Research Article
BibTex RIS Cite

Soğuk İklimde Bina Enerji Verimli Yenileme Yaklaşımları: Karşılaştırmalı Analiz ve Erzurum Örneği

Year 2025, Volume: 10 Issue: 2, 1260 - 1277, 27.12.2025
https://doi.org/10.30785/mbud.1680132

Abstract

References

  • Alkhatib, H., Lemarchand, P., Norton, B. & O’Sullivan, D. T. J. (2023). Comparison of control parameters for roller blinds. Solar Energy, 256, 110-126.
  • Al-Shatnawi, Z., Hachem Vermette, C., Lacasse, M. & Ziaeemehr, B. (2024). Advances in cold-climate responsive building envelope design: A comprehensive review. Buildings, 14(11), 3486.
  • American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) & American National Standards Institute (ANSI). (2021). Climatic Data for Building Design Standards. Access Address (15.02.2025): https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%2 0addenda/169_2020_a_20211029.pdf
  • Atmaca, U. (2016). TS 825 binalarda ısı yalıtım kuralları standardındaki güncellemeler. Tesisat Mühendisliği (154), p. 21-35.
  • Axelarris, L., Cooke, A., Fredeen, C., Garber-Slaght, R., Leffel, E., Ricketts, L., Rose, W., Zarling, J. P. & Zhivov, A. (2021). Building Envelope Characteristics in Cold Climates. In ASHRAE Virtual Annual Conference, ASHRAE 2021 (pp. 583-600). (ASHRAE Transactions; Vol. 127).
  • Aykal, F. D., Gümüş, B. & Akça, Y. (2009). Sürdürülebilirlik kapsamında yenilenebilir ve etkin enerji kullanımının yapılarda uygulanması. V. Yenilenebilir Enerji Kaynakları Sempozyumu, Diyarbakır, 78, 84.
  • Dursun, D. & Yavaş, M. (2017). Soğuk iklime duyarlı kentsel tasarım yaklaşımları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), s. 269-278.
  • Ezzati, P., Mohammadi, A. & Alizadehfard, M. R. (2022). Effect of insulation on energy saving of buildings with closed cell flexible elastomeric foam (FEF) insulation. 5th International Conference on Management Optimization and Development of Energy Infrastructures. Tahran, İran.
  • Fedorik, F., Alitalo, S., Savolainen, J.-P., Räinä, I. & Illikainen, K. (2021). Analysis of hygrothermal performance of low-energy house in Nordic climate. Journal of Building Physics, 45(3), 344–367. doi:10.1177/1744259120984187.
  • Gaitov, R., Tokbolat, S., Zhong, H. & Mustafa, M.Y. (2021). Investigation of the impacts of design parameters on thermal performance of buildings in cold climate. Conference of Cold Climate HVAC & Energy, 246(1), 07002.
  • Ghouchani, M., & Todeh Kharman, H. (2024). Optimizing passive strategies for energy demand reduction in coldclimate residential buildings: A case study in Tabriz, Iran. ICONARP International Journal of Architecture and Planning, 12 (1), 211-233.DOI: 10.15320/ICONARP.2024.282
  • Highmark Media. (2016). The Montana Consumer Guide to Solar Heating Systems. Access Address (10.01.2025): https://bsd.dli.mt.gov/_docs/building-codes-permits/solar-heat-guide.pdf
  • Janson, U. (2009). Renovation of the Brogården area to Passive Houses. Göteborg, Sverige.
  • Jensen, N.F., Bjarløv, S.P., Rode, C., Andersen, B. & Møller, E.B. (2021). Hygrothermal performance of six insulation systems for internal retrofitting solid masonry walls. Journal of Building Physics, 44, 539–573.
  • Kazemi, M., Rahif, R., Courard, L., & Attia, S. (2023). Sensitivity analysis and weather condition effects on hygrothermal performance of green roof models characterized by recycled and artificial materials’ properties. Building Environment, 237, 110327.
  • Kistelegdi, I., Horváth, K. R., Storcz, T., & Ercsey, Z. (2022). Building geometry as a variable in energy, comfort, and environmental design optimization—A review from the perspective of architects. Buildings, 12(1), 69.
  • Kumar, D., Alam, M., Memon, R. A. & Bhayo, B. A. (2022). A critical review for formulation and conceptualization of an ideal building envelope and novel sustainability framework for building applications. Cleaner Engineering and Technology, 11, 100555.
  • Kuusk, K., Kalamees, T., Link, S., Ilomets, S., & Mikola, A. (2016). Case-study analysis of concrete large-panel apartment building at pre- and post low-budget energy-renovation. Journal of Civil Engineering and Management, 23(1), 67–75.
  • Kuznik, F., David, D., Johannes, K. & Roux, J. J. (2011). "A review on phase change materials integrated in building walls." Renewable and Sustainable Energy Reviews, 15(1), 379-391.
  • Mckeen, P. & Fung, A.S. (2014). The effect of building aspect ratio on energy efficiency: A case study for multi- unit residential buildings in Canada. Buildings, 4(3), 336-354.
