Eklemeli İmalatla Üretilen Kafes Yapıların Mekanik Özellikleri
Yıl 2021,
Cilt: 19 Sayı: 1, 17 - 34, 02.05.2021
Orhan Gülcan
Öz
Eklemeli imalat konusunda son yıllarda meydana gelen gelişmeler neticesinde, kafes yapıların farklı alanlarda uygulanması üzerine yapılan araştırmaların sayısı ciddi şekilde artmıştır. Eklemeli imalatla üretilen kafes yapıların mekanik özelliklerinin bilinmesi, bu yapıların özellikle havacılık ve uzay sanayii, otomotiv sanayii ve biomedikal sanayii gibi farklı alanlarda tasarlanacak parçalara uygun olarak seçilebilmesinde önem arz etmektedir. Kafes yapıların geometrik parametrelerinde yapılacak değişikliklerle, mekanik özellikleri istenilen şekilde değiştirilebilir ve eklemeli imalatın sağladığı üretim kolaylığı ile kolayca üretilebilir. Bu çalışmada, eklemeli imalat ile üretilen kafes yapıların mekanik özellikleri ve ileriki çalışmalar konusunda detaylı bilgiler verilecektir.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu makale, TÜBİTAK Teknoloji ve Yenilik Destek Programı kapsamında desteklenmiştir (Proje No: 5158001).
Kaynakça
- Zhang, X.Z., Leary, M., Tang, H.P., Song, T., Qian, M. 2018. “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges”, Current Opinion in Solid State and Material Science, 22 (3): 75-99.
- Rosa, F., Manzoni, S., Casati, R. 2018. “Damping behavior of 316L lattice structures produced by Selective Laser Melting”, Materials and Design, 160: 1010-1018.
- Ashby, M.F. 2006. “The properties of foams and lattices”, Philosophical Transactions of the Royal Society of London A, Mathematical, Physical and Engineering Sciences, 364 (1838): 15-30.
- Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G. 2000. “Metal foams: a design guide”, Elsevier.
- McKown, S., Shen, Y., Brookes, W. K., Sutcliffe, C. J., Cantwell, W. J., Langdon, G. S., Nurick, G. N., Theobald, M. D. 2008. “The quasi-static and blast loading response of lattice structures”, International Journal of Impact Engineering, 35 (8): 795-810.
- Yan, C., Hao, L., Hussein, A., Young, P., Raymont, D. 2014. “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting”, Materials & Design, 55: 533-541.
- Van Bael, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J., Kruth, J. P. 2011. “Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures”, Material Science and Engineering A, 528 (24): 7423-7431.
- Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M. 2019. “SLM lattice structures: Properties, performance, applications and challenges”, Materials and Design, 183: 108-137.
- Li, S.J., Xu, Q.S., Wang, Z., Hou, W.T., Hao, Y.L., Yang, R., Murr, L.E. 2014. “Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method”, Acta Biomaterialia, 10: 4537-4547.
- Ma, Z., Zhang, D.Z., Liu, F., Jiang, J., Zhao, M., Zhang, T. 2018. “Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption”, Materials & Design, 187: 108406.
- Ushijima, K., Cantwell, W. J., Chen, D. H. 2013. “Prediction of the mechanical properties of micro-lattice structures subjected to multi-axial loading”, International Journal of Mechanical Sciences, 68: 47-55.
- Ptochos, E., Labeas, G. 2012. “Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods”, Journal of Sandwich Structures & Materials, 14(5): 597–626.
- Ptochos, E., Labeas, G. 2012. “Shear modulus determination of cuboid metallic open-lattice cellular structures by analytical, numerical and homogenisation methods”, Strain, 48(5): 415-429.
- Yánez, A., Cuadrado, A., Martel, O., Afonso, H., Monopoli, D. 2018. “Gyroid porous titanium structures: a versatile solution to be used as scaffolds in bone defect reconstruction”, Materials and Design, 140: 21-29.
- Kang, D., Park, S., Son, Y., Yeon, S., Kim, S. H., Kimc, I. 2019. “Multi-lattice inner structures for high-strength and light-weight inmetal selective laser melting process”, Materials and Design, 175: 107786.
- Gu, H., Li, S., Pavier, M., Attallah, M. M., Paraskevoulakos, C., Shterenlikht, A. 2019. “Fracture of three-dimensional lattices manufactured by selective laser melting”, International Journal of Solids and Structures, 180-181: 147-159.
- H. Montazerian, Davoodi, E., Asadi-Eydivand, M., Kadkhodapour, J., Solati-Hashjin, M. 2017. “Porous scaffold internal architecture design based on minimalsurfaces: a compromise between permeability and elastic properties”, Materials and Design, 126: 98-114.
- Alabort, E., Barba, D., Reed, R. C. 2019. “Design of metallic bone by additive manufacturing”, Scripta Materialia, 164: 110-114.
