Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Auxeticity on Dimensional Deviations for Laser Powder Bed Fusion Produced Auxetic Lattices Based on Process Simulation

Yıl 2024, Cilt: 22 Sayı: 2, 63 - 72, 29.11.2024
https://doi.org/10.56193/matim.1452797

Öz

The mechanical behavior of auxetic structures, which have a negative Poisson's ratio and can be used in industrial applications where energy absorption properties are needed, under compressive, tensile or bending loading, has been examined in the literature. However, there is no study in the literature on how much the auxetic properties affect the dimensional deviations of these structures as a result of their production by laser powder bed fusion method, an additive manufacturing process. In order to contribute to filling this gap, in this study, the high temperature difference between the layers and the resulting residual stresses and dimensional deviations that occurred during production of five different auxetic structures (re-entrant, trichiral, anti-thrichiral, tetrachiral, anti-tetrachiral and hexachiral) and one non-auxetic structure (honeycomb) with laser powder bed fusion method from Inconel 718 material were investigated by using thermomechanical simulation. Poisson’s ratios for each geometry were also calculated and compared. The results showed that auxetic structures also showed auxetic properties when produced by laser powder bed fusion method. As a result of the study, it was observed that re-entrant structure showed the highest and hexachiral structure showed the lowest auxetic properties. Among chiral structures consisting of walls tangent to a node, hexachiral structure showed the largest dimensional deviation. The non-auxetic honeycomb structure showed more dimensional deviations than the auxetic structures.