  • Memmott, P. (2007). Gunyah, Goondie + Wurley: The Aboriginal Architecture of Australia. Brisbane: University of Queensland Press.
  • Mussard, M. (2017). Solar energy under cold climatic conditions: A review. Renewable and Sustainable Energy Reviews, 74, 733-745.
  • Ness, M. C., Andresen, I. & Kleivenn, T. (2019). Building bioclimatic design in cold climate office buildings. IOP Conference Series: Earth and Environmental Science, 352, 012066.
  • National Renewable Energy Laboratory (NREL). (2014). Conway Street Apartments: A multifamily deep energy retrofit. Access Address (02.12.2025): https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/conwayst-apartments- multifamily-retrofit.pdf
  • Oliver, P. (1997). Encyclopedia of Vernacular Architecture of the World. Cambridge: Cambridge University Press.
  • Onion Flats Architecture. (2025). Hano Homes – Deep Energy Retrofit Project Sheet (Long Version). Access Address (02.12.2025) https://static1.squarespace.com/static/605c9f50f882137b4f0bc496/t/687aa47444a75547732dc821/17528679 58401/2025_HANO+HOMES_PROJECT+SHEET-Long+Version.pdf
  • Ooka, R. (2002). “Field study on sustainable ındoor climate design of a japanese traditional folk house in cold climate area.” Building and Environment, 37(3), 319–329.
  • Özer, S., Kulözü, N. & Demir, M. (2014). Gecekondu bahçelerinde kullanılan bitkisel materyal ve tercihleri etkileyen faktörlerin belirlenmesi: Erzurum Kenti Dağ (Gaziler) Mahallesi örneği. Alınteri Zirai Bilimler Dergisi, 26, 9-17.
  • Sezens Mimarlık. (2024). House project (Architectural project drawings). Ankara, Turkiye.
  • Shishegar N. (2013). Street design and urban microclimate: Analyzing the effects of street geometry and orientation on airflow and solar access in urban canyons. Journal of Clean Energy Technologies, 1, 1.
  • SINTEF. (2014). Retrofitting multifamily buildings with prefabricated modules –RETROKIT. Access Address (02.12.2025): https://biblioteket.husbanken.no/arkiv/dok/Komp/Retrofitting%20multifamily%20buildings%20with%20prefab ricated%20modules.pdf
  • Skarsholt, K. H. (2021). Form follows environment: On Snøhetta’s Powerhouse Brattørkaia. In I. Halland (Ed.), Ung uro. Unsettling climates in Nordic art, Architecture and Design, 4, 49–56.
  • Susorova, I., Tabibzadeh, M., Rahman, A., Clack, H. L. & Elnimeiri, M. (2013). The effect of geometry factors on fenestration energy performance and energy savings in office buildings. Energy and Buildings, 57, 6-13.
  • Tamaskani Esfehankalateh, A., Farrokhzad, M., Tamaskani Esfehankalateh, T., & Soflaei, F. (2022). Bioclimatic passive design strategies of traditional houses. Environment, Development and Sustainability, (24), 10027– 10068.
  • Thomsen, K. E., Rose, J., Mørck, O., Jensen, S. Ø., Østergaard, I., Knudsen, H. N., & Bergsøe, N. C. (2016). Energy consumption and indoor climate in a residential building before and after comprehensive energy retrofitting. Energy and Buildings, 123, 8-16. doi:https://doi.org/10.1016/j.enbuild.2016.04.049
  • Tin, T., Sovacool, B.K., Blake, D., Magill, P., Naggar, S.E., Lidström, S., Ishizawa, K. & Berte, J. (2010). Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica. Renewable Energy, 35(8), 1715-1723.
  • Turkish Standards Institution. (2024). TS 825: Thermal Insulation Requirements for Buildings. Ankara: TSE. Access Adress (10.01.2025): https://intweb.tse.org.tr/
  • Upadhyay, A. K., Yoshida, H. & Rijal, H. B. (2006). Climate responsive building design in the Kathmandu Valley. Journal of Asian Architecture and Building Engineering, 5(1), 169–176.
  • Upadhyay, A. K. (2018). Climate information for building designers: a graphical approach, Architectural Science Review, 61, 1-2, 58-67.
  • U.S. Department of Energy (DOE). (2013). Building America whole-house solutions for existing homes: Conway Street. Access Address (02.12.2025): https://www.energy.gov/eere/buildings/articles/building-america- whole-house-solutions-existing-homes-conway-street
  • Wang, F., & Liu, Y. (2002). Thermal environment of the courtyard style cave dwelling in winter. Energy and Building, 34(10), 985–1001.
  • Yao, S., Jiang, Z., Yuan, J., Wang, Z., Huang, L. (2022). Multi-objective optimization of transparent building envelope of rural residences in cold climate zone, China. Case Studies in Thermal Engineering, 34, 102052.
  • Zhang, A., Bokel, R., Van den Dobbelsteen, A., Sun, Y., Huang, Q., & Zhang, Q. (2017). The effect of geometry parameters on energy and thermal performance of school buildings in cold climates of China. Sustainability, 9(10), 1708.

