Kanyon Etkisi Özelinde Zemin Katı Ticari Fonksiyonlu Konut Binalarının Çevresel Gürültü Değerlendirmesi
Year 2024,
Volume: 9 Issue: 2, 756 - 773, 26.12.2024
Derin Hilal Bilmez
,
Cüneyt Diri
Abstract
Çevresel gürültü, insan sağlığını ve yaşam kalitesini olumsuz etkileyen önemli faktörlerin başında gelmektedir. Kanyon etkisi, uzun yapı grupları arasında kalan bölgelerde ortaya çıkar. Kanyon etkisi gürültü, ısı, aydınlatma veya havalandırma açısından farklı koşullara neden olabilir. Bu farklılık: Yapı-yol ilişkisine, trafik yoğunluğuna, iklim koşullarına, bina boyutlarına ve geometrisine bağlıdır. Bu çalışma kapsamında: Cadde (sokak) kanyonlarına özgü çevresel gürültünün yol-yapı yüksekliği ilişkisi ve yapı içindeki ticaret-konut ilişkisi incelenmiştir. Ses kaynağı olarak karayolu tercih edilmiştir. 12 ayrı operasyonel model oluşturulmuş ve her bir modelde 4 iç mekan ve 10 dış mekan ölçüm noktasından toplam 168 ölçüm sonucu elde edilmiştir. Sonuçlar farklı değişkenlere özgü kanyon etkisinin seviyesini göstermiştir.
References
- Allegrini, J. (2018). A wind tunnel study on three-dimensional buoyant flows in street canyons with different roof shapes and building lengths. Building and Environment 143:71–88. doi: 10.1016/j.buildenv.2018.06.056.
- Alwi, A., Mohd F. M., Naoki I., and Razak, A. A. (2023). Effect of protruding
eave on the turbulence buildings over two-dimensional Semi-Open
Street Canyon. Building and Environment 228:109921. doi:
10.1016/j.buildenv.2022.109921.
- Arpacıoğlu, Ü. (2006). Geçmişten Günümüze Kerpiç Malzeme Üretim
Teknikleri ve Güncel Kullanım Olanakları. Pp. 15–17 in Ulusal Yapı
Malzemesi Kongresi.
- Arpacıoğlu, Ü. (2012). Mekânsal kalite ve konfor ıçin önemli bir faktör:
Günışığı. Mimarlık 368.
- Babisch, W. (2008). Road traffic noise and cardiovascular risk. Noise
and Health 10(38):27. doi: 10.4103/1463-1741.39005.
- Babisch, W. (2014). Updated Exposure-response relationship between
road traffic noise and coronary heart diseases: A meta-analysis. Noise
and Health 16(68):1. doi: 10.4103/1463-1741.127847.
- Babisch, W., Bernd, B., Marianne, S., Norbert, K. & Ising, H. (2005). Traffic
noise and risk of myocardial ınfarction. Epidemiology 16(1):33–40. doi:
10.1097/01.ede.0000147104.84424.24.
- Badas, M. G., Simone, F., Michela, G. & Querzoli, G. (2017). On the effect of
gable roof on natural ventilation in two-dimensional urban canyons.”
Journal of Wind Engineering and Industrial Aerodynamics 162:24–34.
doi: 10.1016/j.jweia.2017.01.006.
- Balogun, A. A., Tomlin, A. S., Wood, C. R., Barlow, J. F., Belcher, S. E.,
Smalley, R. J., Lingard, J. J. N., Arnold, S. J., Dobre, A., Robins, A. G., Martin,
D. & Shallcross, D. E. (2010). In-street wind direction variability in the
vicinity of a busy ıntersection in Central London.” Boundary-Layer
Meteorology 136(3):489–513. doi: 10.1007/s10546-010-9515-y.
- Battista, G., Vollaro, E. L., Ocłoń, P. & Vallati, A., (2021). “Effect of mutual
radiative exchange between the surfaces of a street canyon on the
building thermal energy demand.” Energy 226:120346. doi:
10.1016/j.energy.2021.120346.
- Buccolieri, R., Salizzoni, P., Soulhac, L., Garbero, V. & Di Sabatino, S. (2015).
