pre-strain based multiple cyclic stress–strain curves in finite element simulation. International Journal of Mechanical Sciences, 2016. 110: p. 229-241.
  • 9. Chomienne, V., et al., Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel. CIRP Journal of Manufacturing Science and Technology, 2016. 13: p. 90-96.
  • 10. Chongthairungruang, B., et al., Springback prediction in sheet metal forming of high strength steels. Materials & Design, 2013. 50: p. 253-266.
  • 11. Wahed, M., et al., Parameter optimisation in V-bending process at elevated temperatures to minimise spring back in Ti-6Al-4V alloy. Advances in Materials and Processing Technologies, 2020. 6(2): p. 350-364.
  • 12. Mezeix, L., et al., Spring-back simulation of unidirectional carbon/epoxy flat laminate composite manufactured through autoclave process. Composite structures, 2015. 124: p. 196-205.
  • 13. Wang, J., et al., Study on influencing factors of bending springback for metal fiber laminates. Composite Structures, 2021. 261: p. 113558.
  • 14. Hou, H., et al., Experimental studies and modeling of strain rate-and temperature-dependent springback behavior of hot-deformed aluminum alloys. Journal of Materials Processing Technology, 2023. 318: p. 118029.
  • 15. Liu, X., et al., Investigation of forming parameters on springback for ultra high strength steel considering Young’s modulus variation in cold roll forming. Journal of Manufacturing Processes, 2017. 29: p. 289-297.
  • 16. Thipprakmas, S. and W. Phanitwong, Process parameter design of spring-back and spring-go in V-bending process using Taguchi technique. Materials & Design, 2011. 32(8-9): p. 4430-4436.
  • 17. Patel, S.K., et al., Springback Analysis in Sheet Metal Forming Using Modified Ludwik Stress‐Strain Relation. International Scholarly Research Notices, 2013. 2013(1): p. 640958.
  • 18. Tekaslan, Ö., N. Gerger, and U. Şeker, Determination of spring-back of stainless steel sheet metal in “V” bending dies. Materials & design, 2008. 29(5): p. 1043-1050.
  • 19. Esat, V., H. Darendeliler, and M.I. Gokler, Finite element analysis of springback in bending of aluminium sheets. Materials & design, 2002. 23(2): p. 223-229.
  • 20. Panthi, S., et al., Finite element analysis of sheet metal bending process to predict the springback. Materials & Design, 2010. 31(2): p. 657-662.
  • 21. Aghaie-Khafri, M. and F. Adhami, Hot deformation of 15-5 PH stainless steel. Materials Science and Engineering: A, 2010. 527(4-5): p. 1052-1057.

Diyaframla Sac Şekillendirme İşleminde 15-5PH Malzeme İçin Sayısal ve Deneysel Tasarım Yöntemleri Kullanılarak Geri Esnemenin İncelenmesi

Yıl 2024, , 93 - 102, 29.11.2024
https://doi.org/10.56193/matim.1543433

Öz

Diyaframla sac şekillendirme havacılıkta yaygın olarak kullanılan bir şekillendirme yöntemidir. Bu işlemde sac kalıba tutturulur, form makinesine yerleştirilir ve gaz basıncı uygulanır. Gazın etkisiyle şişen diyafram, basıncı sac yüzeyine ileterek kalıbın şeklini almasını sağlar. Bu yöntemde işlem sonunda sac metalde ortaya çıkan davranışlardan biri de geri esnemedir. Kalıp tasarımı bu esneme miktarı dikkate alınarak gerçekleştirilir. Geri esneme miktarında öne çıkan parametrelerden bazıları büküm yarıçapı, büküm açısı, malzeme kalınlığı ve malzeme türüdür. Çalışmamızda havacılık sektöründe yaygın olarak kullanılan 15-5PH paslanmaz çeliğin diyaframla şekillendirilmesinde geri esneme davranışı incelenmiştir. Deneysel çalışmalar için malzeme kalınlığı 0,813 mm, 1,27 mm, 1,6 mm ve 2 mm olarak belirlenmiştir. Çalışma sonunda 15-5PH malzemede proses parametrelerine bağlı olarak geri esneme oranını %90'ın üzerinde doğrulukla veren matematiksel bir ifade elde edilmiştir. Ayrıca çalışma parametrelerinin geri esneme davranışı üzerindeki temel etkileri Taguchi’nin L32 tasarımı temelinde ANOVA ile belirlenmiştir.