Energy-Efficient Building Retrofit Strategies in Cold Climates: A Comparative Analysis with a Case Study of Erzurum

Year 2025, Volume: 10 Issue: 2, 1260 - 1277, 27.12.2025
https://doi.org/10.30785/mbud.1680132

Abstract

Energy efficiency in buildings has gained importance in recent years due to climate change and environmental degradation. Climate-sensitive designs play a key role in achieving energy efficiency, especially in cold regions where energy losses are high. This study aims to evaluate energy efficient building approaches in cold climates where climate data is an important parameter. Based on the literature, an energy-efficient and climate-compatible design strategy at urban and building scales is developed. Then, pioneering energy efficient buildings in cold climates are analyzed. Afterwards, a field study is conducted that proposes a retrofit approach in line with the design strategies in the literature and case studies. The study reveals that implementing cold-climate design strategies reduces energy consumption and enables a partial energy supply from renewable energy sources. This suggests that cold-climate buildings can be retrofitted to achieve energy efficiency and near-zero energy performance.

References

  • Alkhatib, H., Lemarchand, P., Norton, B. & O’Sullivan, D. T. J. (2023). Comparison of control parameters for roller blinds. Solar Energy, 256, 110-126.
  • Al-Shatnawi, Z., Hachem Vermette, C., Lacasse, M. & Ziaeemehr, B. (2024). Advances in cold-climate responsive building envelope design: A comprehensive review. Buildings, 14(11), 3486.
  • American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) & American National Standards Institute (ANSI). (2021). Climatic Data for Building Design Standards. Access Address (15.02.2025): https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%2 0addenda/169_2020_a_20211029.pdf
  • Atmaca, U. (2016). TS 825 binalarda ısı yalıtım kuralları standardındaki güncellemeler. Tesisat Mühendisliği (154), p. 21-35.
  • Axelarris, L., Cooke, A., Fredeen, C., Garber-Slaght, R., Leffel, E., Ricketts, L., Rose, W., Zarling, J. P. & Zhivov, A. (2021). Building Envelope Characteristics in Cold Climates. In ASHRAE Virtual Annual Conference, ASHRAE 2021 (pp. 583-600). (ASHRAE Transactions; Vol. 127).
  • Aykal, F. D., Gümüş, B. & Akça, Y. (2009). Sürdürülebilirlik kapsamında yenilenebilir ve etkin enerji kullanımının yapılarda uygulanması. V. Yenilenebilir Enerji Kaynakları Sempozyumu, Diyarbakır, 78, 84.
  • Dursun, D. & Yavaş, M. (2017). Soğuk iklime duyarlı kentsel tasarım yaklaşımları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), s. 269-278.
  • Ezzati, P., Mohammadi, A. & Alizadehfard, M. R. (2022). Effect of insulation on energy saving of buildings with closed cell flexible elastomeric foam (FEF) insulation. 5th International Conference on Management Optimization and Development of Energy Infrastructures. Tahran, İran.
  • Fedorik, F., Alitalo, S., Savolainen, J.-P., Räinä, I. & Illikainen, K. (2021). Analysis of hygrothermal performance of low-energy house in Nordic climate. Journal of Building Physics, 45(3), 344–367. doi:10.1177/1744259120984187.
  • Gaitov, R., Tokbolat, S., Zhong, H. & Mustafa, M.Y. (2021). Investigation of the impacts of design parameters on thermal performance of buildings in cold climate. Conference of Cold Climate HVAC & Energy, 246(1), 07002.
  • Ghouchani, M., & Todeh Kharman, H. (2024). Optimizing passive strategies for energy demand reduction in coldclimate residential buildings: A case study in Tabriz, Iran. ICONARP International Journal of Architecture and Planning, 12 (1), 211-233.DOI: 10.15320/ICONARP.2024.282