- Yan, X., Li, Q., Yin, S., Chen, Z., Jenkins, R., Chen, C., Wang, J., Ma, W., Bolot, R., Lupoi, R., Ren, Z., Liao, H., Liu, M. 2019. “Mechanical and in vitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting”, Journal of Alloys and Compounds, 782: 209-223.
- Mazur, M., Leary, M., Sun, S., Vcelka, M., Shidid, D., Brandt, M. 2016. “Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)”, The International Journal of Advanced Manufacturing Technology, 84 (5-8): 1391-1411.
- Jin, N., Wang, F., Wang, Y., Zhang, B., Cheng, H., Zhang, H. 2019. “Failure and energy absorption characteristics of four lattice structures under dynamic loading”, Materials and Design, 169: 107655.
- Sun, J., Yang, Y., Wang, D. 2012. “Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting”, Advances in Mechanical Engineering, https://doi.org/10.1155/2012/427386.
- Carlton, H. D., Lind, J., Messner, M. C., Volkoff-Shoemaker, N. A., Barnard, H. S., Barton, N. R., Kumar, M. 2017. “Mapping local deformation behavior in single cell metal lattice structures”, Acta Materialia, 129: 239–250.
- Zhao, S., Hou, W. T., Xu, Q.S., Li, S.J., Hao, Y.L., Yang, R. 2018. “Ti-6Al-4V lattice structures fabricated by electron beam melting for biomedical applications”, Titanium in Medical and Dental Applications, Woodhead Publishing Series in Biomaterials, 277-301.
- Kadkhodapour, J., Montazerian, H., Darabi, A. Ch., Anaraki, A. P., Ahmadi, S. M., Zadpoor, A. A., Schmauder, S. 2015. “Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell”, Journal of the Mechanical Behavior of Biomedical Materials, 50: 180-191.
- Vanderesse, N., Richter, A., Nuno, N., Bocher, P. 2018. “Measurement of deformation heterogeneities in additive manufactured lattice materials by digital image correlation: strain maps analysis and reliability assessment”, Journal of the Mechanical Behavior of Biomedical Materials, 86: 397-408.
- Rehme, R., Emmelmann, C. 2006. “Rapid manufacturing of lattice structures with Selective Laser Melting”, Proceedings of SPIE, Vol. 6107, San Jose, California, United States, 192–203.
- Shen, Y., Mckown, S., Tsopanos, S., Sutcliffe, C. J., Mines, R.A.W., Cantwell, W.J. 2009. “The mechanical properties of sandwich structures based on metal lattice architectures”, Journal of Sandwich Structures and Materials, 12 (2): 159-180.
- Leary, M., Mazur, M., Mcmillan, M., Chirent, T., Sun, Y. Y., Qian, M., Easton, M. Brandt, M. 2016. “Selective laser melting (SLM) of AlSi12Mg lattice structures”, Materials and Design, 98: 344–357.
- Maskery, I., Hussey, A., Panesar, A., Aremu, A., Tuck, C., Ashcroft, I., Hague, R. 2017. “An investigation into reinforced and functionally graded lattice structures”, Journal of Cellular Plastics, 53: 151–165.
- Xiao, Z., Yang, Y., Xiao, R., Bai, Y., Song, C., Wang, D. 2018. “Evaluation of topology optimized lattice structures manufactured via selective laser melting”, Materials and Design, 143: 27-37.
- Lei, H., Li, C., Meng, J., Zhou, H., Liu, Y., Zhang, X., Wang, P., Fang, D. 2019. “Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis”, Materials and Design, 169: 107685.
- Blattmann, C., Helou, M., Kara, S. 2019. “Characterisation of reinforced body centered cubic, octahedral-type and octet truss lattice structures”, Procedia CIRP, 84: 38-42.
- Peng, C.,Tran, P., Nguyen-Xuan, H., Ferreira, A. J. M. 2020. “Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach”, Composite Structures, 235: 111821.
- Guo, R., Liu, R., Jiang, W., Chen, K., Zhang, J., Huang, F., Sun, X. 2011. “Numerical analysis on static mechanical properties of the periodic multilayer lattice material”, Engineering, 3: 1149-1154.
- Wang, J., Evans, A. G., Dharmasena, K., Wadley, H. N. G. 2003. “On the performance of truss panels with Kagome cores”, International Journal of Solids and Structures, 40 (25): 6981-6988.
- Fan, H. L., Fang, D .N., Jing, F. N. 2008. “Yield surfaces and micro-failure mechanism of block lattice truss materials”, Materials & Design, 29 (10): 2038-2042.
- Hasib, H. B. 2011. “Mechanical behavior of non-stochastic Ti-6Al-4V cellular structures produced via electron beam melting (EBM), Master Thesis, North Carolina State University, USA.
- Jamshidinia, M., Wang, L., Tong, W., Kovacevic, R., 2014. “The bio-compatible dental implant designed by using non-stochastic porosity produced by Electron Beam Melting® (EBM)”, Journal of Material Processing Technology, 214 (8): 1728-1739.
