Araştırma Makalesi
BibTex RIS Kaynak Göster

Determining the Climate Future Projection of Erzurum City with the UrbClim Model

Yıl 2023, Cilt: 8 Sayı: 1 - JASA_2023, 8(1), 112 - 122, 31.07.2023
https://doi.org/10.30785/mbud.1256724

Öz

The negativities brought by climate change, which is among the crisis agendas today, directly affect the cities. According to the UN, the rate of urbanization in the world is increasing rapidly. It is estimated that it will reach 6.4 billion in 2050. The UrbClim model is also used to project future climate in cities. For the province of Erzurum, where the climate negatively affects living things, the climate data of the city for the first 10 days of July 2016, 2017, and 2018 were analyzed using the UrbClim model. This study, it is aimed to analyze the exemplary cities with cold climates in the world, which will set an example in the determination of climate change and support sustainable and livable urbanization, use energy efficiently, and to produce climate adaptation strategies at the point related to landscape.

Destekleyen Kurum

Scientific and Technological Research Council of Türkiye, TÜBİTAK 1001-TOVAG

Proje Numarası

Project No: 119O479

Teşekkür

A simplified version of the work was only orally presented at the “3rd International Conference on Climate Change 1st to 3rd June 2022, Bali, Indonesia.” Authors present their special thanks to “The Scientific and Technological Research Council of Türkiye, TÜBİTAK 1001-TOVAG under Project No: 119O479 and Turkish State Meteorological Service (MGM) for sharing their data free of charge.