  • Highmark Media. (2016). The Montana Consumer Guide to Solar Heating Systems. Access Address (10.01.2025): https://bsd.dli.mt.gov/_docs/building-codes-permits/solar-heat-guide.pdf
  • Janson, U. (2009). Renovation of the Brogården area to Passive Houses. Göteborg, Sverige.
  • Jensen, N.F., Bjarløv, S.P., Rode, C., Andersen, B. & Møller, E.B. (2021). Hygrothermal performance of six insulation systems for internal retrofitting solid masonry walls. Journal of Building Physics, 44, 539–573.
  • Kazemi, M., Rahif, R., Courard, L., & Attia, S. (2023). Sensitivity analysis and weather condition effects on hygrothermal performance of green roof models characterized by recycled and artificial materials’ properties. Building Environment, 237, 110327.
  • Kistelegdi, I., Horváth, K. R., Storcz, T., & Ercsey, Z. (2022). Building geometry as a variable in energy, comfort, and environmental design optimization—A review from the perspective of architects. Buildings, 12(1), 69.
  • Kumar, D., Alam, M., Memon, R. A. & Bhayo, B. A. (2022). A critical review for formulation and conceptualization of an ideal building envelope and novel sustainability framework for building applications. Cleaner Engineering and Technology, 11, 100555.
  • Kuusk, K., Kalamees, T., Link, S., Ilomets, S., & Mikola, A. (2016). Case-study analysis of concrete large-panel apartment building at pre- and post low-budget energy-renovation. Journal of Civil Engineering and Management, 23(1), 67–75.
  • Kuznik, F., David, D., Johannes, K. & Roux, J. J. (2011). "A review on phase change materials integrated in building walls." Renewable and Sustainable Energy Reviews, 15(1), 379-391.
  • Mckeen, P. & Fung, A.S. (2014). The effect of building aspect ratio on energy efficiency: A case study for multi- unit residential buildings in Canada. Buildings, 4(3), 336-354.
  • Memmott, P. (2007). Gunyah, Goondie + Wurley: The Aboriginal Architecture of Australia. Brisbane: University of Queensland Press.
  • Mussard, M. (2017). Solar energy under cold climatic conditions: A review. Renewable and Sustainable Energy Reviews, 74, 733-745.
  • Ness, M. C., Andresen, I. & Kleivenn, T. (2019). Building bioclimatic design in cold climate office buildings. IOP Conference Series: Earth and Environmental Science, 352, 012066.
  • National Renewable Energy Laboratory (NREL). (2014). Conway Street Apartments: A multifamily deep energy retrofit. Access Address (02.12.2025): https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/conwayst-apartments- multifamily-retrofit.pdf
  • Oliver, P. (1997). Encyclopedia of Vernacular Architecture of the World. Cambridge: Cambridge University Press.
  • Onion Flats Architecture. (2025). Hano Homes – Deep Energy Retrofit Project Sheet (Long Version). Access Address (02.12.2025) https://static1.squarespace.com/static/605c9f50f882137b4f0bc496/t/687aa47444a75547732dc821/17528679 58401/2025_HANO+HOMES_PROJECT+SHEET-Long+Version.pdf
  • Ooka, R. (2002). “Field study on sustainable ındoor climate design of a japanese traditional folk house in cold climate area.” Building and Environment, 37(3), 319–329.
  • Özer, S., Kulözü, N. & Demir, M. (2014). Gecekondu bahçelerinde kullanılan bitkisel materyal ve tercihleri etkileyen faktörlerin belirlenmesi: Erzurum Kenti Dağ (Gaziler) Mahallesi örneği. Alınteri Zirai Bilimler Dergisi, 26, 9-17.
  • Sezens Mimarlık. (2024). House project (Architectural project drawings). Ankara, Turkiye.