- Ahmadi, S. M., Yavari, S. A., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., Zadpoor, A. A. 2015. “Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties”, Materials (Basel), 8(4): 1871-1896.
- Mahshid, R., Hansen, H. N., Loft Højbjerre, K. 2016. “Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications”, Materials & Design, 104: 276-283.
- Rashid, R. A. R., Mallavarapu, J., Palanisamy, S., Masood, S. H. 2017. “A comparative study of flexural properties of additively manufactured aluminium lattice structures”, Materials Today: Proceedings, 4: 8597-8604.
- Köhnen, P., Haase, C., Bültmann, J., Ziegler, S., Schleifenbaum, J. H., Bleck, W. 2018. “Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel”, Materials and Design, 145: 205-217.
- Zhong, T., He, K., Li, H., Yang, L. 2019. “Mechanical properties of lightweight 316L stainless steel lattice structures fabricated by selective laser melting”, Materials and Design, 181: 108076.
- Maskery, I., Aremu, A.O., Parry, L., Wildman, R.D., Tuck, C.J., Ashcroft, I.A. 2018. “Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading”, Materials and Design, 155: 220-232.
- Zhang, L., Feih, S., Daynes, S., Chang, S., Wang, M.Y., Wei, J., Lu, W.F. 2018. “Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading”, Additive Manufacturing, 23: 505-515.
- Restrepo, S., Ocampo, S., Ramirez, J. A., Paucar, C., Garcia, C. 2017. “Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing”, Journal of Physics: Conference Series, 935:012036.
- Zhao, M., Liu, F., Fu, G., Zhang, D. Z., Zhang, T., Zhou, H. 2018. “Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM”, Materials, 11 (12): 2411.
- Ozdemir, Z., Hernandez-Nava, E., Tyas, A., Warren, J. A., Fay, S. D., Goodall, R., Todd, I., Askes, H. 2016. “Energy absorption in lattice structures in dynamics: experiments”, International Journal of Impact Engineering 89: 49-61.
- Shen, Y., Cantwell, W., Mines, R., Li, Y. 2013. “Low-velocity impact performance of lattice structure core based sandwich panels”, Journal of Composite Materials, 48(25): 3153–3167.
- Harris, J.A., Winter, R.E., McShane, G.J. 2017. “Impact response of additively manufactured metallic hybrid lattice materials”, International Journal of Impact Engineering, 104: 177-191.
- Vrana, R., Koutny, D., Palousek, D. 2016. “Impact resistance of different types of lattice structures manufactured by slm”, Modern Machinery (MM) Science Journal, December: 1579-1585.
- Ullah, I., Brandt, M., Feih, S., 2016. “Failure and energy absorption characteristics of advanced 3D truss core structures”, Materials and Design, 92: 937-948.
- Leary, M., Mazur, M., Williams, H., Yang, E., Alghamdi, A., Lozanovski, B., Zhang, X., Shidid, D., Farahbod-Sternahl, L., Witt, G., Kelbassa, I., Choong, P., Qian, M., Brandt, M. 2018. “Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes”, Materials & Design, 157: 179-199.
- Choy, S. Y., Sun, C. N., Leong, K. F., Wei, J. 2017. “Compressive properties of functionally graded lattice structures manufactured by selective laser melting”, Materials & Design, 131: 112-120.
- Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., Ashcroft, I. A., Wildman, R. D., Hague, R. J. M. 2016. “A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting”, Materials Science & EngineeringA, 670: 264-274.
- Al-Saedi, D. S. J., Masood, S. H., Faizan-Ur-Rab, M., Alomarah, A., Ponnusamy, P. 2018. “Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated”, Materials & Design, 144: 32-44.
- Bai, L., Zhang, J., Chen, X., Yi, C., Chen, R., Zhang, Z. 2018. “Configuration optimization design of Ti6Al4V lattice structure formed by SLM”, Materials, 11 (10): 1856.
- Lakes, R. 1987. “Foam structures with a negative poisson’s ratio”, Science, 235 (4792): 1038-1040.
- Schwerdtfeger, J., Heinl, P., Singer, R. F., Körner, C. 2010. “Auxetic cellular structures through selective electron-beam melting”, Physica Status Solidi B, 247 (2): 269–272.
- Schwerdtfeger, J., Schury, F., Stingl, M., Wein, F., Singer, R. F., Körner, C. 2012. “Mechanical characterisation of a periodic auxetic structure produced by SEBM”, Physica Status Solidi B, 249 (7): 1347-1352.
- Hou, W., Yang, X., Zhang, W., Xia, Y. 2018. “Design of energy-dissipating structure with functionally graded auxetic cellular material”, International Journal of Crashworthiness”, 23(4): 366-376.
