Araştırma Makalesi
BibTex RIS Kaynak Göster

The Performance Enhancement with the Use of New Generation Core Materials for Claw-Pole Synchronous Generators

Yıl 2024, Cilt: 5 Sayı: 2, 20 - 38, 31.12.2024

Öz

Synchronous generators (also known as alternators) used in conventional vehicles can also be used to charge batteries in power systems of hybrid electric vehicles. As the alternator type, a synchronous generator with a claw pole (CPSG) is generally preferred, which has similar features to quadrature-axis flux synchronous generators. The pole structures of CPSGs are mostly excitation winding, but they can be designed as permanent magnets in recent years. In this study, comparative electromagnetic modeling and simulation of a 0.55 kVA rated power and 4-pole permanent magnet CPSG according to the core material type was performed with ANSYS-Electronics software. The performance of the proposed new generation core materials as amorphous and JFE supercore is investigated in comparison with the conventional core material (SiFe alloy). Thus, it has been determined that the JFE supercore material is a much more suitable core material in the stator design of CPSGs in terms of improving the performance in terms of core losses and efficiency. Comparative simulation studies have reported that the highest efficiency of approximately 87% is achieved using new generation core materials such as amorphous and jfe supercore. In addition, it was emphasized that a more compact generator could be designed thanks to the new generation core materials with high electromagnetic characteristics and the power density of a much higher kVA/kg.

