Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates

Yıl 2022, Cilt: 2 Sayı: 2, 92 - 100, 30.09.2022

Öz

Leafy vegetable production under a controlled environment by regulating lighting has many advantages. However, the high initial start-up and operation costs are limiting factors. In order to design an optimal lighting environment for plant growth, quality and quantity of the provided light energy must match each crop’s demand. For lettuce, this demand is established as a daily light integral (DLI) of 17 mol/m²/day within the photosynthetic active radiation (PAR) spectra. Sunshine data from the two considered locations Aachen and Cairo have been collected and edited. With that data, the available PAR-fraction was calculated with the Angstrom-Prescott equation and compared to the plants’ demand. The available sunlight energy exceeds the crops’ demand all year round in Cairo (maximum in June, five times higher than demand) and in the summer months in Aachen. In the winter months in Aachen the sunlight energy is lacking (only 14 % of the required DLI in December). The results reveal that light balance tools like artificial light and shading nets provide promotion of lettuce growth and enhance hydroponic cultivation in semi-controlled environments. They also provide data for scaling advanced hydroponic cultivation.

Kaynakça

  • Abdel-Ghany, A., Al-Helal, I., Alkoaik, F., Alsadon, A., Shady, M., & Ibrahim, A. (2019). Predicting the cooling potential of different shading methods for greenhouses in arid regions. Energies, 12(24), 4716. https://doi.org/10.3390/en12244716
  • Ahmed, H. A., Yu-Xin, T., & Qi-Chang, Y. (2020). Lettuce plant growth and tipburn occurrence as affected by airflow using a multi-fan system in a plant factory with artificial light. Journal of thermal biology, 88, 102496.10.1016/j.jtherbio.2019.102496
  • Aires, A. (2018). Hydroponic Production Systems: Impact on Nutritional Status and Bioactive Compounds of Fresh Vegetables. In M. Asaduzzaman, & T. Asao (Eds.), Vegetables - Importance of Quality Vegetables to Human Health. IntechOpen. https://doi.org/10.5772/intechopen.73011.
  • Albright, L. D., Both, A. J., & Chiu, A. J. (2000). Controlling greenhouse light to a consistent daily integral. Transactions of the ASAE, 43(2), 421.doi:https://doi.org/10.13031/2013.2721
  • Barthel, S., Isendahl, C., Vis, B. N., Drescher, A., Evans, D. L., & van Timmeren, A. (2019). Global urbanization and food production in direct competition for land: Leverage places to mitigate impacts on SDG2 and on the Earth System. The Anthropocene Review, 6(1-2), 71-97. https://doi.org/10.1177/2053019619856672
  • Botero-Valencia, J. S., Mejia-Herrera, M., & Pearce, J. M. (2022). Low cost climate station for smart agriculture applications with photovoltaic energy and wireless communication. HardwareX, 11, e00296. https://doi.org/10.1016/j.ohx.2022.e00296
  • Brechner, M., & Both, A. J. (2013). Controlled Environment Agriculture-Hydroponic Lettuce Handbook. Retrieved on June 9, 2022, from https://cea. cals. cornell. edu/attachments/Cornell CEA Lettuce Handbook. pdf
  • Chen, P., Zhu, G., Kim, H. J., Brown, P. B., & Huang, J. Y. (2020). Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. Journal of Cleaner Production, 275, 122888. https://doi.org/10.1016/j.jclepro.2020.122888
  • Chinchilla, S., Izzo, L. G., Van Santen, E., & Gómez, C. (2018). Growth and physiological responses of lettuce grown under pre-dawn or end-of-day sole-source light-quality treatments. Horticulturae, 4(2), 8. https://doi.org/10.3390/horticulturae4020008
  • Climate-Data.org (2019). KLIMA KAIRO. Retrieved on June 9, 2022, from de.climate-data.org/afrika/aegypten/gouvernement-al-qahira/kairo-3392/.
  • Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4(3), 301-312. https://doi.org/10.1007/s40641-018-0101-6
  • CDC. (2022). Climate Data Center, Deutscher Wetterdienst. Retrieved on June 9, 2022, from https://cdc.dwd.de/portal/.
  • Dzakovich, M. P., Gómez, C., & Mitchell, C. A. (2015). Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. HortScience, 50(10), 1498-1502. https://doi.org/10.21273/HORTSCI.50.10.1498