- Ren, D., Li, S., Wang, H., Hou, W., Hao, Y., Jin, W., Yang, R., Devesh, R., Misra, K., Murr, L. E. 2019. “Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique”, Journal of Materials Science & Technology, 35: 285-294.
- Hrabe, N. W., Heinl, P., Flinn, B., Körner, C., Bordia, R. K. 2011. “Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V)”, Journal of Biomedical Materials Research, Part B, Applied Biomaterials, 99 (2): 313–320.
- Yavari, S. A., Wauthle, R., Van Der Stok, J., Riemslag, A. C., Janssen, M., Mulier, M., Kruth, J. P., Schrooten, J., Weinans, H., Zadpoor, A. A. 2013. “Fatigue behavior of porous biomaterials manufactured using selective laser melting”, Materials Science and Engineering C, 33: 4849-4858.
- Dallago, M., Fontanari, V., Torresani, E., Leoni, M., Pederzolli, C., Potrich, C., Benedetti, M., 2018. “Fatigue and biological properties of Ti-6Al- 4V ELI cellular structures with variously arranged cubic cells made by selective laser melting”, Journal of the Mechanical Behavior of Biomedical Materials, 78: 381-394.
- Jamshidinia, M., Wang, L., Tong, W., Ajlouni, R., Kovacevic, R. 2015. “Fatigue properties of a dental implant produced by electron beam melting (EBM)”, Journal of Materials Processing Technology, 226: 255-263.
- Li, S. J., Murr, L. E., Cheng, X. Y., Zhang, Z. B., Hao, Y. L., Yang, R., Medina, F., Wicker, R. B. 2012. “Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting”, Acta Materialia, 60 (3): 793-802.
- Lhuissier, P., de Formanoir, C., Martin, G., Dendievel, R., Godet, S. 2016. “Geometrical control of lattice structures produced by EBM through chemical etching: Investigations at the scale of individual struts”, Materials & Design, 110: 485-493.
- Hooreweder, B. V., Kruth, J-P. 2017. “Advanced fatigue analysis of metal lattice structures produced by selective laser melting”, CIRP Annals 66 (1): 221–224.
- Zargarian, A., Esfahanian, M., Kadkhodapour, J., Ziaei-Rad, S. 2016. “Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures”, Materials Science and Engineering C, 60: 339-347.
- Zargarian, A., Esfahanian, M., Kadkhodapour, J., Ziaei-Rad, S., Zamani, D. 2019. “On the fatigue behavior of additive manufactured lattice structures”, Theoretical and Applied Fracture Mechanics, 100: 225232.
- Yavari, S. A., Ahmadi, S. M., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., Zadpoor, A. A. 2015. “Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials”, Journal of the Mechanical Behavior of Biomedical Materials, 43: 91-100.
- Bobbert, F. S. L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., Zadpoor, A. A. 2017. “Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia, 53: 572-584.
- Zhao, S., Li, S. J., Hou, W. T., Hao, Y. L., Yang, R., Misra, R. D. K. 2016. “The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting”, Journal of the Mechanical Behavior of Biomedical Materials, 59: 251-264
- de Formanoir, C., Suard, M., Dendievel, R., Martin, G., Godet, S. 2016. “Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching”, Additive Manufacturing, 11: 71-76.
- Pyka, G., Burakowski, A., Kerckhofs, G., Moesen, M., Van Bael, S., Schrooten, J., Wevers, M. 2012. “Surface modification of Ti6Al4V open porous structures produced by additive manufacturing”, Advanced Engineering Materials, 14 (6): 363-370.
- Yuan, L., Ding, S., Wen, C. 2019. “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review”, Bioactive Materials, 4: 56-70.
- Mazur, M., Leary, M., McMillan, M., Sun, S., Shidid, D., Brandt, M. 2017. “Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by Selective Laser Melting (SLM)”, Laser Additive Manufacturing, Materials, Design, Technologies, and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 119-161.
- Niendorf, T., Brenne, F., Schaper, M. 2014. “Lattice structures manufactured by SLM: on the effect of geometrical dimensions on microstructure evolution during processing”, Metallurgical and Materials Transactions B, 45(4), 1181-1185.
- Yan, X., Lupoi, R., Wu, H., Ma, W., Liu, M., O’Donnell, G., Yin, S. 2019. “Effect of hot isostatic pressing (HIP) treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting”, Materials Letters, 255: 126537.
- Tan, X. P., Tan, Y. J., Chow, C. S. L., Tor, S. B., Yeong, W. Y. 2017. “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility”, Material Science and Engineering C, 76: 1328-1343.
- Murr, L., Gaytan, S., Medina, F., Martinez, E., Martinez, J., Hernandez, D., Machado, B., Ramirez, D., Wicker, R. 2010. “Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting”, Material Science and Engineering A, 527: 1861-1868.
- Liu, M., Takata, N., Suzuki, A., Kobashi, M. 2020. “Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting”, Journal of Materials Science & Technology, 36: 106-117.