  • Shishegar N. (2013). Street design and urban microclimate: Analyzing the effects of street geometry and orientation on airflow and solar access in urban canyons. Journal of Clean Energy Technologies, 1, 1.
  • SINTEF. (2014). Retrofitting multifamily buildings with prefabricated modules –RETROKIT. Access Address (02.12.2025): https://biblioteket.husbanken.no/arkiv/dok/Komp/Retrofitting%20multifamily%20buildings%20with%20prefab ricated%20modules.pdf
  • Skarsholt, K. H. (2021). Form follows environment: On Snøhetta’s Powerhouse Brattørkaia. In I. Halland (Ed.), Ung uro. Unsettling climates in Nordic art, Architecture and Design, 4, 49–56.
  • Susorova, I., Tabibzadeh, M., Rahman, A., Clack, H. L. & Elnimeiri, M. (2013). The effect of geometry factors on fenestration energy performance and energy savings in office buildings. Energy and Buildings, 57, 6-13.
  • Tamaskani Esfehankalateh, A., Farrokhzad, M., Tamaskani Esfehankalateh, T., & Soflaei, F. (2022). Bioclimatic passive design strategies of traditional houses. Environment, Development and Sustainability, (24), 10027– 10068.
  • Thomsen, K. E., Rose, J., Mørck, O., Jensen, S. Ø., Østergaard, I., Knudsen, H. N., & Bergsøe, N. C. (2016). Energy consumption and indoor climate in a residential building before and after comprehensive energy retrofitting. Energy and Buildings, 123, 8-16. doi:https://doi.org/10.1016/j.enbuild.2016.04.049
  • Tin, T., Sovacool, B.K., Blake, D., Magill, P., Naggar, S.E., Lidström, S., Ishizawa, K. & Berte, J. (2010). Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica. Renewable Energy, 35(8), 1715-1723.
  • Turkish Standards Institution. (2024). TS 825: Thermal Insulation Requirements for Buildings. Ankara: TSE. Access Adress (10.01.2025): https://intweb.tse.org.tr/
  • Upadhyay, A. K., Yoshida, H. & Rijal, H. B. (2006). Climate responsive building design in the Kathmandu Valley. Journal of Asian Architecture and Building Engineering, 5(1), 169–176.
  • Upadhyay, A. K. (2018). Climate information for building designers: a graphical approach, Architectural Science Review, 61, 1-2, 58-67.
  • U.S. Department of Energy (DOE). (2013). Building America whole-house solutions for existing homes: Conway Street. Access Address (02.12.2025): https://www.energy.gov/eere/buildings/articles/building-america- whole-house-solutions-existing-homes-conway-street
  • Wang, F., & Liu, Y. (2002). Thermal environment of the courtyard style cave dwelling in winter. Energy and Building, 34(10), 985–1001.
  • Yao, S., Jiang, Z., Yuan, J., Wang, Z., Huang, L. (2022). Multi-objective optimization of transparent building envelope of rural residences in cold climate zone, China. Case Studies in Thermal Engineering, 34, 102052.
  • Zhang, A., Bokel, R., Van den Dobbelsteen, A., Sun, Y., Huang, Q., & Zhang, Q. (2017). The effect of geometry parameters on energy and thermal performance of school buildings in cold climates of China. Sustainability, 9(10), 1708.
There are 43 citations in total.

Details

Primary Language English
Subjects Architectural Design, Design (Other)
Journal Section Research Article
Authors

Kübra Keskin 0000-0001-7945-6059

Gevher Nesibe Kaya 0000-0001-7446-4711

Figen Beyhan 0000-0002-4287-1037

Submission Date April 20, 2025
Acceptance Date December 21, 2025
Publication Date December 27, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Keskin, K., Kaya, G. N., & Beyhan, F. (2025). Energy-Efficient Building Retrofit Strategies in Cold Climates: A Comparative Analysis with a Case Study of Erzurum. Journal of Architectural Sciences and Applications, 10(2), 1260-1277. https://doi.org/10.30785/mbud.1680132