Havacılık Uygulamaları için Termal Yalıtım Malzemesinin Geliştirilmesi
Yıl 2025,
Cilt: 23 Sayı: 2, 56 - 64, 30.11.2025
Furkan Karaboğa
,
Abdullah Tav
,
Merve Özkutlu Demirel
,
Serkan Toros
,
Yahya Öz
,
Halil İbrahim Akyıldız
Öz
Hava araçlarında, uygun operasyonel koşulların sağlanması, yapısal bütünlüğün korunması, enerji tasarrufu ve maliyet konularında kazanım sağlanması için termal yalıtım isterlerinin sağlanması son derece önemlidir. Özellikle, sıcak gaz veya sıvıların geçtiği boru hatlarının dış yüzey sıcaklığının belirli bir seviyede tutulması ve böylece hava aracının optimum sıcaklık şartlarında faaliyet göstermesi kritiktir. Bu isteri sağlamak için sıklıkla kullanılan silika bazlı aerojeller yüksek performanslı ısı yalıtım malzemeleridir. Bu çalışmada, aerojel kullanarak elde edilen kompozit bir yalıtım battaniyesinin deneysel ve nümerik olarak çalışma performansı incelenip havacılığa elverişliliği irdelenmiştir.
Kaynakça
-
1. Easa., Easy Access Rules for Large Rotorcraft (CS-29) Amendment 11, 2023. http://eur-lex.europa.eu/,.
-
2. N. Bheekhun, A.R. Abu Talib, M.R. Hassan., (2013) Aerogels in aerospace: An overview, Adv. Mater. Sci. Eng. 2013. https://doi.org/10.1155/2013/406065.
-
3. M.A. Hasan, R. Sangashetty, A.C.M. Esther, S.B. Patil, B.N. Sherikar, A. Dey., (2017) Prospect of Thermal Insulation by Silica Aerogel: A Brief Review, J. Inst. Eng. Ser. D. 98 297–304. https://doi.org/10.1007/s40033-017-0136-1.
-
4. M.A. Aegerter, N. Leventis, M.M. Koebel, S.A.I. Steiner., (2022) Handbook of Aerogels,.
-
5. Z. Sheng, Z. Liu, Y. Hou, H. Jiang, Y. Li, G. Li, X. Zhang., (2023) The Rising Aerogel Fibers: Status, Challenges, and Opportunities, Adv. Sci. 2205762 1–32. https://doi.org/10.1002/advs.202205762.
-
6. T. Xue, C. Zhu, X. Feng, Q. Wali, W. Fan, T. Liu., (2022) Polyimide Aerogel Fibers with Controllable Porous Microstructure for Super-Thermal Insulation Under Extreme Environments, Adv. Fiber Mater. 4 1118–1128. https://doi.org/10.1007/s42765-022-00145-8.
-
7. Hoseini A, Malekian A, Bahrami M., (2016) Deformation and thermal resistance study of aerogel blanket insulation material under uniaxial compression. Energy and Buildings. Oct 15;130:228-37.
-
8. Lakatos Á, Csík A, Csarnovics I. (2021) Experimental verification of thermal properties of the aerogel blanket. Case Studies in Thermal Engineering. Jun 1;25:100966.
-
9. Čubrić G, Salopek Čubrić I, Rogale D, Firšt Rogale S. (2021) Mechanical and thermal properties of polyurethane materials and inflated insulation chambers. Materials. Mar 21;14(6):1541.
-
10. Gama NV, Ferreira A, Barros-Timmons A. (2018) Polyurethane foams: Past, present, and future. Materials. Sep 27;11(10):1841.
-
11. Aditya L, Mahlia TI, Rismanchi B, Ng HM, Hasan MH, Metselaar HS, Muraza O, Aditiya HB. (2017) A review on insulation materials for energy conservation in buildings. Renewable and sustainable energy reviews. Jun 1;73:1352-65.
-
12. Pásztory Z. (2021) An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering. Dec 1;44:102604.
-
13. N. Hebalkar, K.S. Kollipara, Y. Ananthan, M.K. Sudha, Nanoporous., (2019) Aerogels for Defense and Aerospace Applications,. https://doi.org/10.1007/978-3-319-73255-8_5-1.
-
14. X. Tang, X. Yan., (2017) Dip-coating for fibrous materials: mechanism, methods and applications, J. Sol-Gel Sci. Technol. 81 378–404. https://doi.org/10.1007/s10971-016-4197-7.
-
15. Y. Liu, C. Yuan, C. Liu, J. Pan, Q. Dong., (2019) Study on the resin infusion process based on automated fiber placement fabricated dry fiber preform, Sci. Rep. 1–11. https://doi.org/10.1038/s41598-019-43982-1.
-
16. M. Ahlers., (2020) An Introduction to Aircraft Thermal Management,. https://doi.org/10.4271/9780768095524.
-
17. S.D. Sharma, L. Sowntharya, K.K. Kar., (2016) Polymer-based composite structures: Processing and applications. https://doi.org/10.1007/978-3-662-49514-8_1.
-
18. A. Tav, Y. Oz, · Halil, I. Akyildiz., (2023) Formation and thermo-physical properties of aerogel ceramic blanket composites synthesized via scalable atmospheric pressure process with methyltrimethoxysilane precursor, J. Porous Mater. 2023. 1 1–18. https://doi.org/10.1007/S10934-023-01521-4.
-
19. Qu, ZG., Fu, YD., Liu, Y., Zhou, L., (2018) “Approach for predicting effective thermal conductivity of aerogel materials through a modified lattice Boltzmann method”, Applied Thermal Engineering, 132:730–9.
-
20. M. Ibrahim, P.H. Biwole, E. Wurts, P. Achard (2014)., A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating, Build. Environ. 81 112–122.