- Dong, G., Tang, Y., Zhao, Y. F. 2017. “A survey of modeling of lattice structures fabricated by additive manufacturing”, Journal of Mechanical Design, 139(10): 100906.
- Mahmoud, D., Elbestawi, M. 2017. “Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review”, Journal of Manufacturing and Materials Processing, 1 (2): 13.
Mechanical Properties of Additively Manufactured Lattice Structures
Yıl 2021,
Cilt: 19 Sayı: 1, 17 - 34, 02.05.2021
Orhan Gülcan
Öz
Due to the recent advancements in additive manufacturing, the number of researches on different industrial implementation of lattice structures have increased significantly. Knowing the mechanical properties of additive manufacturing lattice structures is very important when selecting suitable lattice structures in designed parts for especially aviation and aerospace industry, automotive industry and biomedical industry. Mechanical properties of lattice structures can be changed as desired by changing their geometric parameters and they can be easily produced with the ease of production provided by additive manufacturing. In this study, detailed information about mechanical properties and future studies of additively manufactured metallic lattice structures were given.
Kaynakça
- Zhang, X.Z., Leary, M., Tang, H.P., Song, T., Qian, M. 2018. “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges”, Current Opinion in Solid State and Material Science, 22 (3): 75-99.
- Rosa, F., Manzoni, S., Casati, R. 2018. “Damping behavior of 316L lattice structures produced by Selective Laser Melting”, Materials and Design, 160: 1010-1018.
- Ashby, M.F. 2006. “The properties of foams and lattices”, Philosophical Transactions of the Royal Society of London A, Mathematical, Physical and Engineering Sciences, 364 (1838): 15-30.
- Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G. 2000. “Metal foams: a design guide”, Elsevier.
- McKown, S., Shen, Y., Brookes, W. K., Sutcliffe, C. J., Cantwell, W. J., Langdon, G. S., Nurick, G. N., Theobald, M. D. 2008. “The quasi-static and blast loading response of lattice structures”, International Journal of Impact Engineering, 35 (8): 795-810.
- Yan, C., Hao, L., Hussein, A., Young, P., Raymont, D. 2014. “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting”, Materials & Design, 55: 533-541.
- Van Bael, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J., Kruth, J. P. 2011. “Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures”, Material Science and Engineering A, 528 (24): 7423-7431.
- Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M. 2019. “SLM lattice structures: Properties, performance, applications and challenges”, Materials and Design, 183: 108-137.
- Li, S.J., Xu, Q.S., Wang, Z., Hou, W.T., Hao, Y.L., Yang, R., Murr, L.E. 2014. “Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method”, Acta Biomaterialia, 10: 4537-4547.
- Ma, Z., Zhang, D.Z., Liu, F., Jiang, J., Zhao, M., Zhang, T. 2018. “Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption”, Materials & Design, 187: 108406.
- Ushijima, K., Cantwell, W. J., Chen, D. H. 2013. “Prediction of the mechanical properties of micro-lattice structures subjected to multi-axial loading”, International Journal of Mechanical Sciences, 68: 47-55.
- Ptochos, E., Labeas, G. 2012. “Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods”, Journal of Sandwich Structures & Materials, 14(5): 597–626.
- Ptochos, E., Labeas, G. 2012. “Shear modulus determination of cuboid metallic open-lattice cellular structures by analytical, numerical and homogenisation methods”, Strain, 48(5): 415-429.
- Yánez, A., Cuadrado, A., Martel, O., Afonso, H., Monopoli, D. 2018. “Gyroid porous titanium structures: a versatile solution to be used as scaffolds in bone defect reconstruction”, Materials and Design, 140: 21-29.
- Kang, D., Park, S., Son, Y., Yeon, S., Kim, S. H., Kimc, I. 2019. “Multi-lattice inner structures for high-strength and light-weight inmetal selective laser melting process”, Materials and Design, 175: 107786.
- Gu, H., Li, S., Pavier, M., Attallah, M. M., Paraskevoulakos, C., Shterenlikht, A. 2019. “Fracture of three-dimensional lattices manufactured by selective laser melting”, International Journal of Solids and Structures, 180-181: 147-159.
- H. Montazerian, Davoodi, E., Asadi-Eydivand, M., Kadkhodapour, J., Solati-Hashjin, M. 2017. “Porous scaffold internal architecture design based on minimalsurfaces: a compromise between permeability and elastic properties”, Materials and Design, 126: 98-114.
- Alabort, E., Barba, D., Reed, R. C. 2019. “Design of metallic bone by additive manufacturing”, Scripta Materialia, 164: 110-114.
- Yan, X., Li, Q., Yin, S., Chen, Z., Jenkins, R., Chen, C., Wang, J., Ma, W., Bolot, R., Lupoi, R., Ren, Z., Liao, H., Liu, M. 2019. “Mechanical and in vitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting”, Journal of Alloys and Compounds, 782: 209-223.