Kaynakça

  • 1. Gao, J., Cao, X., Xiao, M., Yang, Z., Zhou, X., Li, Y., Gao, L., Yan, W., Rabczuk, T. and Mai, Y., Rational designs of mechanical metamaterials: Formulations, architectures, tessellations and prospects, Mater. Sci. Eng. R., 156 (2023) 100755. https://doi.org/10.1016/j.mser.2023.100755.
  • 2. Xue, X., Lin, C., Wu, F., Li, Z. and Liao, J., Lattice structures with negative Poisson’s ratio: A review, Mater. Today Commun. 34 (2023) 105132. https://doi.org/10.1016/j.mtcomm.2022.105132.
  • 3. Volpato, G. M., Tetzlaff, U. and Fredel, M. C., A comprehensive literature review on laser powder bed fusion of Inconel superalloys, Addit. Manuf., 55 (2022) 102871. https://doi.org/10.1016/j.addma.2022.102871.
  • 4. Taghian, M., Mosallanejad, M. H., Lannunziata, E., Del Greco, G., Iuliano, L. and Saboori, A., Laser powder bed fusion of metallic components: Latest progress in productivity, quality, and cost perspectives, J. Mater. Res. Technol., 27 (2023) 6484-6500. https://doi.org/10.1016/j.jmrt.2023.11.049.
  • 5. Li, C., Snarr, S. E., Denlinger, E. R., Irwin, J. E., Gouge, M. F., Michaleris, P. and Beaman, J. J., Experimental parameter identification for part-scale thermal modeling of selective laser sintering of PA12, Addit. Manuf., 48 (2021) 102362. https://doi.org/10.1016/j.addma.2021.102362.
  • 6. Jia, Y., Naceur, H., Saadlaoui, Y., Dubar, L. and Bergheau, J. M., A comprehensive comparison of modeling strategies and simulation techniques applied in powder-based metallic additive manufacturing processes, J. Manuf. Process., 110 (2024) 1-29. https://doi.org/10.1016/j.jmapro.2023.12.048.
  • 7. Evans, K. E. and Alderson, A., Auxetic materials: functional materials and structures from lateral thinking!, Adv. Mater., 12 (2000) 617-628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.
  • 8. Yu, X., Zhou, J., Liang, H., Jiang, Z. and Wu, L., Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog. Mater. Sci., 94 (2018) 114-173. https://doi.org/10.1016/j.pmatsci.2017.12.003.
  • 9. Lorato, A., Innocenti, P., Scarpa, F., Alderson, A., Alderson, K. L., Zied, K. M., Ravirala, N., Miller, W., Smith, C. W. and Evans, K. E., The transverse elastic properties of chiral honeycombs, Compos. Sci. Technol., 70 (2010) 1057-1063. https://doi.org/10.1016/j.compscitech.2009.07.008.
  • 10. Grima, J. N., Gatt, R. and Farrugia, P-S., On the properties of auxetic meta-tetrachiral structures. Phys. Status Solidi B, 245 (2008) 511-520. https://doi.org/10.1002/pssb.200777704.
  • 11. Jiang, Y., Rudra, B., Shim, J. and Li, Y., Limiting strain for auxeticity under large compressive deformation: chiral vs. re-entrant cellular solids, Int. J. Solids Struct., 162 (2019) 87-95. https://doi.org/10.1016/j.ijsolstr.2018.11.035
  • 12. Zhang, J., Lu, G., Wang, Z., Ruan, D., Alomarah, A. and Durandet, Y., Large deformation of an auxetic structure in tension: Experiments and finite element analysis, Compos. Struct., 184 (2018) 92-101. https://doi.org/10.1016/j.compstruct.2017.09.076.
  • 13. Hu, L. L., Zhou, M. Zh. and Deng, H., Dynamic crushing response of auxetic honeycombs under large deformation: Theoretical analysis and numerical simulation, Thin-Walled Struct., 131 (2018) 373-384. https://doi.org/10.1016/j.tws.2018.04.020.
  • 14. Alderson, A., Alderson, K. L., Attard, D., Evans, K. E., Gatt, R., Grima, J. N., Miller, W., Ravirala, N., Smith, C. W. and Zied, K., Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol., 70 (2010) 1042-1048. https://doi.org/10.1016/j.compscitech.2009.07.009.
  • 15. Hu, L. L., Ye, W. K. and Wu, Z. J. Mechanical property of anti-trichiral honeycombs under large deformation along the x-direction, Thin-Walled Struct., 145 (2019) 106415. https://doi.org/10.1016/j.tws.2019.106415.
  • 16. Zhong, R., Fu, M., Yin, Q., Xu, Q. and Hu, L., Special characteristics of tetrachiral honeycombs under large deformation, Int. J. Solids Struct., 169 (2019) 166-176. https://doi.org/10.1016/j.ijsolstr.2019.04.020
  • 17. Mousanezhad, D., Haghpanah, B., Ghosh, R., Hamouda, A. M., Nayeb-Hashemi, H. and Vaziri, A., Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach, Theor. Appl. Mech. Lett., 6 (2016) 81-96. https://doi.org/10.1016/j.taml.2016.02.004.
  • 18. Gülcan, O., Crashworthiness of laser powder bed fusion processed In718 auxetic metamaterials, J Brazilian Soc. Mech. Sci. Eng., 46 (2024) 414. https://doi.org/10.1007/s40430-024-04927-6.
  • 19. Shao, Q., Ding, C., Ji, X., Mu, J., Wang, X., Xue, Y., Fabrication, microstructure and mechanical properties of a 3D re-entrant anti-trichiral honeycomb structure with excellent auxeticity and mechanical performance, J. Mater. Res. Technol., 32 (2024) 841-859. https://doi.org/10.1016/j.jmrt.2024.07.098.
  • 20. Yavari, R., Smoqi, Z., Riensche, A., Bevans, B., Kobir, H., Mendoza, H., Song, H., Cole, K., Rao, P., Part-scale thermal simulation of laser powder bed fusion using graph theory: Effect of thermal history on porosity, microstructure evolution, and recoater crash, Mater. Des., 204 (2021) 109685. https://doi.org/10.1016/j.matdes.2021.109685.
  • 21. Jiang, D., Thissen, H., Hughes, T. C., Yang, K., Wilson, R., Murphy, A. B., Nguyen, V., Advances in additive manufacturing of auxetic structures for biomedical applications, Mater. Today. Comm., 40 (2024) 110045. https://doi.org/10.1016/j.mtcomm.2024.110045.
  • 22. Momoh, E. O., Jayasinghe, A., Hajsadeghi, M., Vinai, R., Evans, K. E., Kripakaran, P., Orr, J., A state-of-the-art review on the application of auxetic materials in cementitious composites, Thin-Walled Struct., 196 (2024) 111447. https://doi.org/10.1016/j.tws.2023.111447.
  • 23. Gomes, R. A., de Oliveira, L. A., Francisco, M. B., Gomes, G. F., Tubular auxetic structures: A review, Thin-Walled Structures, 188 (2023) 110850. https://doi.org/10.1016/j.tws.2023.110850.
  • 24. Madhu, B. P., Johnney, M. A., Bahubalendruni, M. V. A. R., Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review, Mater. Today Comm., 34 (2023) 105285. https://doi.org/10.1016/j.mtcomm.2022.105285.