Kaynakça

  • 1. Yu, F., et al., Double diaphragm forming simulation using a global-to-local modelling strategy for detailed defect detection in large structures. Composites Part A: Applied Science and Manufacturing, 2021. 147: p. 106457.
  • 2. Internet: Azo Materials.Stainless Steel - Grade 301. https://www.azom.com/article.aspx?ArticleID=960, Access Date: November 17, 2024.
  • 3. Kumat, S.S. and P.S. Shiakolas, Design, Prototyping, and Characterization of a Micro-Force Sensor Intended for Tissue Assessment in Confined Spaces. IEEE Sensors Journal, 2024.
  • 4. Internet: Azo Materials. Editorial Feature AISI 4140 Alloy Steel. https://www.azom.com/article.aspx?ArticleID=6769. Access Date: November 17, 2024.
  • 5. Codolini, A., et al., Characterisation of process-induced variability in wrinkle defects during double diaphragm forming of non-crimp fabric. Composites Part B: Engineering, 2024. 281: p. 111549.
  • 6. Yanagimoto, J., K. Oyamada, and T. Nakagawa, Springback of high-strength steel after hot and warm sheet formings. CIRP annals, 2005. 54(1): p. 213-216.
  • 7. Yang, X., et al., Prediction of springback in air-bending of Advanced High Strength steel (DP780) considering Young׳ s modulus variation and with a piecewise hardening function. International Journal of Mechanical Sciences, 2016. 105: p. 266-272.
  • 8. Hassan, H.U., et al., Accurate springback prediction in deep drawing using pre-strain based multiple cyclic stress–strain curves in finite element simulation. International Journal of Mechanical Sciences, 2016. 110: p. 229-241.
  • 9. Chomienne, V., et al., Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel. CIRP Journal of Manufacturing Science and Technology, 2016. 13: p. 90-96.
  • 10. Chongthairungruang, B., et al., Springback prediction in sheet metal forming of high strength steels. Materials & Design, 2013. 50: p. 253-266.
  • 11. Wahed, M., et al., Parameter optimisation in V-bending process at elevated temperatures to minimise spring back in Ti-6Al-4V alloy. Advances in Materials and Processing Technologies, 2020. 6(2): p. 350-364.
  • 12. Mezeix, L., et al., Spring-back simulation of unidirectional carbon/epoxy flat laminate composite manufactured through autoclave process. Composite structures, 2015. 124: p. 196-205.
  • 13. Wang, J., et al., Study on influencing factors of bending springback for metal fiber laminates. Composite Structures, 2021. 261: p. 113558.
  • 14. Hou, H., et al., Experimental studies and modeling of strain rate-and temperature-dependent springback behavior of hot-deformed aluminum alloys. Journal of Materials Processing Technology, 2023. 318: p. 118029.
  • 15. Liu, X., et al., Investigation of forming parameters on springback for ultra high strength steel considering Young’s modulus variation in cold roll forming. Journal of Manufacturing Processes, 2017. 29: p. 289-297.
  • 16. Thipprakmas, S. and W. Phanitwong, Process parameter design of spring-back and spring-go in V-bending process using Taguchi technique. Materials & Design, 2011. 32(8-9): p. 4430-4436.
  • 17. Patel, S.K., et al., Springback Analysis in Sheet Metal Forming Using Modified Ludwik Stress‐Strain Relation. International Scholarly Research Notices, 2013. 2013(1): p. 640958.
  • 18. Tekaslan, Ö., N. Gerger, and U. Şeker, Determination of spring-back of stainless steel sheet metal in “V” bending dies. Materials & design, 2008. 29(5): p. 1043-1050.
  • 19. Esat, V., H. Darendeliler, and M.I. Gokler, Finite element analysis of springback in bending of aluminium sheets. Materials & design, 2002. 23(2): p. 223-229.
  • 20. Panthi, S., et al., Finite element analysis of sheet metal bending process to predict the springback. Materials & Design, 2010. 31(2): p. 657-662.
  • 21. Aghaie-Khafri, M. and F. Adhami, Hot deformation of 15-5 PH stainless steel. Materials Science and Engineering: A, 2010. 527(4-5): p. 1052-1057.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Optimizasyon Teknikleri
Bölüm Araştırma, Geliştirme ve Uygulama Makaleleri
Yazarlar

Yusuf Çelik 0009-0008-8744-6764

İbrahim Ülke 0000-0002-8927-0052

Mustafa Yurdakul 0000-0002-1562-5738

Yusuf Tansel İç 0000-0001-9274-7467

Yayımlanma Tarihi 29 Kasım 2024
Gönderilme Tarihi 4 Eylül 2024
Kabul Tarihi 17 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Çelik Y, Ülke İ, Yurdakul M, İç YT. Diyaframla Sac Şekillendirme İşleminde 15-5PH Malzeme İçin Sayısal ve Deneysel Tasarım Yöntemleri Kullanılarak Geri Esnemenin İncelenmesi. MATİM. 2024;22(2):93-102.