- Mazur, M., Leary, M., Sun, S., Vcelka, M., Shidid, D., Brandt, M. 2016. “Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)”, The International Journal of Advanced Manufacturing Technology, 84 (5-8): 1391-1411.
- Jin, N., Wang, F., Wang, Y., Zhang, B., Cheng, H., Zhang, H. 2019. “Failure and energy absorption characteristics of four lattice structures under dynamic loading”, Materials and Design, 169: 107655.
- Sun, J., Yang, Y., Wang, D. 2012. “Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting”, Advances in Mechanical Engineering, https://doi.org/10.1155/2012/427386.
- Carlton, H. D., Lind, J., Messner, M. C., Volkoff-Shoemaker, N. A., Barnard, H. S., Barton, N. R., Kumar, M. 2017. “Mapping local deformation behavior in single cell metal lattice structures”, Acta Materialia, 129: 239–250.
- Zhao, S., Hou, W. T., Xu, Q.S., Li, S.J., Hao, Y.L., Yang, R. 2018. “Ti-6Al-4V lattice structures fabricated by electron beam melting for biomedical applications”, Titanium in Medical and Dental Applications, Woodhead Publishing Series in Biomaterials, 277-301.
- Kadkhodapour, J., Montazerian, H., Darabi, A. Ch., Anaraki, A. P., Ahmadi, S. M., Zadpoor, A. A., Schmauder, S. 2015. “Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell”, Journal of the Mechanical Behavior of Biomedical Materials, 50: 180-191.
- Vanderesse, N., Richter, A., Nuno, N., Bocher, P. 2018. “Measurement of deformation heterogeneities in additive manufactured lattice materials by digital image correlation: strain maps analysis and reliability assessment”, Journal of the Mechanical Behavior of Biomedical Materials, 86: 397-408.
- Rehme, R., Emmelmann, C. 2006. “Rapid manufacturing of lattice structures with Selective Laser Melting”, Proceedings of SPIE, Vol. 6107, San Jose, California, United States, 192–203.
- Shen, Y., Mckown, S., Tsopanos, S., Sutcliffe, C. J., Mines, R.A.W., Cantwell, W.J. 2009. “The mechanical properties of sandwich structures based on metal lattice architectures”, Journal of Sandwich Structures and Materials, 12 (2): 159-180.
- Leary, M., Mazur, M., Mcmillan, M., Chirent, T., Sun, Y. Y., Qian, M., Easton, M. Brandt, M. 2016. “Selective laser melting (SLM) of AlSi12Mg lattice structures”, Materials and Design, 98: 344–357.
- Maskery, I., Hussey, A., Panesar, A., Aremu, A., Tuck, C., Ashcroft, I., Hague, R. 2017. “An investigation into reinforced and functionally graded lattice structures”, Journal of Cellular Plastics, 53: 151–165.
- Xiao, Z., Yang, Y., Xiao, R., Bai, Y., Song, C., Wang, D. 2018. “Evaluation of topology optimized lattice structures manufactured via selective laser melting”, Materials and Design, 143: 27-37.
- Lei, H., Li, C., Meng, J., Zhou, H., Liu, Y., Zhang, X., Wang, P., Fang, D. 2019. “Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis”, Materials and Design, 169: 107685.
- Blattmann, C., Helou, M., Kara, S. 2019. “Characterisation of reinforced body centered cubic, octahedral-type and octet truss lattice structures”, Procedia CIRP, 84: 38-42.
- Peng, C.,Tran, P., Nguyen-Xuan, H., Ferreira, A. J. M. 2020. “Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach”, Composite Structures, 235: 111821.
- Guo, R., Liu, R., Jiang, W., Chen, K., Zhang, J., Huang, F., Sun, X. 2011. “Numerical analysis on static mechanical properties of the periodic multilayer lattice material”, Engineering, 3: 1149-1154.
- Wang, J., Evans, A. G., Dharmasena, K., Wadley, H. N. G. 2003. “On the performance of truss panels with Kagome cores”, International Journal of Solids and Structures, 40 (25): 6981-6988.
- Fan, H. L., Fang, D .N., Jing, F. N. 2008. “Yield surfaces and micro-failure mechanism of block lattice truss materials”, Materials & Design, 29 (10): 2038-2042.
- Hasib, H. B. 2011. “Mechanical behavior of non-stochastic Ti-6Al-4V cellular structures produced via electron beam melting (EBM), Master Thesis, North Carolina State University, USA.
- Jamshidinia, M., Wang, L., Tong, W., Kovacevic, R., 2014. “The bio-compatible dental implant designed by using non-stochastic porosity produced by Electron Beam Melting® (EBM)”, Journal of Material Processing Technology, 214 (8): 1728-1739.
- Ahmadi, S. M., Yavari, S. A., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., Zadpoor, A. A. 2015. “Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties”, Materials (Basel), 8(4): 1871-1896.