-
21. U. Berardi, R.H. Nosrati (2018)., Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions, Energy 147 1188–1202.
Experimental and Numerical Investigation of Aerogel Based Insulation Material for Aerospace Applications
Yıl 2025,
Cilt: 23 Sayı: 2, 56 - 64, 30.11.2025
Furkan Karaboğa
,
Abdullah Tav
,
Merve Özkutlu Demirel
,
Serkan Toros
,
Yahya Öz
,
Halil İbrahim Akyıldız
Öz
It is extremely important to meet thermal insulation requirements in aircraft to ensure appropriate operational conditions, maintain structural integrity, and achieve energy savings and cost savings. In particular, it is critical to keep the external surface temperature of the pipelines through which hot gases or liquids pass at a certain level so that the aircraft operates under optimum temperature conditions. Silica-based aerogels, which are frequently used to provide this requirement, are high-performance thermal insulation materials. In this study, the operational performance and suitability for aviation of a composite insulation blanket containing aerogel was examined by using experimental and numerical methods.
Kaynakça
-
1. Easa., Easy Access Rules for Large Rotorcraft (CS-29) Amendment 11, 2023. http://eur-lex.europa.eu/,.
-
2. N. Bheekhun, A.R. Abu Talib, M.R. Hassan., (2013) Aerogels in aerospace: An overview, Adv. Mater. Sci. Eng. 2013. https://doi.org/10.1155/2013/406065.
-
3. M.A. Hasan, R. Sangashetty, A.C.M. Esther, S.B. Patil, B.N. Sherikar, A. Dey., (2017) Prospect of Thermal Insulation by Silica Aerogel: A Brief Review, J. Inst. Eng. Ser. D. 98 297–304. https://doi.org/10.1007/s40033-017-0136-1.
-
4. M.A. Aegerter, N. Leventis, M.M. Koebel, S.A.I. Steiner., (2022) Handbook of Aerogels,.
-
5. Z. Sheng, Z. Liu, Y. Hou, H. Jiang, Y. Li, G. Li, X. Zhang., (2023) The Rising Aerogel Fibers: Status, Challenges, and Opportunities, Adv. Sci. 2205762 1–32. https://doi.org/10.1002/advs.202205762.
-
6. T. Xue, C. Zhu, X. Feng, Q. Wali, W. Fan, T. Liu., (2022) Polyimide Aerogel Fibers with Controllable Porous Microstructure for Super-Thermal Insulation Under Extreme Environments, Adv. Fiber Mater. 4 1118–1128. https://doi.org/10.1007/s42765-022-00145-8.
-
7. Hoseini A, Malekian A, Bahrami M., (2016) Deformation and thermal resistance study of aerogel blanket insulation material under uniaxial compression. Energy and Buildings. Oct 15;130:228-37.
-
8. Lakatos Á, Csík A, Csarnovics I. (2021) Experimental verification of thermal properties of the aerogel blanket. Case Studies in Thermal Engineering. Jun 1;25:100966.
-
9. Čubrić G, Salopek Čubrić I, Rogale D, Firšt Rogale S. (2021) Mechanical and thermal properties of polyurethane materials and inflated insulation chambers. Materials. Mar 21;14(6):1541.
-
10. Gama NV, Ferreira A, Barros-Timmons A. (2018) Polyurethane foams: Past, present, and future. Materials. Sep 27;11(10):1841.
-
11. Aditya L, Mahlia TI, Rismanchi B, Ng HM, Hasan MH, Metselaar HS, Muraza O, Aditiya HB. (2017) A review on insulation materials for energy conservation in buildings. Renewable and sustainable energy reviews. Jun 1;73:1352-65.
-
12. Pásztory Z. (2021) An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering. Dec 1;44:102604.
-
13. N. Hebalkar, K.S. Kollipara, Y. Ananthan, M.K. Sudha, Nanoporous., (2019) Aerogels for Defense and Aerospace Applications,. https://doi.org/10.1007/978-3-319-73255-8_5-1.
-
14. X. Tang, X. Yan., (2017) Dip-coating for fibrous materials: mechanism, methods and applications, J. Sol-Gel Sci. Technol. 81 378–404. https://doi.org/10.1007/s10971-016-4197-7.
-
15. Y. Liu, C. Yuan, C. Liu, J. Pan, Q. Dong., (2019) Study on the resin infusion process based on automated fiber placement fabricated dry fiber preform, Sci. Rep. 1–11. https://doi.org/10.1038/s41598-019-43982-1.
-
16. M. Ahlers., (2020) An Introduction to Aircraft Thermal Management,. https://doi.org/10.4271/9780768095524.
-
17. S.D. Sharma, L. Sowntharya, K.K. Kar., (2016) Polymer-based composite structures: Processing and applications. https://doi.org/10.1007/978-3-662-49514-8_1.
-
18. A. Tav, Y. Oz, · Halil, I. Akyildiz., (2023) Formation and thermo-physical properties of aerogel ceramic blanket composites synthesized via scalable atmospheric pressure process with methyltrimethoxysilane precursor, J. Porous Mater. 2023. 1 1–18. https://doi.org/10.1007/S10934-023-01521-4.
-
19. Qu, ZG., Fu, YD., Liu, Y., Zhou, L., (2018) “Approach for predicting effective thermal conductivity of aerogel materials through a modified lattice Boltzmann method”, Applied Thermal Engineering, 132:730–9.
-
20. M. Ibrahim, P.H. Biwole, E. Wurts, P. Achard (2014)., A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating, Build. Environ. 81 112–122.
-
21. U. Berardi, R.H. Nosrati (2018)., Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions, Energy 147 1188–1202.