  • Fu, W., Li, P., and Wu, Y., ‘Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce’, Scientia Horticulturae, Vol. 135, 2012. https://doi.org/10.1016/j.scienta.2011.12.004
  • Ge, S., Smith, R. G., Jacovides, C. P., Kramer, M. G., and Carruthers, R. I., Ge, S., Smith, R. G., Jacovides, C. P., Kramer, M. G., & Carruthers, R. I. (2011). Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theoretical and Applied Climatology, 105(1), 107-118. https://doi.org/10.1007/s00704-010-0368-6
  • Gómez, C., & Mitchell, C. A. (2015). Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience, 50(1), 112-118. https://doi.org/10.21273/HORTSCI.50.1.112
  • Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Bâali, F., & El Gayar, A. (2018). Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration, 3(1), 1-15. https://doi.org/10.1007/s41207-018-0067-8
  • Ilić, S. Z., Milenković, L., Dimitrijević, A., Stanojević, L., Cvetković, D., Kevrešan, Ž., ... & Mastilović, J. (2017). Light modification by color nets improve quality of lettuce from summer production. Scientia horticulturae, 226, 389-397. https://doi.org/10.1016/j.scienta.2017.09.009
  • Jiang, J., Mohagheghi, A., & Moallem, M. (2019). Energy-efficient supplemental LED lighting control for a proof-of-concept greenhouse system. IEEE Transactions on industrial electronics, 67(4), 3033-3042. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8701607
  • Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J. (2013). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture, Environment, and Biotechnology, 54(6), 501-509. https://doi.org/10.1007/s13580-013-0109-8
  • Khalil, S. A., & Shaffie, A. M. (2016). Attenuation of the solar energy by aerosol particles: A review and case study. Renewable and Sustainable Energy Reviews, 54, 363-375. https://doi.org/10.1016/j.rser.2015.09.085
  • Kozai, T. (2016). Why LED Lighting for Urban Agriculture?. In: T. Kozai, K. Fujiwara, E. S. Runkle (Eds.), LED Lighting for Urban Agriculture (pp. 3-18). Springer, Singapore. https://doi.org/10.1007/978-981-10-1848-0_1
  • Feng, L., Qin, W., Wang, L., Lin, A., & Zhang, M. (2018). Comparison of artificial intelligence and physical models for forecasting photosynthetically-active radiation. Remote Sensing, 10(11), 1855. https://doi.org/10.3390/rs10111855
  • Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23-34. https://doi.org/10.1016/j.gloplacha.2015.01.003
  • Mahato, A. (2014). Climate change and its impact on agriculture. International Journal of Scientific and Research Publications, 4(4), 1-6. https://www.nswai.org/docs/Climate_change_impact_on_Agriculture.pdf
  • Materska, M., Olszówka, K., Chilczuk, B., Stochmal, A., Pecio, Ł., Pacholczyk-Sienicka, B., ... & Masullo, M. (2019). Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. European Food Research and Technology, 245(3), 733-744. https://doi.org/10.1007/s00217-018-3195-0
  • Mattson, N. S. (Ed.). (2015). Tipburn of Hydroponic Lettuce e-Gro Alert (4). https://www.e-gro.org/pdf/2015_431.pdf
  • McCree, K. J. (1971). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191-216. https://doi.org/10.1016/0002-1571(71)90022-7
  • Michelon, N., Pennisi, G., Myint, N. O., Dall’Olio, G., Batista, L. P., Salviano, A. A. C., ... & Gianquinto, G. (2020). Strategies for improved yield and water use efficiency of lettuce (Lactuca sativa L.) through simplified soilless cultivation under semi-arid climate. Agronomy, 10(9), 1379. https://doi.org/10.3390/agronomy10091379
  • Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371.https://doi.org/ 10.5958/2455-7145.2018.00056.5
  • T. Namgyel, C. Khunarak, S. Siyang, T. Pobkrut, J. Norbu and T. Kerdcharoen (2018) Effects of supplementary LED light on the growth of lettuce in a smart hydroponic system, 10th International Conference on Knowledge and Smart Technology (KST), Thailand, pp. 216-220. https://doi.org/ 10.1109/KST.2018.8426202.
  • Nhut, D.T., Huy, N.P., Tung, H.T., Luan, V.Q., Nam, N.B. (2017). LEDs and Their Potential in Somatic Embryogenesis of Panax vietnamensis Ha et Grushv.. In: S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_14