- Mahshid, R., Hansen, H. N., Loft Højbjerre, K. 2016. “Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications”, Materials & Design, 104: 276-283.
- Rashid, R. A. R., Mallavarapu, J., Palanisamy, S., Masood, S. H. 2017. “A comparative study of flexural properties of additively manufactured aluminium lattice structures”, Materials Today: Proceedings, 4: 8597-8604.
- Köhnen, P., Haase, C., Bültmann, J., Ziegler, S., Schleifenbaum, J. H., Bleck, W. 2018. “Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel”, Materials and Design, 145: 205-217.
- Zhong, T., He, K., Li, H., Yang, L. 2019. “Mechanical properties of lightweight 316L stainless steel lattice structures fabricated by selective laser melting”, Materials and Design, 181: 108076.
- Maskery, I., Aremu, A.O., Parry, L., Wildman, R.D., Tuck, C.J., Ashcroft, I.A. 2018. “Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading”, Materials and Design, 155: 220-232.
- Zhang, L., Feih, S., Daynes, S., Chang, S., Wang, M.Y., Wei, J., Lu, W.F. 2018. “Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading”, Additive Manufacturing, 23: 505-515.
- Restrepo, S., Ocampo, S., Ramirez, J. A., Paucar, C., Garcia, C. 2017. “Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing”, Journal of Physics: Conference Series, 935:012036.
- Zhao, M., Liu, F., Fu, G., Zhang, D. Z., Zhang, T., Zhou, H. 2018. “Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM”, Materials, 11 (12): 2411.
- Ozdemir, Z., Hernandez-Nava, E., Tyas, A., Warren, J. A., Fay, S. D., Goodall, R., Todd, I., Askes, H. 2016. “Energy absorption in lattice structures in dynamics: experiments”, International Journal of Impact Engineering 89: 49-61.
- Shen, Y., Cantwell, W., Mines, R., Li, Y. 2013. “Low-velocity impact performance of lattice structure core based sandwich panels”, Journal of Composite Materials, 48(25): 3153–3167.
- Harris, J.A., Winter, R.E., McShane, G.J. 2017. “Impact response of additively manufactured metallic hybrid lattice materials”, International Journal of Impact Engineering, 104: 177-191.
- Vrana, R., Koutny, D., Palousek, D. 2016. “Impact resistance of different types of lattice structures manufactured by slm”, Modern Machinery (MM) Science Journal, December: 1579-1585.
- Ullah, I., Brandt, M., Feih, S., 2016. “Failure and energy absorption characteristics of advanced 3D truss core structures”, Materials and Design, 92: 937-948.
- Leary, M., Mazur, M., Williams, H., Yang, E., Alghamdi, A., Lozanovski, B., Zhang, X., Shidid, D., Farahbod-Sternahl, L., Witt, G., Kelbassa, I., Choong, P., Qian, M., Brandt, M. 2018. “Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes”, Materials & Design, 157: 179-199.
- Choy, S. Y., Sun, C. N., Leong, K. F., Wei, J. 2017. “Compressive properties of functionally graded lattice structures manufactured by selective laser melting”, Materials & Design, 131: 112-120.
- Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., Ashcroft, I. A., Wildman, R. D., Hague, R. J. M. 2016. “A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting”, Materials Science & EngineeringA, 670: 264-274.
- Al-Saedi, D. S. J., Masood, S. H., Faizan-Ur-Rab, M., Alomarah, A., Ponnusamy, P. 2018. “Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated”, Materials & Design, 144: 32-44.
- Bai, L., Zhang, J., Chen, X., Yi, C., Chen, R., Zhang, Z. 2018. “Configuration optimization design of Ti6Al4V lattice structure formed by SLM”, Materials, 11 (10): 1856.
- Lakes, R. 1987. “Foam structures with a negative poisson’s ratio”, Science, 235 (4792): 1038-1040.
- Schwerdtfeger, J., Heinl, P., Singer, R. F., Körner, C. 2010. “Auxetic cellular structures through selective electron-beam melting”, Physica Status Solidi B, 247 (2): 269–272.
- Schwerdtfeger, J., Schury, F., Stingl, M., Wein, F., Singer, R. F., Körner, C. 2012. “Mechanical characterisation of a periodic auxetic structure produced by SEBM”, Physica Status Solidi B, 249 (7): 1347-1352.
- Hou, W., Yang, X., Zhang, W., Xia, Y. 2018. “Design of energy-dissipating structure with functionally graded auxetic cellular material”, International Journal of Crashworthiness”, 23(4): 366-376.
- Ren, D., Li, S., Wang, H., Hou, W., Hao, Y., Jin, W., Yang, R., Devesh, R., Misra, K., Murr, L. E. 2019. “Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique”, Journal of Materials Science & Technology, 35: 285-294.
- Hrabe, N. W., Heinl, P., Flinn, B., Körner, C., Bordia, R. K. 2011. “Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V)”, Journal of Biomedical Materials Research, Part B, Applied Biomaterials, 99 (2): 313–320.