Proses Simülasyonuna Bağlı Olarak Lazer Toz Yatağı Füzyon Yöntemi ile Üretilen Ökzetik Latislerdeki Boyutsal Sapma Üzerinde Ökzetikliğin Etkisi

Yıl 2024, Cilt: 22 Sayı: 2, 63 - 72, 29.11.2024
https://doi.org/10.56193/matim.1452797

Öz

Negatif Poisson oranına sahip olan ve özellikle enerji absorbe etme özelliğine ihtiyaç duyulan endüstriyel uygulamalarda kullanım imkanı bulan ökzetik yapıların basma, çekme ya da bükme yüklemeleri altındaki mekanik davranışları literatürde incelenmiştir. Fakat bu yapıların, bir eklemeli imalat prosesi olan lazer toz yatağı füzyon yöntemi ile üretilmeleri neticesinde meydana gelen boyutsal sapmaları üzerinde, ökzetik özelliklerinin ne kadar etki ettiği konusunda herhangi bir çalışma literatürde bulunmamaktadır. Bu boşluğun doldurulmasına katkı sağlamak amacıyla, bu çalışmada beş farklı ökzetik yapı (re-entrant, trichiral, anti-thrichiral, tetrachiral, anti-tetrachiral ve hexachiral) ve bir adet ökzetik olmayan yapının (bal peteği), Inconel 718 malzemeden lazer toz yatağı füzyon yöntemi ile üretimi sırasında meydana gelen, katmanlar arası yüksek sıcaklık farklı ve bunun neticesinde oluşan kalıntı gerilmeler ve boyutsal sapma miktarları, termomekanik simülasyon kullanılarak incelenmiştir. Her bir geometriye ait Poisson oranları da hesaplanmış ve karşılaştırılmıştır. Sonuçlar, ökzetik yapıların lazer toz yatağı füzyon yöntemi ile üretilmeleri sırasında da ökzetik özellik gösterdiklerini göstermiştir. Çalışma sonucunda re-entrant yapının en yüksek, hexachiral yapının ise en düşük ökzetik özellik gösterdiği görülmüştür. Bir düğüm noktasına teğet olan duvarlardan oluşan chiral yapılar arasında, hexachiral yapı en fazla boyutsal sapma göstermiştir. Ökzetik olmayan bal peteği yapısı ise, ökzetik yapılara göre daha fazla boyutsal sapma göstermiştir.