Kaynakça

  • Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(1), 1-26.
  • Arellano Ramos, B., Roca Cladera, J. & García Haro, A. (2020). The cooling effect of urban parks in the metropolitan region of Barcelona: the sample of Viladecans, Gavà, and Castelldefels urban continuous. In Planning post carbon cities: 35th PLEA conference on passive and low energy architecture, A Coruña, 1st-3rd September 2020: proceedings (pp. 570-575). Universidade da Coruña.
  • Anonymous. (2021a). Erzurum Geography: Erzurum Accessed date: April 4, 2021, from https://www.erzurum.bel.tr/IcerikDetay-cografi_ozellikleri/1046/I.html
  • Anonymous. (2021b). Erzurum provincial directorate of Population. Accessed date: April 4, 2021, from https://www.nufusu.com/il/erzurum-nufusu
  • Blake, R., Grimm, A., Ichinose, T., Horton, R., Gaffin, S., Jiong, S., Bader, D. & Cecil, D. W. (2011). Urban climate: Processes, trends, and projections. In Rosenzweig, C., Solecki, W. D., Hammer, S. A., and Mehrotra, S. (eds.), Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network (43–81). Cambridge University Press.
  • Caluwaerts, S., Hamdi, R., Top, S., Lauwaet, D., Berckmans, J., Degrauwe, D., ... & Termonia, P. (2020). The urban climate of Ghent, Belgium: A case study combining a high-accuracy monitoring network with numerical simulations. Urban Climate, 31, 100565.
  • De Ridder, K. & Schayes, G. (1997). The IAGL land surface model. Journal of Applied Meteorology, 36(2), 167–182.
  • De Ridder, K., Lauwaet, D. & Maiheu, B. (2015a). UrbClim – A fast urban boundary layer climate model. Urban Climate, 12, 21–48.
  • De Ridder, K., Lauwaet, D. & Maiheu, B. (2015b). https://urban-climate.be/c/urbclimDescription/
  • Frustaci, G., Pilati, S., Lavecchia, C. & Montoli, E. M. (2022). High-resolution gridded air temperature data for the urban environment: The Milan data set. Forecasting, 4(1), 238-261.
  • Gabriel, K. M. & Endlicher, W. R. (2011). Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental pollution, 159 (8-9), 2044-2050.
  • García-Díez, M., Lauwaet, D., Hooyberghs, H., Ballester, J., De Ridder, K. & Rodo, X. (2016). Advantages of using a fast urban boundary layer model as compared to a full mesoscale model to simulate the urban heat island of Barcelona. Geosci. Model Dev., 9, 4439–4450.
  • Gilabert, J., Deluca, A., Lauwaet, D., Ballester, J., Corbera, J. & Llasat, M. C. (2021). Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification. Natural Hazards and Earth System Sciences, 21(1), 375-391.
  • Hooyberghs, H., Maiheu, B., De Ridder, K., Lauwaet, D. & Lefebvre, W. (2016). Assessing Climate Change in Cities Using UrbClim. In Air Pollution Modeling and its Application XXIV (pp. 425-430). Springer International Publishing.
  • Irmak, A., Yilmaz, S., Mutlu, E. & Yılmaz, H. (2018). Assessment of the effects of different tree species on urban microclimate. Environmental Science and Pollution Research, 25 (16): 15802-15822, doi.org/10.1007/s11356-018- 1697-8
  • Irmak, M. A., Yilmaz, S. & Dursun, D. (2017). Effect of different pavements on human thermal comfort conditions. Atmósfera, 30(4), 355-366.
  • Ingole, V., Marí-Dell’Olmo, M., Deluca, A., Quijal, M., Borrell, C., Rodríguez-Sanz, M. & Ballester, J. (2020). Spatial Variability of Heat-Related Mortality in Barcelona from 1992–2015: A Case Crossover Study Design. International Journal of Environmental Research and Public Health, 17(7), 2553.
  • IPCC Synthesis Report. (2014). https://archive.ipcc.ch/pdf/assessment- report/ar5/syr/SYR_AR5_Final_full_wcover.pdf (Accessed date: 03 July 2021).
  • IPCC. (2021). AR6 WGI Report: Climate Change 2021: The Physical Science Basis (Accessed date 02 November 2021).
  • Jamali, F. S., Khaledi, S. & Razavian, M. T. (2021). Seasonal impact of urban parks on land surface temperature (LST) in the semi-arid city of Tehran. International Journal of Urban Sustainable Development, 1–17. doi:10.1080/19463138.2021.1872083
  • Kim, D., Yu, J., Yoon, J., Jeon, S., & Son, S. (2021). Comparison of Accuracy of Surface Temperature Images from Unmanned Aerial Vehicle and Satellite for Precise Thermal Environment Monitoring of Urban Parks Using in Situ Data. Remote Sensing, 13(10), 1977.
  • Lauwaet, D., De Ridder, K., Hooyberghs, H., Lefebre, F. (2017). Urban Boundary-Layer Climate Model UrbClim USER GUIDE V1.0. Vıto Vision on Technology, Mol-Belgie.
  • Lobaccaro, G., De Ridder, K., Acero, J. A., Hooyberghs, H., Lauwaet, D., Maiheu, B., ... & Govehovitch, B. (2021). Applications of models and tools for mesoscale and microscale thermal analysis in mid-latitude climate regions—A review. Sustainability, 13(22), 12385.
  • Li, D. & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064.
  • Martinez, G.S., Gimeno, L., Hooyberghs, H., Lauwaet, D., De Ridder, K., Linares, C., Carmona, R., Ortiz, C., Kendrovski, V., Aerts, R.; et al. (2017). Heat and health in Antwerp under climate change: Projected impacts and implications for prevention. Environ. Int. 111, 135–143.