  • Paulescu, M., Stefu, N., Calinoiu, D., Paulescu, E., Pop, N., Boata, R., & Mares, O. (2016). Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis. Renewable and Sustainable Energy Reviews, 62, 495-506. https://doi.org/10.1016/j.rser.2016.04.012
  • Pinho, P., Hytönen, T., Rantanen, M., Elomaa, P., & Halonen, L. (2013). Dynamic control of supplemental lighting intensity in a greenhouse environment. Lighting Research & Technology, 45(3), 295-304. https://doi.org/10.1177/1477153512444064
  • Javadinejad, S., Dara, R., & Jafary, F. (2021). Analysis and prioritization the effective factors on increasing farmers resilience under climate change and drought. Agricultural research, 10(3), 497-513. https://doi.org/10.1007/s40003-020-00516-w
  • Sahdev, R.K., Kumar, M. & Dhingra, A.K. A comprehensive review of greenhouse shapes and its applications. Front. Energy 13, 427–438 (2019). https://doi.org/10.1007/s11708-017-0464-8
  • Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E., & Klirs, C. (2019). Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report. World Resources Report. https://agritrop.cirad.fr/593176/1/WRR_Food_Full_Report_0.pdf
  • Shimizu, H., Saito, Y., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2011). Light environment optimization for lettuce growth in plant factory. IFAC Proceedings Volumes, 44(1), 605-609. https://doi.org/10.3182/20110828-6-IT-1002.02683
  • Song, J., Huang, H., Hao, Y., Song, S., Zhang, Y., Su, W., & Liu, H. (2020). Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Scientific reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-59574-3
  • Spencer, J. W. (1971)."Fourier series reprensentation of the position of the sun." Search 2 (5), 162-172.
  • Stagnari, F., Galieni, A., & Pisante, M. (2015). Shading and nitrogen management affect quality, safety and yield of greenhouse-grown leaf lettuce. Scientia Horticulturae, 192, 70-79. https://doi.org/10.1016/j.scienta.2015.05.003
  • Statuto, D., Abdel-Ghany, A.M., Starace, G., Arrigoni, P., Picuno, P. (2020). Comparison of the Efficiency of Plastic Nets for Shading Greenhouse in Different Climates. In A. Coppola, G. Di Renzo, G. Altieri & P. D'Antonio, (Eds.), Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production. MID-TERM AIIA 2019. Lecture Notes in Civil Engineering, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-39299-4_33
  • Svanera, L., Ghidesi, G., & Knoche, R. (2021). Agrovoltaico®: 10 years design and operation experience. In AIP Conference Proceedings (Vol. 2361, No. 1, p. 090002). AIP Publishing LLC. https://doi.org/10.1063/5.0055869
  • Udo, S. O., & Aro, T. O. (2000). New empirical relationships for determining global PAR from measurements of global solar radiation, infrared radiation or sunshine duration. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(10),1265-1274. https://doi.org/10.1002/1097-0088(200008)20:10<1265::AID-JOC530>3.0.CO;2-C
  • United Nations Department of Economic and Social Affairs, Population Division (2022). World Population Prospects, the 2015 Revision. Retrieved on June 9, 2022, from https://population.un.org/wpp/
  • Viršilė, A., Brazaitytė, A., Vaštakaitė‐Kairienė, V., Miliauskienė, J., Jankauskienė, J., Novičkovas, A., & Samuolienė, G. (2019). Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce. Journal of the Science of Food and Agriculture, 99(14), 6608-6619.https://doi.org/10.1002/jsfa.9948
  • Westermann, Diercke (Ed.) (2022). Atlas. Retrieved on June 9, 2022, from https://diercke.westermann.de/
  • Zhang, X., He, D., Niu, G., Yan, Z., & Song, J. (2018). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. International Journal of Agricultural and Biological Engineering, 11(2), 33-40. https://doi.org/10.25165/j.ijabe.20181102.3420
  • Zhou, C., Zhang, Y., Liu, W., Zha, L., Shao, M., & Li, B. (2020). Light quality affected the growth and root organic carbon and autotoxin secretions of hydroponic lettuce. Plants, 9(11), 1542. https://doi.org/10.3390/plants9111542