Kaynakça

  • Nasiri-Zarandi, R., Mohammadi Ajamloo, A., and Abbaszadeh, K. Cogging Torque Minimization in Transverse Flux Permanent Magnet Generators using Two-step Axial Permanent Magnet Segmentation for Direct Drive Wind Turbine Application. International Journal of Engineering, 34(4), 2021, 908-918. doi: 10.5829/ije.2021.34.04a.17.
  • Jurca, F., Martis, C., and Biro, K. Claw-pole generator analysis using flux 3D, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 2008, pp. 1286-1291, doi: 10.1109/SPEEDHAM.2008.4581153.
  • Boldea, I., Tutelea, L. N., and Popa, A. A. "Claw Pole Synchronous Motors/Generators (CP-SMs/Gs) Design and Control: Recent Progress," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4, pp. 4556-4564, Aug. 2022, doi: 10.1109/JESTPE.2021.3125044.
  • Wang, X., Yuan, P., Li, Y., Chen, S., Shi Z., and Xie W., Performance research and optimization of vehicle-mounted claw-pole generator based on 3D electromagnetic field and circuit coupling modeling, IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou,Guangdong, China, 2022, pp. 886-891, doi: 10.1109/PEAC56338.2022.9959606.
  • Yamazaki, K., Suzuki, R., Nuka, M., and Masegi, M. Analysis and Characteristics Improvement of Claw-Pole Alternators by Reducing Armature Reaction, in IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8740-8748, Nov. 2018, doi: 10.1109/TIE.2018.2811405.
  • Ibala, A. and Masmoudi, A. 3D-FEA based comparison of the features of two hybrid-excited claw pole alternators, International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Kuwait, Kuwait, 2015, pp. 1-8, doi: 10.1109/SMART.2015.7399239.
  • Cao, Y., Liu, C., and Yu, J. Mesh-Based 3D MEC Modeling of a Novel Hybrid Claw Pole Generator. Energies 2022, 15, 1692. https:// doi.org/10.3390/en15051692.
  • Kuroda, Y., Morita, M., Hazeyama, M., Azuma, M., and Inoue, M. Improvement of a claw pole motor using additional ferrite magnets for hybrid electric vehicles, The XIX International Conference on Electrical Machines - ICEM 2010, Rome, Italy, 2010, pp. 1-3, doi: 10.1109/ICELMACH.2010.5608267.
  • Emadi, A., Lee, Y. J., and Rajashekara, K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles, IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237–2245, Jun. 2008.
  • 1Du, W., Zhao, S., Zhang, H., Zhang, M., and Gao, J. A Novel Claw Pole Motor With Soft Magnetic Composites, in IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-4, Feb. 2021, Art no. 8200904, doi: 10.1109/TMAG.2020.3019830.
  • Bruyere, A., Semail, E., Bouscayrol, A., Locment, F., Dubus, J. M., and Mipo, J. C. Modeling and control of a seven-phase claw-pole integrated starter alternator for micro-hybrid automotive applications, IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008, pp. 1-6, doi: 10.1109/VPPC.2008.4677668.
  • Suh, K. and Moon, J. Electric Vehicle Architecture Design Based on Database. Int.J Automot. Technol. 25, 2024, 427–444, https://doi.org/10.1007/s12239-024-00035-5.
  • Zhao, X., Niu, S., and Ching, T. W. Design and Analysis of a New Brushless Electrically Excited Claw-Pole Generator for Hybrid Electric Vehicle, in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, Nov. 2018, Art no. 8108505, doi: 10.1109/TMAG.2018.2823743.
  • Ming-Fa Tsai et al. Phase-Variable Modeling and Comparative Study between a PMa-CPA and a CPA Alternator by Simulation Analysis 2022 J. Phys.: Conf. Ser. 2179 012014.
  • Toprak, Y., Karakaya, O., Canturk, S., and Balci, M.E., Analysis on Performance of Claw Pole Synchronous Generators for 6-Pulse Rectifier Load, 4th International Turkish World Engineering and Science Congress, 2023, Türkiye.
  • Toprak, Y., Karakaya, O., Canturk, S., and Balci, M.E., Design of Passive Harmonic Filter for the Claw-Pole Synchronous Generators under Non-linear Loading, The 3rd International Conference on Applied Mathematics in Engineering (ICAME’24), 26-28 June 2024, Ayvalık, Balıkesir, Türkiye.
  • 1Saati, M., Hashemipour, O., Afjei, E., and Nezamabadi, M. A New Hybrid Brushless DC Motor/Generator without Permanent Magnet. International Journal of Engineering, 20(1), 77-86, 2007.
  • Cao, Y., Zhu, S., Yu, J., and Liu, C. Optimization Design and Performance Evaluation of a Hybrid Excitation Claw Pole Machine. Processes 2022, 10, 541. https:// doi.org/10.3390/pr1003054.
  • Li, W. and Huang, S. Analysis and Design of Hybrid Excitation Claw-pole Generator, Electric Power Components and Systems, 39:7, 680-695, 2011, DOI: 10.1080/15325008.2010.536811.
