1040 Çeliğinin Isıl İşlem Sonrası Mekanik ve İç Yapı Özelliklerinin İncelenmesi
Yıl 2025,
Cilt: 23 Sayı: 2, 47 - 55, 30.11.2025
Hıdır Sercan Çubuk
,
İnan Kızılca
,
Alper Mutlu
,
Uğur Çavdar
Öz
Bu çalışma, AISI 1040 orta karbonlu çeliğe uygulanan iki farklı ısıl işlem tekniğinin—yüksek frekanslı indüksiyon ve geleneksel fırın ile ısıtma yöntemlerinin—yüzey sertliği, mikro yapı ve enerji verimliliği üzerindeki etkilerini karşılaştırmalı olarak incelemeyi amaçlamaktadır. Her iki yöntem de 950 °C sıcaklıkta uygulanan ve su verme ile tamamlanan kontrollü termal koşullar altında gerçekleştirilmiştir. Toplam altı numune farklı sürelerde ısıtılmıştır: indüksiyon için 2 ila 10 dakika, fırın için ise 60 dakika. 4 dakikalık indüksiyon işlemi, en yüksek yüzey sertliğini (647 HV), optimum martensit derinliğini (172.75 µm) ve fırın işlemine göre %33 daha düşük enerji tüketimini sağlayarak en verimli seçenek olarak öne çıkmıştır. Fırın işlemine tabi tutulan örnek ise daha düşük yüzey sertliği (613 HV) sunmuş ancak daha homojen bir ferrit–perlit yapı sergilemiştir. Mikro yapı analizi, indüksiyonla işlem görmüş örneklerin yüzeye yakın bölgelerinde yoğun martensitik bir katman oluştuğunu ortaya koyarken, fırınla işlem görmüş numunelerin daha homojen ferrit–perlit yapıda olduğunu göstermiştir. Bu bulgular, kısa süreli indüksiyonla sertleştirmenin orta karbonlu çelikler için maliyet etkin ve teknik açıdan üstün bir yüzey işlem yöntemi olduğunu ortaya koymaktadır.
Etik Beyan
Çalışmamız, etik davranışlar ve akademik kurallar çerçevesinde hazırlanmıştır. Kaynaklara doğru şekilde atıf yaptığını ve tezin yazım kılavuzuna uygun şekilde hazırladığını beyan ederiz.
Proje Numarası
1649B022215401
Kaynakça
-
1. Sanusi, K. O., Akinlabi, E. T. Experiment on effect of heat treatment on mechanical and microstructure properties of AISI steel, Materials Today: Proceedings, 2018. 5(9), 17996-18001.
-
2. Murmu, S., Chaudhary, S. K., Rajak, A. K., Effect of heat treatment on mechanical properties of medium carbon steel welds, Materials Today: Proceedings, 2022. 56, 964-970.
-
3. Asif, M., Ahad, M. A., Iqbal, M. F. H., Reyaz, S., Experimental investigation of thermal properties of tool steel and mild steel with heat treatment, Materials Today: Proceedings, 2021. 45, 5511-5517.
-
4. Prasad, C. T., Umesh, G., Surya, N., Investıgatıon of hardness for AISI 1040 steel usıng varıous coolıng methods. Internatıonal Journal of Engıneerıng Scıences & Research Technology, 7(3), 207-211. Telengana, India, 2018.
-
5. Srivastava, A., et al., Structural and fem analysis of heat treatment effects on mild steel, Materials Today: Proceedings, 2021. 46, 11064-11071.
-
6. Sokollu, B., Gulcan, O., Konukseven, E. I. Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting, Additive Manufacturing, 2022. 60, 103199.
-
7. Singh, S., et al., Effect of heat treatment processes on the mechanical properties of AISI 1045 steel, Materials Today: Proceedings, 2021. 45, 5097-5101.
-
8. Gurumurthy, B. M., et al., Microstructure authentication on mechanical property of medium carbon Low alloy duplex steels, Journal of Materials Research and Technology, 2020. 9(3), 5105-5111.
-
9. da Costa Aichholz, S. A., et al. Tribocorrosion behavior of boronized AISI 4140 steel. Surface and Coatings Technology, 2018. 352, 265-272.
-
10. Kumar, S., Maity, S. R., Patnaik, L. Effect of heat treatment and TiN coating on AISI O1 cold work tool steel, Materials Today: Proceedings, 2020. 26, 685-688.
-
11. Aramaki, M., et al., Effects of nitriding-quenching and carburizing-quenching on wear properties of industrial pure iron. htm, Journal of Heat Treatment and Materials, 2018. 73(3), 131-143.