The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates

Yıl 2022, Cilt: 2 Sayı: 2, 92 - 100, 30.09.2022

Öz

Leafy vegetable production under a controlled environment by regulating lighting has many advantages. However, the high initial start-up and operation costs are limiting factors. In order to design an optimal lighting environment for plant growth, quality and quantity of the provided light energy must match each crop’s demand. For lettuce, this demand is established as a daily light integral (DLI) of 17 mol/m²/day within the photosynthetic active radiation (PAR) spectra. Sunshine data from the two considered locations Aachen and Cairo have been collected and edited. With that data, the available PAR-fraction was calculated with the Angstrom-Prescott equation and compared to the plants’ demand. The available sunlight energy exceeds the crops’ demand all year round in Cairo (maximum in June, five times higher than demand) and in the summer months in Aachen. In the winter months in Aachen the sunlight energy is lacking (only 14 % of the required DLI in December). The results reveal that light balance tools like artificial light and shading nets provide promotion of lettuce growth and enhance hydroponic cultivation in semi-controlled environments. They also provide data for scaling advanced hydroponic cultivation.

Kaynakça

  • Abdel-Ghany, A., Al-Helal, I., Alkoaik, F., Alsadon, A., Shady, M., & Ibrahim, A. (2019). Predicting the cooling potential of different shading methods for greenhouses in arid regions. Energies, 12(24), 4716. https://doi.org/10.3390/en12244716
  • Ahmed, H. A., Yu-Xin, T., & Qi-Chang, Y. (2020). Lettuce plant growth and tipburn occurrence as affected by airflow using a multi-fan system in a plant factory with artificial light. Journal of thermal biology, 88, 102496.10.1016/j.jtherbio.2019.102496
  • Aires, A. (2018). Hydroponic Production Systems: Impact on Nutritional Status and Bioactive Compounds of Fresh Vegetables. In M. Asaduzzaman, & T. Asao (Eds.), Vegetables - Importance of Quality Vegetables to Human Health. IntechOpen. https://doi.org/10.5772/intechopen.73011.
  • Albright, L. D., Both, A. J., & Chiu, A. J. (2000). Controlling greenhouse light to a consistent daily integral. Transactions of the ASAE, 43(2), 421.doi:https://doi.org/10.13031/2013.2721
  • Barthel, S., Isendahl, C., Vis, B. N., Drescher, A., Evans, D. L., & van Timmeren, A. (2019). Global urbanization and food production in direct competition for land: Leverage places to mitigate impacts on SDG2 and on the Earth System. The Anthropocene Review, 6(1-2), 71-97. https://doi.org/10.1177/2053019619856672
  • Botero-Valencia, J. S., Mejia-Herrera, M., & Pearce, J. M. (2022). Low cost climate station for smart agriculture applications with photovoltaic energy and wireless communication. HardwareX, 11, e00296. https://doi.org/10.1016/j.ohx.2022.e00296
  • Brechner, M., & Both, A. J. (2013). Controlled Environment Agriculture-Hydroponic Lettuce Handbook. Retrieved on June 9, 2022, from https://cea. cals. cornell. edu/attachments/Cornell CEA Lettuce Handbook. pdf
  • Chen, P., Zhu, G., Kim, H. J., Brown, P. B., & Huang, J. Y. (2020). Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. Journal of Cleaner Production, 275, 122888. https://doi.org/10.1016/j.jclepro.2020.122888
  • Chinchilla, S., Izzo, L. G., Van Santen, E., & Gómez, C. (2018). Growth and physiological responses of lettuce grown under pre-dawn or end-of-day sole-source light-quality treatments. Horticulturae, 4(2), 8. https://doi.org/10.3390/horticulturae4020008
  • Climate-Data.org (2019). KLIMA KAIRO. Retrieved on June 9, 2022, from de.climate-data.org/afrika/aegypten/gouvernement-al-qahira/kairo-3392/.
  • Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4(3), 301-312. https://doi.org/10.1007/s40641-018-0101-6
  • CDC. (2022). Climate Data Center, Deutscher Wetterdienst. Retrieved on June 9, 2022, from https://cdc.dwd.de/portal/.
  • Dzakovich, M. P., Gómez, C., & Mitchell, C. A. (2015). Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. HortScience, 50(10), 1498-1502. https://doi.org/10.21273/HORTSCI.50.10.1498