  • Zhang, D., Zhao, C., Zhu, L., Ding, Y., Yu, C., and Tian, C. On hybrid excitation claw-pole synchronous generator with magnetic circuit series connection, International Conference on Electrical Machines and Systems, Wuhan, China, 2008, pp. 3509-3513.
  • Ukaji, H., Hirata, K., and Niguchi, N. Claw pole magnetic-geared generator for hub dynamos, International Conference on Electrical Machines (ICEM), Berlin, Germany, 2014, pp. 416-421, doi: 10.1109/ICELMACH.2014.6960214.
  • Arumugam, D., Logamani, P., and Karuppiah, S. Improved performance of integrated generator systems with claw pole alternator for aircraft applications, Energy, Volume 133, 2017, Pages 808-821, https://doi.org/10.1016/j.energy.2017.05.132.
  • Liang, J., Parsapour, A., Cosoroaba, E., Wu, M., Boldea, I., and Fahimi, B. A High Torque Density Outer Rotor Claw Pole Stator Permanent Magnet Synchronous Motor, IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 2018, pp. 389-393, doi: 10.1109/ITEC.2018.8450106.
  • Shen, J., Wang, B., Cai, L. et al. Magnetic properties and thermal stability of Fe-based amorphous/carbonyl iron soft magnetic composites. J Mater Sci: Mater Electron 34, 1169, 2023, https://doi.org/10.1007/s10854-023-10512-9.
  • Guo, Y., Zhu, J., and Dorrell, D. G. Design and Analysis of a Claw Pole Permanent Magnet Motor with Molded Soft Magnetic Composite Core, in IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4582-4585, Oct. 2009, doi: 10.1109/TMAG.2009.2022745.
  • Rakotovao, M. Modeling approach for system analysis: Case of claw pole machine in mild hybrid system, XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 2016, pp. 818-822, doi: 10.1109/ICELMACH.2016.7732620.
  • Clerc, A. J. and Muetze, A. Measurement of stator core magnetic characteristics, IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 2011, pp. 1433-1438, doi: 10.1109/IEMDC.2011.5994818.
  • Khan, M. A., Chen, Y., and Pillay, P. Application of soft magnetic composites to PM wind generator design, IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 2006, pp. 4 pp.-, doi: 10.1109/PES.2006.1709048.
  • Tong, W., Sun, R., Zhang, C., Wu, S., and Tang, R. Loss and Thermal Analysis of a High-Speed Surface-Mounted PMSM With Amorphous Metal Stator Core and Titanium Alloy Rotor Sleeve, in IEEE Transactions on Magnetics, vol. 55, no. 6, pp. 1-4, June 2019, Art no. 8102104, doi: 10.1109/TMAG.2019.2897141.
  • Dems M. and Komeza, K. Performance Characteristics of a High-Speed Energy-Saving Induction Motor with an Amorphous Stator Core, in IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 3046-3055, June 2014, doi: 10.1109/TIE.2013.2251739.
  • Hasegawa, R. Applications of amorphous magnetic alloys, Materials Science and Engineering: A, Volumes 375–377, 2004, Pages 90-97, https://doi.org/10.1016/j.msea.2003.10.258.
  • Battal, F., Balci, S., and Sefa, I. Power electronic transformers: A review, Measurement, Volume 171, 2021, 108848, https://doi.org/10.1016/j.measurement.2020.108848.
  • Balci, S. and Akkaya, M. Reduction of the core size and power losses by using soft magnetic material for a single-phase induction motor, Measurement, Volume 198, 2022, 111421, https://doi.org/10.1016/j.measurement.2022.111421.
  • M19_24G Core Material Datasheet, Non-Oriented Fully Process Electrical Steel – ASTM, https://www.scribd.com/document/98899985/Non-Oriented-Fully-Process-Electrical-Steel-ASTM. 35. Metglas 2605 SA1 Datasheet, Iron Based Alloy, https://metglas.com/magnetic-materials/metglas-2605-sa1-iron-based-alloy-2/.
  • 10JNEX900 Datasheet, Non-Oriented Electrical Steel Sheet, https://www.jfe-steel.co.jp/en/products/electrical/product/supercore/index.php.
  • Balci, S. Senkron Generatörlerde Farklı Stator Oluk Yapılarının Uç Gerilimine Etkisinin Sonlu Elemanlar Yöntemi ile Analizi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 947-957, 2019, DOI: https://doi.org/10.17798/bitlisfen.518348.
  • Cheshmehbeigi, H. M. and Khanmohamadian, A. Design and Simulation of a Moving-magnet-type Linear Synchronous Motor for Electromagnetic Launch System, International Journal of Engineering (IJE), Transactions C: Aspects Vol. 30, No. 3, (March 2017) 351-356.
  • Soon-O. K., Ji-Young, L., Jung-Pyo, H., Yang-Soo, L., and Yoon, H. Practical analysis method for claw-pole type generator using 2-dimensional equivalent model, IEEE International Conference on Electric Machines and Drives, 2005., San Antonio, TX, USA, 2005, pp. 1661-1664, doi: 10.1109/IEMDC.2005.195942.
  • ANSYS Electronics 2024R1, Rmxprt User’s Guide, Generators-CPSGs, 2024.

Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı

Yıl 2024, Cilt: 5 Sayı: 2, 20 - 38, 31.12.2024

Öz

Geleneksel araçlarda kullanılan senkron generatörler (alternatör olarak da bilinir) hibrit elektrikli araçların güç sistemlerindeki bataryaları şarj etmek için de kullanılabilir. Alternatör tipi olarak genellikle, kare-eksen akılı senkron generatörlere benzer özelliklere sahip pençe kutuplu senkron generatör (CPSG) tercih edilir. CPSG'lerin kutup yapıları çoğunlukla uyarma sargılıdır, ancak son yıllarda kalıcı mıknatıslı olarak da tasarlanabilmektedir. Bu çalışmada, 0,55 kVA anma gücüne sahip ve 4 kutuplu kalıcı mıknatıslı bir CPSG'nin çekirdek malzeme tipine göre karşılaştırmalı elektromanyetik modellemesi ve benzetimi ANSYS-Electronics yazılımı ile yapılmıştır. Önerilen yeni nesil çekirdek malzemelerinin performansı amorf ve JFE super çekirdek olarak geleneksel çekirdek malzemesi SiFe alaşımı ile karşılaştırmalı incelenmiştir. Böylece JFE süperçekirdek malzemesinin, çekirdek kayıpları ve verimlilik açısından performansı iyileştirme açısından CPSG'lerin stator tasarımında çok daha uygun bir çekirdek malzemesi olduğu belirlenmiştir. Ayrıca, yüksek elektromanyetik özelliklere sahip yeni nesil çekirdek malzemeleri ve çok daha yüksek kVA/kg güç yoğunluğu sayesinde daha kompakt bir generatör tasarlanabileceği vurgulanmıştır.