- Yavari, S. A., Wauthle, R., Van Der Stok, J., Riemslag, A. C., Janssen, M., Mulier, M., Kruth, J. P., Schrooten, J., Weinans, H., Zadpoor, A. A. 2013. “Fatigue behavior of porous biomaterials manufactured using selective laser melting”, Materials Science and Engineering C, 33: 4849-4858.
- Dallago, M., Fontanari, V., Torresani, E., Leoni, M., Pederzolli, C., Potrich, C., Benedetti, M., 2018. “Fatigue and biological properties of Ti-6Al- 4V ELI cellular structures with variously arranged cubic cells made by selective laser melting”, Journal of the Mechanical Behavior of Biomedical Materials, 78: 381-394.
- Jamshidinia, M., Wang, L., Tong, W., Ajlouni, R., Kovacevic, R. 2015. “Fatigue properties of a dental implant produced by electron beam melting (EBM)”, Journal of Materials Processing Technology, 226: 255-263.
- Li, S. J., Murr, L. E., Cheng, X. Y., Zhang, Z. B., Hao, Y. L., Yang, R., Medina, F., Wicker, R. B. 2012. “Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting”, Acta Materialia, 60 (3): 793-802.
- Lhuissier, P., de Formanoir, C., Martin, G., Dendievel, R., Godet, S. 2016. “Geometrical control of lattice structures produced by EBM through chemical etching: Investigations at the scale of individual struts”, Materials & Design, 110: 485-493.
- Hooreweder, B. V., Kruth, J-P. 2017. “Advanced fatigue analysis of metal lattice structures produced by selective laser melting”, CIRP Annals 66 (1): 221–224.
- Zargarian, A., Esfahanian, M., Kadkhodapour, J., Ziaei-Rad, S. 2016. “Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures”, Materials Science and Engineering C, 60: 339-347.
- Zargarian, A., Esfahanian, M., Kadkhodapour, J., Ziaei-Rad, S., Zamani, D. 2019. “On the fatigue behavior of additive manufactured lattice structures”, Theoretical and Applied Fracture Mechanics, 100: 225232.
- Yavari, S. A., Ahmadi, S. M., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., Zadpoor, A. A. 2015. “Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials”, Journal of the Mechanical Behavior of Biomedical Materials, 43: 91-100.
- Bobbert, F. S. L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., Zadpoor, A. A. 2017. “Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia, 53: 572-584.
- Zhao, S., Li, S. J., Hou, W. T., Hao, Y. L., Yang, R., Misra, R. D. K. 2016. “The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting”, Journal of the Mechanical Behavior of Biomedical Materials, 59: 251-264
- de Formanoir, C., Suard, M., Dendievel, R., Martin, G., Godet, S. 2016. “Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching”, Additive Manufacturing, 11: 71-76.
- Pyka, G., Burakowski, A., Kerckhofs, G., Moesen, M., Van Bael, S., Schrooten, J., Wevers, M. 2012. “Surface modification of Ti6Al4V open porous structures produced by additive manufacturing”, Advanced Engineering Materials, 14 (6): 363-370.
- Yuan, L., Ding, S., Wen, C. 2019. “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review”, Bioactive Materials, 4: 56-70.
- Mazur, M., Leary, M., McMillan, M., Sun, S., Shidid, D., Brandt, M. 2017. “Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by Selective Laser Melting (SLM)”, Laser Additive Manufacturing, Materials, Design, Technologies, and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 119-161.
- Niendorf, T., Brenne, F., Schaper, M. 2014. “Lattice structures manufactured by SLM: on the effect of geometrical dimensions on microstructure evolution during processing”, Metallurgical and Materials Transactions B, 45(4), 1181-1185.
- Yan, X., Lupoi, R., Wu, H., Ma, W., Liu, M., O’Donnell, G., Yin, S. 2019. “Effect of hot isostatic pressing (HIP) treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting”, Materials Letters, 255: 126537.
- Tan, X. P., Tan, Y. J., Chow, C. S. L., Tor, S. B., Yeong, W. Y. 2017. “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility”, Material Science and Engineering C, 76: 1328-1343.
- Murr, L., Gaytan, S., Medina, F., Martinez, E., Martinez, J., Hernandez, D., Machado, B., Ramirez, D., Wicker, R. 2010. “Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting”, Material Science and Engineering A, 527: 1861-1868.
- Liu, M., Takata, N., Suzuki, A., Kobashi, M. 2020. “Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting”, Journal of Materials Science & Technology, 36: 106-117.
- Dong, G., Tang, Y., Zhao, Y. F. 2017. “A survey of modeling of lattice structures fabricated by additive manufacturing”, Journal of Mechanical Design, 139(10): 100906.
- Mahmoud, D., Elbestawi, M. 2017. “Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review”, Journal of Manufacturing and Materials Processing, 1 (2): 13.