  • Fu, W., Li, P., and Wu, Y., ‘Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce’, Scientia Horticulturae, Vol. 135, 2012. https://doi.org/10.1016/j.scienta.2011.12.004
  • Ge, S., Smith, R. G., Jacovides, C. P., Kramer, M. G., and Carruthers, R. I., Ge, S., Smith, R. G., Jacovides, C. P., Kramer, M. G., & Carruthers, R. I. (2011). Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theoretical and Applied Climatology, 105(1), 107-118. https://doi.org/10.1007/s00704-010-0368-6
  • Gómez, C., & Mitchell, C. A. (2015). Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience, 50(1), 112-118. https://doi.org/10.21273/HORTSCI.50.1.112
  • Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Bâali, F., & El Gayar, A. (2018). Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration, 3(1), 1-15. https://doi.org/10.1007/s41207-018-0067-8
  • Ilić, S. Z., Milenković, L., Dimitrijević, A., Stanojević, L., Cvetković, D., Kevrešan, Ž., ... & Mastilović, J. (2017). Light modification by color nets improve quality of lettuce from summer production. Scientia horticulturae, 226, 389-397. https://doi.org/10.1016/j.scienta.2017.09.009
  • Jiang, J., Mohagheghi, A., & Moallem, M. (2019). Energy-efficient supplemental LED lighting control for a proof-of-concept greenhouse system. IEEE Transactions on industrial electronics, 67(4), 3033-3042. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8701607
  • Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J. (2013). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture, Environment, and Biotechnology, 54(6), 501-509. https://doi.org/10.1007/s13580-013-0109-8
  • Khalil, S. A., & Shaffie, A. M. (2016). Attenuation of the solar energy by aerosol particles: A review and case study. Renewable and Sustainable Energy Reviews, 54, 363-375. https://doi.org/10.1016/j.rser.2015.09.085
  • Kozai, T. (2016). Why LED Lighting for Urban Agriculture?. In: T. Kozai, K. Fujiwara, E. S. Runkle (Eds.), LED Lighting for Urban Agriculture (pp. 3-18). Springer, Singapore. https://doi.org/10.1007/978-981-10-1848-0_1
  • Feng, L., Qin, W., Wang, L., Lin, A., & Zhang, M. (2018). Comparison of artificial intelligence and physical models for forecasting photosynthetically-active radiation. Remote Sensing, 10(11), 1855. https://doi.org/10.3390/rs10111855
  • Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23-34. https://doi.org/10.1016/j.gloplacha.2015.01.003
  • Mahato, A. (2014). Climate change and its impact on agriculture. International Journal of Scientific and Research Publications, 4(4), 1-6. https://www.nswai.org/docs/Climate_change_impact_on_Agriculture.pdf
  • Materska, M., Olszówka, K., Chilczuk, B., Stochmal, A., Pecio, Ł., Pacholczyk-Sienicka, B., ... & Masullo, M. (2019). Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. European Food Research and Technology, 245(3), 733-744. https://doi.org/10.1007/s00217-018-3195-0
  • Mattson, N. S. (Ed.). (2015). Tipburn of Hydroponic Lettuce e-Gro Alert (4). https://www.e-gro.org/pdf/2015_431.pdf
  • McCree, K. J. (1971). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191-216. https://doi.org/10.1016/0002-1571(71)90022-7
  • Michelon, N., Pennisi, G., Myint, N. O., Dall’Olio, G., Batista, L. P., Salviano, A. A. C., ... & Gianquinto, G. (2020). Strategies for improved yield and water use efficiency of lettuce (Lactuca sativa L.) through simplified soilless cultivation under semi-arid climate. Agronomy, 10(9), 1379. https://doi.org/10.3390/agronomy10091379
  • Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371.https://doi.org/ 10.5958/2455-7145.2018.00056.5
  • T. Namgyel, C. Khunarak, S. Siyang, T. Pobkrut, J. Norbu and T. Kerdcharoen (2018) Effects of supplementary LED light on the growth of lettuce in a smart hydroponic system, 10th International Conference on Knowledge and Smart Technology (KST), Thailand, pp. 216-220. https://doi.org/ 10.1109/KST.2018.8426202.
  • Nhut, D.T., Huy, N.P., Tung, H.T., Luan, V.Q., Nam, N.B. (2017). LEDs and Their Potential in Somatic Embryogenesis of Panax vietnamensis Ha et Grushv.. In: S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_14