The breathability of compact cities. Urban Climate 13:73–93. doi:
10.1016/j.uclim.2015.06.002.
- Can, A., Fortin, N. & Picaut. J. (2015). Accounting for the effect of diffuse
reflections and fittings within street canyons, on the sound
propagation predicted by ray tracing codes. Applied Acoustics 96:83–
93. doi: 10.1016/j.apacoust.2015.03.013.
- Carlo, O. S., Fellini, S., Palusci, O., Marro, M., Salizzoni, P. & Buccolieri, R.
(2024). Influence of obstacles on urban canyon ventilation and air
pollutant concentration: An experimental assessment. Building and
Environment 250:111143. doi: 10.1016/j.buildenv.2023.111143.
- Carpentieri, M., Salizzoni, P., Robins, A. & Soulhac, L. (2012). Evaluation of
a neighbourhood scale, street network dispersion model through
comparison with wind tunnel data. Environmental Modelling & Software
37:110–24. doi: 10.1016/j.envsoft.2012.03.009.
- Coceal, O., Thomas, T. G., Castro, I. P. & Belcher, S. E. (2006). Mean flow
and turbulence statistics over groups of urban-like cubical obstacles.”
Boundary-Layer Meteorology 121(3):491–519. doi: 10.1007/s10546-006-
9076-2.
- Colorlib, & Jekyll. (2021). Sound Absorption Coefficients. Retrieved
February 6, 2024 (http://heyizhou.net/notes/absorption-coefficients).
- Di Bernardino, A., Monti, P., Leuzzi, G. & Querzoli, G. (2018). Pollutant fluxes
in two-dimensional street canyons. Urban Climate 24:80–93. doi:
10.1016/j.uclim.2018.02.002.
- Du, H., Savory, E. &Perret, L. (2023). Effect of morphology and an
upstream tall building on the mean turbulence statistics of a street
canyon flow. Building and Environment 241:110428. doi:
10.1016/j.buildenv.2023.110428.
- Egan, M. D. (2007). Architectural Acoustics. New York.
- Eliasson, I., Offerle, B., Grimmond, C. S. B. & Lindqvist, S. (2006). Wind
Fields and Turbulence Statistics in an Urban Street Canyon.
Atmospheric Environment 40(1):1–16. doi: 10.1016/j.atmosenv.2005.03.031.
- Farrell, W. J., Cavellin, L. D., Weichenthal, S., Goldberg, M. & Hatzopoulou,
M. (2015). Capturing the urban canyon effect on particle number
concentrations across a large road network using spatial analysis
tools. Building and Environment 92:328–34. doi:
10.1016/j.buildenv.2015.05.004.
- Fatehi, H. & Nilsson, E. J. K. (2022). Effect of buoyancy on dispersion of
reactive pollutants in urban canyons. Atmospheric Pollution Research
13(8):101502. doi: 10.1016/j.apr.2022.101502.
- Fellini, S., Marro, M., Del Ponte, A. V., Barulli, M., Soulhac, L., Ridolfi, L. &
Salizzoni, P. (2022). High resolution wind-tunnel ınvestigation about the
effect of street trees on pollutant concentration and street canyon
ventilation. Building and Environment 226:109763. doi:
10.1016/j.buildenv.2022.109763.
- Gold, J. R. (1998). Creating the charter of Athens: CIAM and the
functional city, 1933-43. Town Planning Review 69(3):225. doi:
10.3828/tpr.69.3.2357285302gl032l.
- Goulart, E. V., Reis, N. C., Lavor, Ian. V. F., Castro, P., Santos, J. M. & Xie., Z. T. (2019). Local and non-local effects of building arrangements on
pollutant fluxes within the urban canopy. Building and Environment
147:23–34. doi: 10.1016/j.buildenv.2018.09.023.
- Gu, Z., Zhang, Y. Cheng, Y. & Lee, S. (2011). Effect of uneven building
layout on air flow and pollutant dispersion in non-uniform street
canyons. Building and Environment 46(12):2657–65. doi:
10.1016/j.buildenv.2011.06.028.
- Guillaume, G., Gauvreau, B. & P. L’Hermite. (2015). Numerical study of the
ımpact of vegetation coverings on sound levels and time decays in a
canyon street model. Science of The Total Environment 502:22–30. doi:
10.1016/j.scitotenv.2014.08.111.