  • Maheng, D., Ducton, I., Lauwaet, D., Zevenbergen, C. & Pathirana, A. (2019). The Sensitivity of Urban Heat Island to Urban Green Space—A Model-Based Study of City of Colombo, Sri Lanka. Atmosphere, 10(3), 151.
  • Menteş, Y., Yilmaz, S., Qaid, A. & Yilmaz, H. (2023). Assessment of the impact of the different settlement patterns on the summer land surface temperature: Elazığ. Environmental Science and Pollution Research, 1-26. doi.org/10.1007/s11356-022-24341-6
  • Mutlu, E., Yilmaz, S., Yilmaz, H. & Mutlu, B. E. (2018, May). Analysis of urban settlement units by ENVI-met according to different aspects in cold regions. In the 6th annual International Conference on Architecture and Civil Engineering (ACE 2018), oral presentation (Vol. 14, p. 15).
  • Nazarian, N. & Lee, J. K. (2021). Personal assessment of urban heat exposure: a systematic review. Environmental Research Letters, 16(3), 033005.
  • Ohashi, Y., Genchi, Y., Kondo, H., Kikegawa, Y., Yoshikado, H. & Hirano, Y. (2007). Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. Journal of Applied Meteorology and Climatology, 46(1), 66–81.
  • Oke, T. R. (1978). Boundary Layer Climate. Routledge.
  • Oke, T. R., Mills, G., Christen, A. & Voogt, J. A. (2017). Urban climates. Cambridge University Press.
  • Qiu, K. & Jia, B. (2019). The roles of landscape both inside the park and the surroundings in the park cooling effect. Sustainable Cities and Society, 101864. doi:10.1016/j.scs.2019.101864
  • Ranagalage, M., Estoque, R. C. & Murayama, Y. (2017). An urban heat island study of the Colombo metropolitan area, Sri Lanka, based on Landsat data (1997–2017). ISPRS International Journal of Geo-Information, 6(7), 189.
  • Ren, C., Fung, J. C. H., Tse, W. P., Wang, R., Wong, M. F. & Xu, Y. (2017). Implementing WUDAPT product into urban development impact analysis by using WRF simulation result-A case study of the Pearl River Delta Region (1980-2010).
  • Rosenzweig, C., Solecki, W. D., Romero-Lankao, P., Mehrotra, S., Dhakal, S. & Ibrahim, S. A. (Eds.). (2018). Climate change and cities: Second assessment report of the urban climate change research network. Cambridge University Press.
  • Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability, and health impact. Synergies with global climate change. Energy and Buildings, 207, 109482.
  • Skelhorn, C. P., Levermore, G. & Lindley, S. J. (2016). Impacts on cooling energy consumption due to the UHI and vegetation changes in Manchester, UK. Energy and Buildings, 122, 150-159.
  • Souverijns, N., De Ridder, K., Veldeman, N., Lefebre, F., Kusambiza-Kiingi, F., Memela, W. & Jones, N. K. (2022). Urban heat in Johannesburg and Ekurhuleni, South Africa: A meter-scale assessment and vulnerability analysis. Urban Climate, 46, 101331.
  • Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A., Li, F. & Chen, H. (2010). The urban heat island and its Impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84.
  • Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies-A review. Renewable and Sustainable Energy Reviews, 81, 2011-2018.
  • Tremeac, B., Bousquet, P., de Munck, C., Pigeon, G., Masson, V., Marchadier, C., Merchat, M., Poeuf, P. & Meunier, F. (2012). Influence of air conditioning management on heat island in Paris air street temperatures. Applied Energy, 95(0), 102–110.
  • Verdonck, M. L., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J., Schneider, A., ... & Van Coillie, F. (2018). The potential of local climate zone maps as a heat stress assessment tool, supported by simulated air temperature data. Landscape and Urban Planning, 178, 183-197.
  • Vardoulakis, E., Karamanis, D., Fotiadi, A. & Mihalakakou, G. (2013). The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands. Solar Energy, 94, 128-144.
  • Wang, X., Cheng, H., Xi, J., Yang, G. & Zhao, Y. (2018). Relationship between Park Composition, Vegetation Characteristics, and Cool Island Effect. Sustainability, 10(3), 587. doi:10.3390/su10030587
  • Uzun, Ö. F. & Gül. A. (2021). Bitkisel tasarımda kullanılabilecek bilgi sistemi ve yazılımların karşılaştırılması. Journal of Architectural Sciences and Applications, 6(1), 141-152.
  • Yılmaz S., Mutlu B. E., Aksu A., Mutlu E. & Qaid A. (2021). Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. Environmental Science and Pollution Research, 28 (3): 3672-3693. DOI 10.1007/s11356-020-10555-z
  • Yılmaz, S., Irmak, M. A. & Qaid, A. (2022). Assessing the effects of different urban landscapes and built environment patterns on thermal comfort and air pollution in Erzurum City, Turkey. Building and Environment, 219, 109-210.
  • Yılmaz, S., Vural, H. & Yilmaz, H. (2023). Effects of botanical gardens on student environmental perception. Ecological Informatics, 73, 101942.
  • Yüksel, Ü. D. & Yılmaz, O. (2008). Ankara kentinde kentsel ısı adası etkisinin yaz aylarında uzaktan algılama ve meteorolojik gözlemlere dayalı olarak saptanması ve değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 23(4).