  • Paulescu, M., Stefu, N., Calinoiu, D., Paulescu, E., Pop, N., Boata, R., & Mares, O. (2016). Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis. Renewable and Sustainable Energy Reviews, 62, 495-506. https://doi.org/10.1016/j.rser.2016.04.012
  • Pinho, P., Hytönen, T., Rantanen, M., Elomaa, P., & Halonen, L. (2013). Dynamic control of supplemental lighting intensity in a greenhouse environment. Lighting Research & Technology, 45(3), 295-304. https://doi.org/10.1177/1477153512444064
  • Javadinejad, S., Dara, R., & Jafary, F. (2021). Analysis and prioritization the effective factors on increasing farmers resilience under climate change and drought. Agricultural research, 10(3), 497-513. https://doi.org/10.1007/s40003-020-00516-w
  • Sahdev, R.K., Kumar, M. & Dhingra, A.K. A comprehensive review of greenhouse shapes and its applications. Front. Energy 13, 427–438 (2019). https://doi.org/10.1007/s11708-017-0464-8
  • Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E., & Klirs, C. (2019). Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report. World Resources Report. https://agritrop.cirad.fr/593176/1/WRR_Food_Full_Report_0.pdf
  • Shimizu, H., Saito, Y., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2011). Light environment optimization for lettuce growth in plant factory. IFAC Proceedings Volumes, 44(1), 605-609. https://doi.org/10.3182/20110828-6-IT-1002.02683
  • Song, J., Huang, H., Hao, Y., Song, S., Zhang, Y., Su, W., & Liu, H. (2020). Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Scientific reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-59574-3
  • Spencer, J. W. (1971)."Fourier series reprensentation of the position of the sun." Search 2 (5), 162-172.
  • Stagnari, F., Galieni, A., & Pisante, M. (2015). Shading and nitrogen management affect quality, safety and yield of greenhouse-grown leaf lettuce. Scientia Horticulturae, 192, 70-79. https://doi.org/10.1016/j.scienta.2015.05.003
  • Statuto, D., Abdel-Ghany, A.M., Starace, G., Arrigoni, P., Picuno, P. (2020). Comparison of the Efficiency of Plastic Nets for Shading Greenhouse in Different Climates. In A. Coppola, G. Di Renzo, G. Altieri & P. D'Antonio, (Eds.), Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production. MID-TERM AIIA 2019. Lecture Notes in Civil Engineering, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-39299-4_33
  • Svanera, L., Ghidesi, G., & Knoche, R. (2021). Agrovoltaico®: 10 years design and operation experience. In AIP Conference Proceedings (Vol. 2361, No. 1, p. 090002). AIP Publishing LLC. https://doi.org/10.1063/5.0055869
  • Udo, S. O., & Aro, T. O. (2000). New empirical relationships for determining global PAR from measurements of global solar radiation, infrared radiation or sunshine duration. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(10),1265-1274. https://doi.org/10.1002/1097-0088(200008)20:10<1265::AID-JOC530>3.0.CO;2-C
  • United Nations Department of Economic and Social Affairs, Population Division (2022). World Population Prospects, the 2015 Revision. Retrieved on June 9, 2022, from https://population.un.org/wpp/
  • Viršilė, A., Brazaitytė, A., Vaštakaitė‐Kairienė, V., Miliauskienė, J., Jankauskienė, J., Novičkovas, A., & Samuolienė, G. (2019). Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce. Journal of the Science of Food and Agriculture, 99(14), 6608-6619.https://doi.org/10.1002/jsfa.9948
  • Westermann, Diercke (Ed.) (2022). Atlas. Retrieved on June 9, 2022, from https://diercke.westermann.de/
  • Zhang, X., He, D., Niu, G., Yan, Z., & Song, J. (2018). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. International Journal of Agricultural and Biological Engineering, 11(2), 33-40. https://doi.org/10.25165/j.ijabe.20181102.3420
  • Zhou, C., Zhang, Y., Liu, W., Zha, L., Shao, M., & Li, B. (2020). Light quality affected the growth and root organic carbon and autotoxin secretions of hydroponic lettuce. Plants, 9(11), 1542. https://doi.org/10.3390/plants9111542
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği, Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Jonathan Kummer Bu kişi benim 0000-0001-9531-8545