- Kanda, M. (2006). Large-Eddy Simulations on the effects of surface
geometry of building arrays on turbulent organized buildings.
Boundary-Layer Meteorology 118(1):151–68. doi: 10.1007/s10546-005-
5294-2.
- Kang, J. (2000). Sound propagation in street canyons: comparison
between Diffusely and Geometrically Reflecting Boundaries. The
Journal of the Acoustical Society of America 107(3):1394–1404. doi:
10.1121/1.428580.
- Kang, J. (2005). Numerical modeling of the sound fields in urban
squares. The Journal of the Acoustical Society of America 117(6):3695–
3706. doi: 10.1121/1.1904483.
- Karra, S., Malki-Epshtein, L. & Neophytou, M. K. A. (2017). Air flow and pollution in a real, heterogeneous urban street canyon: A field and
laboratory study. Atmospheric Environment 165:370–84. doi:
10.1016/j.atmosenv.2017.06.035.
- Kim, J., Baik, J., Han, B., Lee, J., Jin, H., Park, K., Yang, H. & Park, S. (2022).
Tall-building effects on pedestrian-level flow and pollutant dispersion: large-eddy simulations. Atmospheric Pollution Research 13(8):101500.
doi: 10.1016/j.apr.2022.101500.
- Kim, J., Baik, J., Park, S. & Han, B. S. (2023). Impacts of building-height
variability on turbulent coherent buildings and pollutant dispersion:
Large-Eddy simulations. Atmospheric Pollution Research 14(5):101736.
doi: 10.1016/j.apr.2023.101736.
- Kluková, Z., Nosek, Š., Fuka, V., Jaňour, Z., Chaloupecká, H. & Ďoubalová, J. (2021). The combining effect of the roof shape, roof-height non-
uniformity and source position on the pollutant transport between a
street canyon and 3D urban array. Journal of Wind Engineering and Industrial Aerodynamics 208:104468. doi: 10.1016/j.jweia.2020.104468.
- Knabben, R. M., Trichês, G., Gerges, S. N. Y. & Vergara, E. F. (2016).
Evaluation of sound absorption capacity of asphalt mixtures.” Applied
Acoustics 114:266–74. doi:
http://dx.doi.org/10.1016/j.apacoust.2016.08.008.
- Lee, P. J., & Jeon, J. Y. (2011). Evaluation of speech transmission in open
public spaces affected by combined noises. The Journal of the
Acoustical Society of America 130(1):219–27. doi: 10.1121/1.3598455.
- Lee, P. J., & Kang, J. (2015). Effect of height-to-width ratio on the sound
propagation in urban streets. Acta Acustica United with Acustica
101(1):73–87. doi: 10.3813/AAA.918806.
- Li, Z., Xu, J., Ming, T., Peng, C., Huang, J. & Gong, T. (2017). Numerical
simulation on the effect of vehicle movement on pollutant dispersion in
urban street. Procedia Engineering 205:2303–10. doi:
10.1016/j.proeng.2017.10.104.
- Li, M., Renterghem, T. V., Kang, J., Verheyen, K. & Botteldooren, D. (2020).
Sound absorption by tree bark. Applied Acoustics 165. doi:
https://doi.org/10.1016/j.apacoust.2020.107328.
- Li, Z., Shi, T., Wu, Y., Zhang, H., Juan, Y., Ming, T. & Zhou, N. (2020). Effect of
traffic tidal flow on pollutant dispersion in various street canyons and
corresponding mitigation strategies. Energy and Built Environment
1(3):242–53. doi: 10.1016/j.enbenv.2020.02.002.
- Lo, K. W., & Ngan, K. (2015). Characterising the pollutant ventilation
characteristics of street canyons using the tracer age and age
spectrum. Atmospheric Environment 122:611–21. doi:
10.1016/j.atmosenv.2015.10.023.
- Lugten, M., Wuite, G., Peng, Z. & Tenpierik, M. (2024). Assessing the
ınfluence of street canyon shape on aircraft noise: results from
measurements in courtyards near Amsterdam Schiphol Airport.”
Building and Environment 255:111400. doi: 10.1016/j.buildenv.2024.111400.