UrbClim Modeli ile Erzurum Kentinin İklim Gelecek Projeksiyonunun Belirlenmesi

Yıl 2023, Cilt: 8 Sayı: 1 - JASA_2023, 8(1), 112 - 122, 31.07.2023
https://doi.org/10.30785/mbud.1256724

Öz

Günümüzde kriz gündemleri arasında yer alan iklim değişikliğinin getirdiği olumsuzluklar doğrudan şehirleri etkilemektedir. UN’e göre dünyada kentleşme hızı hızla artmaktadır. 2050 yılında 6,4 milyara ulaşacağı tahmin edilmektedir. UrbClim modeli şehirlerdeki iklim tahminleri için de kullanılmaktadır. İklimin canlıları olumsuz etkilediği Erzurum ili için 2016, 2017 ve 2018 Temmuz aylarının ilk 10 gününe ait kentin iklim verileri UrbClim modeli kullanılarak analiz edilmiştir. Bu çalışma ile dünyada soğuk iklime sahip örnek şehirlerin iklim değişikliğinin belirlenmesinde örnek teşkil edecek, sürdürülebilir ve yaşanabilir kentleşmeyi destekleyecek analiz edilerek enerjinin verimli kullanılması ve peyzaj ile ilgili noktada iklim uyum stratejilerinin üretilmesi amaçlanmaktadır.