-
12. Özerkan, H. B. Experimental fatigue life determination of thermo-diffusion surface boronized of AISI 1040 steel, Journal of Mechanical Science and Technology, 2019. 33(10), 4957-4962.
-
13. Samiuddin, M., et.al., A study of induction hardening parameters for the din 42crmo4 alloy through its micro hardness, corrosion resistance, and microstructure examination, Physics of Metals and Metallography, 2021. 122(11), 1121-1131.
-
14. Mollamahmutoglu, M., Yilmaz, O., Volumetric heat source model for laser-based powder bed fusion process in additive manufacturing, Thermal Science and Engineering Progress, 2021. 25, 101021.
-
15. Kohli, A., Singh, H. Optimization of processing parameters in induction hardening using response surface methodology. Sadhana, 2011. 36(2), 141-152.
-
16. Fisk, M., et al., Modelling of induction hardening in low alloy steels, Finite Elements in Analysis and Design, 2018. 144, 61-75.
-
17. 17. Guillermo R., Tech Tip: Effective or rms voltage of a sinusoid, The Technology Interface, Spring 2006, Vol. 6 No. 1 ISSN 1523-9926 http://engr.nmsu.edu/~etti/Springer
-
18. Pangestu, M. A., & Rosidah, A. A. (2024). Austenitizing Temperature and Quenching Media Effects on Hardness and Microstructure in Hardening of AISI 1040 Steel. Metrotech (Journal of Mechanical and Electrical Technology), 3(2), 54-59.
-
19. Onan, M., Baynal, K., Ünal, H. İ., & Katre, F. (2012, November). Optimization of induction hardened AISI 1040 steel by experimental design method and material characterization analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 45196, pp. 1219-1224). American Society of Mechanical Engineers.
-
20. Alrashdan, K. R., Ali, F. A., & Khedr, M. M. A. (2018). Enhancing the mechanical properties of carbon steel (AISI 1040) by optimized heat treatment process. Materials Science: Indian Journal, 16(2), 131.
-
21. Chandran, R., Udhayaraj, S., & Eazhil, K. M. (2022). Effect of the heat-treatment process on the mechanical and microstructure properties of EN8 steel. International Journal of Surface Engineering and Interdisciplinary Materials Science (IJSEIMS), 10(1), 1-12.
-
22. 22. Gurumurthy, B. M., Gowrishankar, M. C., Sharma, S., Kini, A., Shettar, M., & Hiremath, P. (2020). Microstructure authentication on mechanical property of medium carbon Low alloy duplex steels. Journal of Materials Research and Technology, 9(3), 5105-5111.
Investigation of Mechanical and Internal Structure Properties of 1040 Steel After Heat Treatments
Yıl 2025,
Cilt: 23 Sayı: 2, 47 - 55, 30.11.2025
Hıdır Sercan Çubuk
,
İnan Kızılca
,
Alper Mutlu
,
Uğur Çavdar
Öz
This study aims to compare two heat treatment techniques—high-frequency induction and conventional furnace heating—applied to AISI 1040 medium-carbon steel. The effects on surface hardness, microstructure, and energy efficiency were evaluated under controlled thermal conditions at 950 °C followed by water quenching. A total of six samples were examined, varying in heating durations from 2 to 10 minutes for induction and 60 minutes for furnace treatment. A 4-minute induction process was found to be the most efficient, providing the highest surface hardness (647 HV), optimal martensitic depth (172.75 µm), and 33% lower energy consumption compared to the furnace-treated sample (613 HV). Microstructural analysis revealed a dense martensitic layer near the surface for induction-treated samples, while furnace-treated specimens exhibited a uniform ferrite–pearlite structure. This makes short-duration induction hardening a cost-effective and technically superior surface treatment strategy for medium-carbon steels.
Proje Numarası
1649B022215401
Teşekkür
This study was produced while conducting research within the scope of TÜBİTAK BİDEB 2210-C Priority Areas Master's Scholarship Program. (Capt. No: 1649B022215401). We would like to thank TÜBİTAK for increasing the scope of our research
Kaynakça
-
1. Sanusi, K. O., Akinlabi, E. T. Experiment on effect of heat treatment on mechanical and microstructure properties of AISI steel, Materials Today: Proceedings, 2018. 5(9), 17996-18001.
-
2. Murmu, S., Chaudhary, S. K., Rajak, A. K., Effect of heat treatment on mechanical properties of medium carbon steel welds, Materials Today: Proceedings, 2022. 56, 964-970.