- Marini, S., Buonanno, G., Stabile, L. & Avino, P. (2015). A benchmark for
numerical scheme validation of airborne particle exposure in street
canyons. Environmental Science and Pollution Research 22(3):2051–63.
doi: 10.1007/s11356-014-3491-6.
- McMullan, W. A. &Angelino, M. (2022). The effect of tree planting on
traffic pollutant dispersion in an urban street canyon using large eddy
simulation with a recycling and rescaling ınflow generation method.
Journal of Wind Engineering and Industrial Aerodynamics 221:104877.
doi: 10.1016/j.jweia.2021.104877.
- Michioka, T., Takimoto, H. and Sato, A. (2014). “Large-Eddy Simulation of
Pollutant Removal from a Three-Dimensional Street Canyon.”
Boundary-Layer Meteorology 150(2):259–75. doi: 10.1007/s10546-013-
9870-6.
- Mumford, E. (1992). CIAM urbanism after the Athens charter. Planning
Perspectives 7(4):391–417. doi: 10.1080/02665439208725757.
- Murena, F., Di Benedetto, A., D’Onofrio, M. & Vitiello, G. (2011). Mass
transfer velocity and momentum vertical exchange in simulated deep
street canyons. Boundary-Layer Meteorology 140(1):125–42. doi:
10.1007/s10546-011-9602-8.
- Murena, F. & Mele, B. (2016). Effect of balconies on air quality in deep
street canyons.” Atmospheric Pollution Research 7(6):1004–12. doi:
10.1016/j.apr.2016.06.005.
- Murena, F. & Favale, G. (2007). Continuous monitoring of carbon
monoxide in a deep street canyon.” Atmospheric Environment
41(12):2620–29. doi: 10.1016/j.atmosenv.2006.11.017.
- Nasrollahi, N., Namazi, Y. & Taleghani, M. (2021). The effect of urban
shading and canyon geometry on outdoor thermal comfort in hot
climates: A case study of Ahvaz, Iran.” Sustainable Cities and Society
65:102638. doi: 10.1016/j.scs.2020.102638.
- Nosek, Š., Fuka, V., Kukačka, L., Kluková, Z. & Jaňour, Z. (2018). Street-
canyon pollution with respect to urban-array complexity: The role of
lateral and mean pollution fluxes.” Building and Environment 138:221–
34. doi: 10.1016/j.buildenv.2018.04.036.
Nosek, Š., Kluková, Z., Jakubcová, M. & Jaňour, Z. (2022). the effect of
courtyard buildings on the ventilation of street canyons: A wind-tunnel
study.” Journal of Wind Engineering and Industrial Aerodynamics
220:104885. doi: 10.1016/j.jweia.2021.104885.
- Pouya, S. (2022). İdeal ses peyzajın planlaması ve tasarımı.” Mimarlık
Bilimleri ve Uygulamaları Dergisi (MBUD) 7(2):919–34. doi:
10.30785/mbud.1166229.
- Sayın, T. (2022). A research on facade configuration through
transparency in architectural design. Mimarlık Bilimleri ve Uygulamaları
Dergisi (MBUD) 119–31. doi: 10.30785/mbud.1030583.
- Schiff, M., Maarten H. & Forssén, J. (2010). Excess attenuation for sound
propagation over an urban canyon. Applied Acoustics 71(6):510–17. doi:
10.1016/j.apacoust.2010.01.005.
- Shen, J., Gao, Z. , Ding, W. & Ying Yu. (2017). An ınvestigation on the effect
of street morphology to ambient air quality using six real-world cases.
Atmospheric Environment 164:85–101. doi:
10.1016/j.atmosenv.2017.05.047.
- Šprah, N., Potočnik, J. & Košir, M. (2024). The ınfluence of façade colour,
glazing area and geometric configuration of urban canyon on the
spectral characteristics of daylight. Building and Environment 251:111214.
doi: 10.1016/j.buildenv.2024.111214.