Demet Çekin 0000-0001-8598-2426

Hani Sewilam Bu kişi benim 0000-0001-9690-1652

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 5 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 2 Sayı: 2

Kaynak Göster

APA Kummer, J., Çekin, D., & Sewilam, H. (2022). The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates. Muş Alparslan University Journal of Agriculture and Nature, 2(2), 92-100.
AMA Kummer J, Çekin D, Sewilam H. The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates. MAÜ Tarım Doğa Derg. Eylül 2022;2(2):92-100.
Chicago Kummer, Jonathan, Demet Çekin, ve Hani Sewilam. “The Effect of Solar Radiation on the Growth and Development of Hydroponically Grown Lettuce in Two Areas With Different Climates”. Muş Alparslan University Journal of Agriculture and Nature 2, sy. 2 (Eylül 2022): 92-100.
EndNote Kummer J, Çekin D, Sewilam H (01 Eylül 2022) The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates. Muş Alparslan University Journal of Agriculture and Nature 2 2 92–100.
IEEE J. Kummer, D. Çekin, ve H. Sewilam, “The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates”, MAÜ Tarım Doğa Derg, c. 2, sy. 2, ss. 92–100, 2022.
ISNAD Kummer, Jonathan vd. “The Effect of Solar Radiation on the Growth and Development of Hydroponically Grown Lettuce in Two Areas With Different Climates”. Muş Alparslan University Journal of Agriculture and Nature 2/2 (Eylül 2022), 92-100.
JAMA Kummer J, Çekin D, Sewilam H. The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates. MAÜ Tarım Doğa Derg. 2022;2:92–100.
MLA Kummer, Jonathan vd. “The Effect of Solar Radiation on the Growth and Development of Hydroponically Grown Lettuce in Two Areas With Different Climates”. Muş Alparslan University Journal of Agriculture and Nature, c. 2, sy. 2, 2022, ss. 92-100.
Vancouver Kummer J, Çekin D, Sewilam H. The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates. MAÜ Tarım Doğa Derg. 2022;2(2):92-100.

Flag Counter