Kaynakça

  • 1. Gao, J., Cao, X., Xiao, M., Yang, Z., Zhou, X., Li, Y., Gao, L., Yan, W., Rabczuk, T. and Mai, Y., Rational designs of mechanical metamaterials: Formulations, architectures, tessellations and prospects, Mater. Sci. Eng. R., 156 (2023) 100755. https://doi.org/10.1016/j.mser.2023.100755.
  • 2. Xue, X., Lin, C., Wu, F., Li, Z. and Liao, J., Lattice structures with negative Poisson’s ratio: A review, Mater. Today Commun. 34 (2023) 105132. https://doi.org/10.1016/j.mtcomm.2022.105132.
  • 3. Volpato, G. M., Tetzlaff, U. and Fredel, M. C., A comprehensive literature review on laser powder bed fusion of Inconel superalloys, Addit. Manuf., 55 (2022) 102871. https://doi.org/10.1016/j.addma.2022.102871.
  • 4. Taghian, M., Mosallanejad, M. H., Lannunziata, E., Del Greco, G., Iuliano, L. and Saboori, A., Laser powder bed fusion of metallic components: Latest progress in productivity, quality, and cost perspectives, J. Mater. Res. Technol., 27 (2023) 6484-6500. https://doi.org/10.1016/j.jmrt.2023.11.049.
  • 5. Li, C., Snarr, S. E., Denlinger, E. R., Irwin, J. E., Gouge, M. F., Michaleris, P. and Beaman, J. J., Experimental parameter identification for part-scale thermal modeling of selective laser sintering of PA12, Addit. Manuf., 48 (2021) 102362. https://doi.org/10.1016/j.addma.2021.102362.
  • 6. Jia, Y., Naceur, H., Saadlaoui, Y., Dubar, L. and Bergheau, J. M., A comprehensive comparison of modeling strategies and simulation techniques applied in powder-based metallic additive manufacturing processes, J. Manuf. Process., 110 (2024) 1-29. https://doi.org/10.1016/j.jmapro.2023.12.048.
  • 7. Evans, K. E. and Alderson, A., Auxetic materials: functional materials and structures from lateral thinking!, Adv. Mater., 12 (2000) 617-628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.
  • 8. Yu, X., Zhou, J., Liang, H., Jiang, Z. and Wu, L., Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog. Mater. Sci., 94 (2018) 114-173. https://doi.org/10.1016/j.pmatsci.2017.12.003.
  • 9. Lorato, A., Innocenti, P., Scarpa, F., Alderson, A., Alderson, K. L., Zied, K. M., Ravirala, N., Miller, W., Smith, C. W. and Evans, K. E., The transverse elastic properties of chiral honeycombs, Compos. Sci. Technol., 70 (2010) 1057-1063. https://doi.org/10.1016/j.compscitech.2009.07.008.
  • 10. Grima, J. N., Gatt, R. and Farrugia, P-S., On the properties of auxetic meta-tetrachiral structures. Phys. Status Solidi B, 245 (2008) 511-520. https://doi.org/10.1002/pssb.200777704.
  • 11. Jiang, Y., Rudra, B., Shim, J. and Li, Y., Limiting strain for auxeticity under large compressive deformation: chiral vs. re-entrant cellular solids, Int. J. Solids Struct., 162 (2019) 87-95. https://doi.org/10.1016/j.ijsolstr.2018.11.035
  • 12. Zhang, J., Lu, G., Wang, Z., Ruan, D., Alomarah, A. and Durandet, Y., Large deformation of an auxetic structure in tension: Experiments and finite element analysis, Compos. Struct., 184 (2018) 92-101. https://doi.org/10.1016/j.compstruct.2017.09.076.
  • 13. Hu, L. L., Zhou, M. Zh. and Deng, H., Dynamic crushing response of auxetic honeycombs under large deformation: Theoretical analysis and numerical simulation, Thin-Walled Struct., 131 (2018) 373-384. https://doi.org/10.1016/j.tws.2018.04.020.