Kaynakça

  • Nasiri-Zarandi, R., Mohammadi Ajamloo, A., and Abbaszadeh, K. Cogging Torque Minimization in Transverse Flux Permanent Magnet Generators using Two-step Axial Permanent Magnet Segmentation for Direct Drive Wind Turbine Application. International Journal of Engineering, 34(4), 2021, 908-918. doi: 10.5829/ije.2021.34.04a.17.
  • Jurca, F., Martis, C., and Biro, K. Claw-pole generator analysis using flux 3D, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 2008, pp. 1286-1291, doi: 10.1109/SPEEDHAM.2008.4581153.
  • Boldea, I., Tutelea, L. N., and Popa, A. A. "Claw Pole Synchronous Motors/Generators (CP-SMs/Gs) Design and Control: Recent Progress," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4, pp. 4556-4564, Aug. 2022, doi: 10.1109/JESTPE.2021.3125044.
  • Wang, X., Yuan, P., Li, Y., Chen, S., Shi Z., and Xie W., Performance research and optimization of vehicle-mounted claw-pole generator based on 3D electromagnetic field and circuit coupling modeling, IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou,Guangdong, China, 2022, pp. 886-891, doi: 10.1109/PEAC56338.2022.9959606.
  • Yamazaki, K., Suzuki, R., Nuka, M., and Masegi, M. Analysis and Characteristics Improvement of Claw-Pole Alternators by Reducing Armature Reaction, in IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8740-8748, Nov. 2018, doi: 10.1109/TIE.2018.2811405.
  • Ibala, A. and Masmoudi, A. 3D-FEA based comparison of the features of two hybrid-excited claw pole alternators, International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Kuwait, Kuwait, 2015, pp. 1-8, doi: 10.1109/SMART.2015.7399239.
  • Cao, Y., Liu, C., and Yu, J. Mesh-Based 3D MEC Modeling of a Novel Hybrid Claw Pole Generator. Energies 2022, 15, 1692. https:// doi.org/10.3390/en15051692.
  • Kuroda, Y., Morita, M., Hazeyama, M., Azuma, M., and Inoue, M. Improvement of a claw pole motor using additional ferrite magnets for hybrid electric vehicles, The XIX International Conference on Electrical Machines - ICEM 2010, Rome, Italy, 2010, pp. 1-3, doi: 10.1109/ICELMACH.2010.5608267.
  • Emadi, A., Lee, Y. J., and Rajashekara, K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles, IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237–2245, Jun. 2008.
  • 1Du, W., Zhao, S., Zhang, H., Zhang, M., and Gao, J. A Novel Claw Pole Motor With Soft Magnetic Composites, in IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-4, Feb. 2021, Art no. 8200904, doi: 10.1109/TMAG.2020.3019830.
  • Bruyere, A., Semail, E., Bouscayrol, A., Locment, F., Dubus, J. M., and Mipo, J. C. Modeling and control of a seven-phase claw-pole integrated starter alternator for micro-hybrid automotive applications, IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008, pp. 1-6, doi: 10.1109/VPPC.2008.4677668.
  • Suh, K. and Moon, J. Electric Vehicle Architecture Design Based on Database. Int.J Automot. Technol. 25, 2024, 427–444, https://doi.org/10.1007/s12239-024-00035-5.
  • Zhao, X., Niu, S., and Ching, T. W. Design and Analysis of a New Brushless Electrically Excited Claw-Pole Generator for Hybrid Electric Vehicle, in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, Nov. 2018, Art no. 8108505, doi: 10.1109/TMAG.2018.2823743.
  • Ming-Fa Tsai et al. Phase-Variable Modeling and Comparative Study between a PMa-CPA and a CPA Alternator by Simulation Analysis 2022 J. Phys.: Conf. Ser. 2179 012014.
  • Toprak, Y., Karakaya, O., Canturk, S., and Balci, M.E., Analysis on Performance of Claw Pole Synchronous Generators for 6-Pulse Rectifier Load, 4th International Turkish World Engineering and Science Congress, 2023, Türkiye.
  • Toprak, Y., Karakaya, O., Canturk, S., and Balci, M.E., Design of Passive Harmonic Filter for the Claw-Pole Synchronous Generators under Non-linear Loading, The 3rd International Conference on Applied Mathematics in Engineering (ICAME’24), 26-28 June 2024, Ayvalık, Balıkesir, Türkiye.
  • 1Saati, M., Hashemipour, O., Afjei, E., and Nezamabadi, M. A New Hybrid Brushless DC Motor/Generator without Permanent Magnet. International Journal of Engineering, 20(1), 77-86, 2007.
  • Cao, Y., Zhu, S., Yu, J., and Liu, C. Optimization Design and Performance Evaluation of a Hybrid Excitation Claw Pole Machine. Processes 2022, 10, 541. https:// doi.org/10.3390/pr1003054.
  • Li, W. and Huang, S. Analysis and Design of Hybrid Excitation Claw-pole Generator, Electric Power Components and Systems, 39:7, 680-695, 2011, DOI: 10.1080/15325008.2010.536811.
  • Zhang, D., Zhao, C., Zhu, L., Ding, Y., Yu, C., and Tian, C. On hybrid excitation claw-pole synchronous generator with magnetic circuit series connection, International Conference on Electrical Machines and Systems, Wuhan, China, 2008, pp. 3509-3513.
  • Ukaji, H., Hirata, K., and Niguchi, N. Claw pole magnetic-geared generator for hub dynamos, International Conference on Electrical Machines (ICEM), Berlin, Germany, 2014, pp. 416-421, doi: 10.1109/ICELMACH.2014.6960214.
  • Arumugam, D., Logamani, P., and Karuppiah, S. Improved performance of integrated generator systems with claw pole alternator for aircraft applications, Energy, Volume 133, 2017, Pages 808-821, https://doi.org/10.1016/j.energy.2017.05.132.