Proje Numarası

Project No: 119O479

Kaynakça

  • Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(1), 1-26.
  • Arellano Ramos, B., Roca Cladera, J. & García Haro, A. (2020). The cooling effect of urban parks in the metropolitan region of Barcelona: the sample of Viladecans, Gavà, and Castelldefels urban continuous. In Planning post carbon cities: 35th PLEA conference on passive and low energy architecture, A Coruña, 1st-3rd September 2020: proceedings (pp. 570-575). Universidade da Coruña.
  • Anonymous. (2021a). Erzurum Geography: Erzurum Accessed date: April 4, 2021, from https://www.erzurum.bel.tr/IcerikDetay-cografi_ozellikleri/1046/I.html
  • Anonymous. (2021b). Erzurum provincial directorate of Population. Accessed date: April 4, 2021, from https://www.nufusu.com/il/erzurum-nufusu
  • Blake, R., Grimm, A., Ichinose, T., Horton, R., Gaffin, S., Jiong, S., Bader, D. & Cecil, D. W. (2011). Urban climate: Processes, trends, and projections. In Rosenzweig, C., Solecki, W. D., Hammer, S. A., and Mehrotra, S. (eds.), Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network (43–81). Cambridge University Press.
  • Caluwaerts, S., Hamdi, R., Top, S., Lauwaet, D., Berckmans, J., Degrauwe, D., ... & Termonia, P. (2020). The urban climate of Ghent, Belgium: A case study combining a high-accuracy monitoring network with numerical simulations. Urban Climate, 31, 100565.
  • De Ridder, K. & Schayes, G. (1997). The IAGL land surface model. Journal of Applied Meteorology, 36(2), 167–182.
  • De Ridder, K., Lauwaet, D. & Maiheu, B. (2015a). UrbClim – A fast urban boundary layer climate model. Urban Climate, 12, 21–48.
  • De Ridder, K., Lauwaet, D. & Maiheu, B. (2015b). https://urban-climate.be/c/urbclimDescription/
  • Frustaci, G., Pilati, S., Lavecchia, C. & Montoli, E. M. (2022). High-resolution gridded air temperature data for the urban environment: The Milan data set. Forecasting, 4(1), 238-261.
  • Gabriel, K. M. & Endlicher, W. R. (2011). Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental pollution, 159 (8-9), 2044-2050.
  • García-Díez, M., Lauwaet, D., Hooyberghs, H., Ballester, J., De Ridder, K. & Rodo, X. (2016). Advantages of using a fast urban boundary layer model as compared to a full mesoscale model to simulate the urban heat island of Barcelona. Geosci. Model Dev., 9, 4439–4450.
  • Gilabert, J., Deluca, A., Lauwaet, D., Ballester, J., Corbera, J. & Llasat, M. C. (2021). Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification. Natural Hazards and Earth System Sciences, 21(1), 375-391.
  • Hooyberghs, H., Maiheu, B., De Ridder, K., Lauwaet, D. & Lefebvre, W. (2016). Assessing Climate Change in Cities Using UrbClim. In Air Pollution Modeling and its Application XXIV (pp. 425-430). Springer International Publishing.
  • Irmak, A., Yilmaz, S., Mutlu, E. & Yılmaz, H. (2018). Assessment of the effects of different tree species on urban microclimate. Environmental Science and Pollution Research, 25 (16): 15802-15822, doi.org/10.1007/s11356-018- 1697-8
  • Irmak, M. A., Yilmaz, S. & Dursun, D. (2017). Effect of different pavements on human thermal comfort conditions. Atmósfera, 30(4), 355-366.
  • Ingole, V., Marí-Dell’Olmo, M., Deluca, A., Quijal, M., Borrell, C., Rodríguez-Sanz, M. & Ballester, J. (2020). Spatial Variability of Heat-Related Mortality in Barcelona from 1992–2015: A Case Crossover Study Design. International Journal of Environmental Research and Public Health, 17(7), 2553.
  • IPCC Synthesis Report. (2014). https://archive.ipcc.ch/pdf/assessment- report/ar5/syr/SYR_AR5_Final_full_wcover.pdf (Accessed date: 03 July 2021).
  • IPCC. (2021). AR6 WGI Report: Climate Change 2021: The Physical Science Basis (Accessed date 02 November 2021).
  • Jamali, F. S., Khaledi, S. & Razavian, M. T. (2021). Seasonal impact of urban parks on land surface temperature (LST) in the semi-arid city of Tehran. International Journal of Urban Sustainable Development, 1–17. doi:10.1080/19463138.2021.1872083
  • Kim, D., Yu, J., Yoon, J., Jeon, S., & Son, S. (2021). Comparison of Accuracy of Surface Temperature Images from Unmanned Aerial Vehicle and Satellite for Precise Thermal Environment Monitoring of Urban Parks Using in Situ Data. Remote Sensing, 13(10), 1977.
  • Lauwaet, D., De Ridder, K., Hooyberghs, H., Lefebre, F. (2017). Urban Boundary-Layer Climate Model UrbClim USER GUIDE V1.0. Vıto Vision on Technology, Mol-Belgie.
  • Lobaccaro, G., De Ridder, K., Acero, J. A., Hooyberghs, H., Lauwaet, D., Maiheu, B., ... & Govehovitch, B. (2021). Applications of models and tools for mesoscale and microscale thermal analysis in mid-latitude climate regions—A review. Sustainability, 13(22), 12385.
  • Li, D. & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064.
  • Martinez, G.S., Gimeno, L., Hooyberghs, H., Lauwaet, D., De Ridder, K., Linares, C., Carmona, R., Ortiz, C., Kendrovski, V., Aerts, R.; et al. (2017). Heat and health in Antwerp under climate change: Projected impacts and implications for prevention. Environ. Int. 111, 135–143.
  • Maheng, D., Ducton, I., Lauwaet, D., Zevenbergen, C. & Pathirana, A. (2019). The Sensitivity of Urban Heat Island to Urban Green Space—A Model-Based Study of City of Colombo, Sri Lanka. Atmosphere, 10(3), 151.