-
3. Asif, M., Ahad, M. A., Iqbal, M. F. H., Reyaz, S., Experimental investigation of thermal properties of tool steel and mild steel with heat treatment, Materials Today: Proceedings, 2021. 45, 5511-5517.
-
4. Prasad, C. T., Umesh, G., Surya, N., Investıgatıon of hardness for AISI 1040 steel usıng varıous coolıng methods. Internatıonal Journal of Engıneerıng Scıences & Research Technology, 7(3), 207-211. Telengana, India, 2018.
-
5. Srivastava, A., et al., Structural and fem analysis of heat treatment effects on mild steel, Materials Today: Proceedings, 2021. 46, 11064-11071.
-
6. Sokollu, B., Gulcan, O., Konukseven, E. I. Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting, Additive Manufacturing, 2022. 60, 103199.
-
7. Singh, S., et al., Effect of heat treatment processes on the mechanical properties of AISI 1045 steel, Materials Today: Proceedings, 2021. 45, 5097-5101.
-
8. Gurumurthy, B. M., et al., Microstructure authentication on mechanical property of medium carbon Low alloy duplex steels, Journal of Materials Research and Technology, 2020. 9(3), 5105-5111.
-
9. da Costa Aichholz, S. A., et al. Tribocorrosion behavior of boronized AISI 4140 steel. Surface and Coatings Technology, 2018. 352, 265-272.
-
10. Kumar, S., Maity, S. R., Patnaik, L. Effect of heat treatment and TiN coating on AISI O1 cold work tool steel, Materials Today: Proceedings, 2020. 26, 685-688.
-
11. Aramaki, M., et al., Effects of nitriding-quenching and carburizing-quenching on wear properties of industrial pure iron. htm, Journal of Heat Treatment and Materials, 2018. 73(3), 131-143.
-
12. Özerkan, H. B. Experimental fatigue life determination of thermo-diffusion surface boronized of AISI 1040 steel, Journal of Mechanical Science and Technology, 2019. 33(10), 4957-4962.
-
13. Samiuddin, M., et.al., A study of induction hardening parameters for the din 42crmo4 alloy through its micro hardness, corrosion resistance, and microstructure examination, Physics of Metals and Metallography, 2021. 122(11), 1121-1131.
-
14. Mollamahmutoglu, M., Yilmaz, O., Volumetric heat source model for laser-based powder bed fusion process in additive manufacturing, Thermal Science and Engineering Progress, 2021. 25, 101021.
-
15. Kohli, A., Singh, H. Optimization of processing parameters in induction hardening using response surface methodology. Sadhana, 2011. 36(2), 141-152.
-
16. Fisk, M., et al., Modelling of induction hardening in low alloy steels, Finite Elements in Analysis and Design, 2018. 144, 61-75.
-
17. 17. Guillermo R., Tech Tip: Effective or rms voltage of a sinusoid, The Technology Interface, Spring 2006, Vol. 6 No. 1 ISSN 1523-9926 http://engr.nmsu.edu/~etti/Springer
-
18. Pangestu, M. A., & Rosidah, A. A. (2024). Austenitizing Temperature and Quenching Media Effects on Hardness and Microstructure in Hardening of AISI 1040 Steel. Metrotech (Journal of Mechanical and Electrical Technology), 3(2), 54-59.
-
19. Onan, M., Baynal, K., Ünal, H. İ., & Katre, F. (2012, November). Optimization of induction hardened AISI 1040 steel by experimental design method and material characterization analysis. In ASME International Mechanical Engineering Congress and Exposition (Vol. 45196, pp. 1219-1224). American Society of Mechanical Engineers.
-
20. Alrashdan, K. R., Ali, F. A., & Khedr, M. M. A. (2018). Enhancing the mechanical properties of carbon steel (AISI 1040) by optimized heat treatment process. Materials Science: Indian Journal, 16(2), 131.
-
21. Chandran, R., Udhayaraj, S., & Eazhil, K. M. (2022). Effect of the heat-treatment process on the mechanical and microstructure properties of EN8 steel. International Journal of Surface Engineering and Interdisciplinary Materials Science (IJSEIMS), 10(1), 1-12.
-
22. 22. Gurumurthy, B. M., Gowrishankar, M. C., Sharma, S., Kini, A., Shettar, M., & Hiremath, P. (2020). Microstructure authentication on mechanical property of medium carbon Low alloy duplex steels. Journal of Materials Research and Technology, 9(3), 5105-5111.