  • Liang, J., Parsapour, A., Cosoroaba, E., Wu, M., Boldea, I., and Fahimi, B. A High Torque Density Outer Rotor Claw Pole Stator Permanent Magnet Synchronous Motor, IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 2018, pp. 389-393, doi: 10.1109/ITEC.2018.8450106.
  • Shen, J., Wang, B., Cai, L. et al. Magnetic properties and thermal stability of Fe-based amorphous/carbonyl iron soft magnetic composites. J Mater Sci: Mater Electron 34, 1169, 2023, https://doi.org/10.1007/s10854-023-10512-9.
  • Guo, Y., Zhu, J., and Dorrell, D. G. Design and Analysis of a Claw Pole Permanent Magnet Motor with Molded Soft Magnetic Composite Core, in IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4582-4585, Oct. 2009, doi: 10.1109/TMAG.2009.2022745.
  • Rakotovao, M. Modeling approach for system analysis: Case of claw pole machine in mild hybrid system, XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 2016, pp. 818-822, doi: 10.1109/ICELMACH.2016.7732620.
  • Clerc, A. J. and Muetze, A. Measurement of stator core magnetic characteristics, IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 2011, pp. 1433-1438, doi: 10.1109/IEMDC.2011.5994818.
  • Khan, M. A., Chen, Y., and Pillay, P. Application of soft magnetic composites to PM wind generator design, IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 2006, pp. 4 pp.-, doi: 10.1109/PES.2006.1709048.
  • Tong, W., Sun, R., Zhang, C., Wu, S., and Tang, R. Loss and Thermal Analysis of a High-Speed Surface-Mounted PMSM With Amorphous Metal Stator Core and Titanium Alloy Rotor Sleeve, in IEEE Transactions on Magnetics, vol. 55, no. 6, pp. 1-4, June 2019, Art no. 8102104, doi: 10.1109/TMAG.2019.2897141.
  • Dems M. and Komeza, K. Performance Characteristics of a High-Speed Energy-Saving Induction Motor with an Amorphous Stator Core, in IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 3046-3055, June 2014, doi: 10.1109/TIE.2013.2251739.
  • Hasegawa, R. Applications of amorphous magnetic alloys, Materials Science and Engineering: A, Volumes 375–377, 2004, Pages 90-97, https://doi.org/10.1016/j.msea.2003.10.258.
  • Battal, F., Balci, S., and Sefa, I. Power electronic transformers: A review, Measurement, Volume 171, 2021, 108848, https://doi.org/10.1016/j.measurement.2020.108848.
  • Balci, S. and Akkaya, M. Reduction of the core size and power losses by using soft magnetic material for a single-phase induction motor, Measurement, Volume 198, 2022, 111421, https://doi.org/10.1016/j.measurement.2022.111421.
  • M19_24G Core Material Datasheet, Non-Oriented Fully Process Electrical Steel – ASTM, https://www.scribd.com/document/98899985/Non-Oriented-Fully-Process-Electrical-Steel-ASTM. 35. Metglas 2605 SA1 Datasheet, Iron Based Alloy, https://metglas.com/magnetic-materials/metglas-2605-sa1-iron-based-alloy-2/.
  • 10JNEX900 Datasheet, Non-Oriented Electrical Steel Sheet, https://www.jfe-steel.co.jp/en/products/electrical/product/supercore/index.php.
  • Balci, S. Senkron Generatörlerde Farklı Stator Oluk Yapılarının Uç Gerilimine Etkisinin Sonlu Elemanlar Yöntemi ile Analizi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 947-957, 2019, DOI: https://doi.org/10.17798/bitlisfen.518348.
  • Cheshmehbeigi, H. M. and Khanmohamadian, A. Design and Simulation of a Moving-magnet-type Linear Synchronous Motor for Electromagnetic Launch System, International Journal of Engineering (IJE), Transactions C: Aspects Vol. 30, No. 3, (March 2017) 351-356.
  • Soon-O. K., Ji-Young, L., Jung-Pyo, H., Yang-Soo, L., and Yoon, H. Practical analysis method for claw-pole type generator using 2-dimensional equivalent model, IEEE International Conference on Electric Machines and Drives, 2005., San Antonio, TX, USA, 2005, pp. 1661-1664, doi: 10.1109/IEMDC.2005.195942.
  • ANSYS Electronics 2024R1, Rmxprt User’s Guide, Generators-CPSGs, 2024.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Selami Balcı 0000-0002-3922-4824

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 23 Haziran 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Balcı, S. (2024). Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 5(2), 20-38.
AMA Balcı S. Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. Aralık 2024;5(2):20-38.
Chicago Balcı, Selami. “Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 5, sy. 2 (Aralık 2024): 20-38.
EndNote Balcı S (01 Aralık 2024) Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 5 2 20–38.
IEEE S. Balcı, “Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı”, Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 5, sy. 2, ss. 20–38, 2024.
ISNAD Balcı, Selami. “Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 5/2 (Aralık 2024), 20-38.
JAMA Balcı S. Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2024;5:20–38.
MLA Balcı, Selami. “Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı”. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 5, sy. 2, 2024, ss. 20-38.
Vancouver Balcı S. Pençe-Kutuplu Senkron Generatörlerde Yeni Nesil Çekirdek Malzemelerin Kullanımıyla Performans Artışı. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2024;5(2):20-38.