  • 14. Alderson, A., Alderson, K. L., Attard, D., Evans, K. E., Gatt, R., Grima, J. N., Miller, W., Ravirala, N., Smith, C. W. and Zied, K., Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol., 70 (2010) 1042-1048. https://doi.org/10.1016/j.compscitech.2009.07.009.
  • 15. Hu, L. L., Ye, W. K. and Wu, Z. J. Mechanical property of anti-trichiral honeycombs under large deformation along the x-direction, Thin-Walled Struct., 145 (2019) 106415. https://doi.org/10.1016/j.tws.2019.106415.
  • 16. Zhong, R., Fu, M., Yin, Q., Xu, Q. and Hu, L., Special characteristics of tetrachiral honeycombs under large deformation, Int. J. Solids Struct., 169 (2019) 166-176. https://doi.org/10.1016/j.ijsolstr.2019.04.020
  • 17. Mousanezhad, D., Haghpanah, B., Ghosh, R., Hamouda, A. M., Nayeb-Hashemi, H. and Vaziri, A., Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach, Theor. Appl. Mech. Lett., 6 (2016) 81-96. https://doi.org/10.1016/j.taml.2016.02.004.
  • 18. Gülcan, O., Crashworthiness of laser powder bed fusion processed In718 auxetic metamaterials, J Brazilian Soc. Mech. Sci. Eng., 46 (2024) 414. https://doi.org/10.1007/s40430-024-04927-6.
  • 19. Shao, Q., Ding, C., Ji, X., Mu, J., Wang, X., Xue, Y., Fabrication, microstructure and mechanical properties of a 3D re-entrant anti-trichiral honeycomb structure with excellent auxeticity and mechanical performance, J. Mater. Res. Technol., 32 (2024) 841-859. https://doi.org/10.1016/j.jmrt.2024.07.098.
  • 20. Yavari, R., Smoqi, Z., Riensche, A., Bevans, B., Kobir, H., Mendoza, H., Song, H., Cole, K., Rao, P., Part-scale thermal simulation of laser powder bed fusion using graph theory: Effect of thermal history on porosity, microstructure evolution, and recoater crash, Mater. Des., 204 (2021) 109685. https://doi.org/10.1016/j.matdes.2021.109685.
  • 21. Jiang, D., Thissen, H., Hughes, T. C., Yang, K., Wilson, R., Murphy, A. B., Nguyen, V., Advances in additive manufacturing of auxetic structures for biomedical applications, Mater. Today. Comm., 40 (2024) 110045. https://doi.org/10.1016/j.mtcomm.2024.110045.
  • 22. Momoh, E. O., Jayasinghe, A., Hajsadeghi, M., Vinai, R., Evans, K. E., Kripakaran, P., Orr, J., A state-of-the-art review on the application of auxetic materials in cementitious composites, Thin-Walled Struct., 196 (2024) 111447. https://doi.org/10.1016/j.tws.2023.111447.
  • 23. Gomes, R. A., de Oliveira, L. A., Francisco, M. B., Gomes, G. F., Tubular auxetic structures: A review, Thin-Walled Structures, 188 (2023) 110850. https://doi.org/10.1016/j.tws.2023.110850.
  • 24. Madhu, B. P., Johnney, M. A., Bahubalendruni, M. V. A. R., Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review, Mater. Today Comm., 34 (2023) 105285. https://doi.org/10.1016/j.mtcomm.2022.105285.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma, Geliştirme ve Uygulama Makaleleri
Yazarlar

Orhan Gülcan 0000-0002-6688-2662

Kadir Günaydın 0000-0002-3045-130X

Uğur Şimşek Bu kişi benim 0000-0002-4405-5420

Yayımlanma Tarihi 29 Kasım 2024
Gönderilme Tarihi 14 Mart 2024
Kabul Tarihi 31 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 22 Sayı: 2

Kaynak Göster

Vancouver Gülcan O, Günaydın K, Şimşek U. Proses Simülasyonuna Bağlı Olarak Lazer Toz Yatağı Füzyon Yöntemi ile Üretilen Ökzetik Latislerdeki Boyutsal Sapma Üzerinde Ökzetikliğin Etkisi. MATİM. 2024;22(2):63-72.