  • Menteş, Y., Yilmaz, S., Qaid, A. & Yilmaz, H. (2023). Assessment of the impact of the different settlement patterns on the summer land surface temperature: Elazığ. Environmental Science and Pollution Research, 1-26. doi.org/10.1007/s11356-022-24341-6
  • Mutlu, E., Yilmaz, S., Yilmaz, H. & Mutlu, B. E. (2018, May). Analysis of urban settlement units by ENVI-met according to different aspects in cold regions. In the 6th annual International Conference on Architecture and Civil Engineering (ACE 2018), oral presentation (Vol. 14, p. 15).
  • Nazarian, N. & Lee, J. K. (2021). Personal assessment of urban heat exposure: a systematic review. Environmental Research Letters, 16(3), 033005.
  • Ohashi, Y., Genchi, Y., Kondo, H., Kikegawa, Y., Yoshikado, H. & Hirano, Y. (2007). Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. Journal of Applied Meteorology and Climatology, 46(1), 66–81.
  • Oke, T. R. (1978). Boundary Layer Climate. Routledge.
  • Oke, T. R., Mills, G., Christen, A. & Voogt, J. A. (2017). Urban climates. Cambridge University Press.
  • Qiu, K. & Jia, B. (2019). The roles of landscape both inside the park and the surroundings in the park cooling effect. Sustainable Cities and Society, 101864. doi:10.1016/j.scs.2019.101864
  • Ranagalage, M., Estoque, R. C. & Murayama, Y. (2017). An urban heat island study of the Colombo metropolitan area, Sri Lanka, based on Landsat data (1997–2017). ISPRS International Journal of Geo-Information, 6(7), 189.
  • Ren, C., Fung, J. C. H., Tse, W. P., Wang, R., Wong, M. F. & Xu, Y. (2017). Implementing WUDAPT product into urban development impact analysis by using WRF simulation result-A case study of the Pearl River Delta Region (1980-2010).
  • Rosenzweig, C., Solecki, W. D., Romero-Lankao, P., Mehrotra, S., Dhakal, S. & Ibrahim, S. A. (Eds.). (2018). Climate change and cities: Second assessment report of the urban climate change research network. Cambridge University Press.
  • Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability, and health impact. Synergies with global climate change. Energy and Buildings, 207, 109482.
  • Skelhorn, C. P., Levermore, G. & Lindley, S. J. (2016). Impacts on cooling energy consumption due to the UHI and vegetation changes in Manchester, UK. Energy and Buildings, 122, 150-159.
  • Souverijns, N., De Ridder, K., Veldeman, N., Lefebre, F., Kusambiza-Kiingi, F., Memela, W. & Jones, N. K. (2022). Urban heat in Johannesburg and Ekurhuleni, South Africa: A meter-scale assessment and vulnerability analysis. Urban Climate, 46, 101331.
  • Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A., Li, F. & Chen, H. (2010). The urban heat island and its Impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84.
  • Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies-A review. Renewable and Sustainable Energy Reviews, 81, 2011-2018.
  • Tremeac, B., Bousquet, P., de Munck, C., Pigeon, G., Masson, V., Marchadier, C., Merchat, M., Poeuf, P. & Meunier, F. (2012). Influence of air conditioning management on heat island in Paris air street temperatures. Applied Energy, 95(0), 102–110.
  • Verdonck, M. L., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J., Schneider, A., ... & Van Coillie, F. (2018). The potential of local climate zone maps as a heat stress assessment tool, supported by simulated air temperature data. Landscape and Urban Planning, 178, 183-197.
  • Vardoulakis, E., Karamanis, D., Fotiadi, A. & Mihalakakou, G. (2013). The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands. Solar Energy, 94, 128-144.
  • Wang, X., Cheng, H., Xi, J., Yang, G. & Zhao, Y. (2018). Relationship between Park Composition, Vegetation Characteristics, and Cool Island Effect. Sustainability, 10(3), 587. doi:10.3390/su10030587
  • Uzun, Ö. F. & Gül. A. (2021). Bitkisel tasarımda kullanılabilecek bilgi sistemi ve yazılımların karşılaştırılması. Journal of Architectural Sciences and Applications, 6(1), 141-152.
  • Yılmaz S., Mutlu B. E., Aksu A., Mutlu E. & Qaid A. (2021). Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. Environmental Science and Pollution Research, 28 (3): 3672-3693. DOI 10.1007/s11356-020-10555-z
  • Yılmaz, S., Irmak, M. A. & Qaid, A. (2022). Assessing the effects of different urban landscapes and built environment patterns on thermal comfort and air pollution in Erzurum City, Turkey. Building and Environment, 219, 109-210.
  • Yılmaz, S., Vural, H. & Yilmaz, H. (2023). Effects of botanical gardens on student environmental perception. Ecological Informatics, 73, 101942.
  • Yüksel, Ü. D. & Yılmaz, O. (2008). Ankara kentinde kentsel ısı adası etkisinin yaz aylarında uzaktan algılama ve meteorolojik gözlemlere dayalı olarak saptanması ve değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 23(4).
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlık
Bölüm Araştırma Makaleleri
Yazarlar

Sevgi Yılmaz 0000-0001-7668-5788

Cihad Bilge 0000-0002-9949-3452

Mehmet Irmak 0000-0001-8285-5341

Proje Numarası Project No: 119O479
Yayımlanma Tarihi 31 Temmuz 2023
Gönderilme Tarihi 27 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 8 Sayı: 1 - JASA_2023, 8(1)

Kaynak Göster

APA Yılmaz, S., Bilge, C., & Irmak, M. (2023). Determining the Climate Future Projection of Erzurum City with the UrbClim Model. Journal of Architectural Sciences and Applications, 8(1), 112-122. https://doi.org/10.30785/mbud.1256724