- Şimşek, O. & Özçevik Bilen, A. (2021). Yapı cephe özellikleri ve yol
genişliğinin çevresel gürültü düzeyine etkisinin kentsel yol kesitleri
üzerinden incelenmesi. Journal of the Faculty of Engineering and
Architecture of Gazi University 37:3. doi: 10.17341/gazimmfd.919498
- Thaker, P. & Gokhale, S. (2016). The ımpact of traffic-flow patterns on air
quality in urban street canyons. Environmental Pollution 208:161–69. doi:
10.1016/j.envpol.2015.09.004.
- Toy, S. & Esringü, A. (2021). Erzurum’da kent kanyonlarının gelişimi ve
peyzaj mimarlığı açısından alınabilecek tedbirler. ATA Planlama ve
Tasarım Dergisi. doi: 10.54864/ataplanlamavetasarim.1038118.
- Ünal Çilek, M. (2022). The ınfluence of urban canyon geometry on land
surface temperature: Kurtuluş Neighborhood.” Turkish Journal of Remote Sensing and GIS. doi: 10.48123/rsgis.1095619.
- Van Renterghem, T. & Botteldooren, D. (2008). Numerical evaluation of
sound propagating over green roofs. Journal of Sound and Vibration
317(3–5):781–99. doi: 10.1016/j.jsv.2008.03.025.
- Van Renterghem, T. & Botteldooren, D. (2010). The ımportance of roof
shape for road traffic noise shielding in the urban environment. Journal
of Sound and Vibration 329(9):1422–34. doi: 10.1016/j.jsv.2009.11.011.
- Vardoulakis, S., Gonzalez-Flesca, N. & Fisher, B. E. A. (2002). Assessment
of traffic-related air pollution in two street canyons in Paris: Implications for exposure studies. Atmospheric Environment
36(6):1025–39. doi: 10.1016/S1352-2310(01)00288-6.
- Vardoulakis, S., Bernard, Fisher, E. A., Koulis, P. & Gonzalez-Flesca, G.
(2003). Modelling air quality in street canyons: A review. Atmospheric
Environment 37(2):155–82. doi: 10.1016/S1352-2310(02)00857-9.
WHO, C. (2018). Ambient (Outdoor) Air Pollution. p. 15–25 in air quality
guidelines% 22 estimate, related deaths by around.
- Wikipedia. (2024). Canyon.
- Yagi, A., Atsushi, I., Manabu, K., Chusei, F, & Fujiyoshi, Y. (2017). Nature of
streaky buildings observed with a doppler lidar. Boundary-Layer
Meteorology 163(1):19–40. doi: 10.1007/s10546-016-0213-2.
- Yılmaz, N. G., Pyoung-Jik L., Muhammad I. & Jeong, J. (2023). Role of
sounds in perception of enclosure in urban street canyons. Sustainable
Cities and Society 90:104394. doi: 10.1016/j.scs.2023.104394.
- Yılmaz Bakır, N. (2020). Replacing ‘mixed use’ with ‘all mixed up’
concepts; a critical review of Turkey Metropolitan City Centers. Land
Use Policy 97:104905. doi: 10.1016/j.landusepol.2020.104905.
- Yuan, C., Edward, N., & Norford, L. K. (2014). Improving air quality in high-
density cities by understanding the relationship between air pollutant
dispersion and urban morphologies. Building and Environment 71:245–
58. doi: 10.1016/j.buildenv.2013.10.008.
- Yüğrük Akdağ, N. (2003). Kent planlamada gürültü haritalarının önemi:
Barbaros Bulvarı çevresi örneği. Mimarlık Dergisi.
- Yüğrük Akdağ, N. (2024). Gürültü Denetimi 2 - Gürültünün Açık Havada
Yayılmasında Önem Taşıyan Etkenler. İstanbul.
- Zorer, H., and Öztürk, Y. (2021). “Masiro Kanyonu’nun (Pervari) Flüvyo-
Karstik Gelişimi ve Yakın Çevresinin Jeomorfik Özellikleri.” Journal of
Geography 0(42). doi: 10.26650/JGEOG2021-825470.
Environmental Noise Assessment of Residential Buildings with Ground Floor Commercial Function Specific to the Canyon Effect
Year 2024,
Volume: 9 Issue: 2, 756 - 773, 26.12.2024
Derin Hilal Bilmez
,
Cüneyt Diri
Abstract
Environmental noise is one of the primary important factors that negatively affect human health and quality of life. The canyon effect occurs in the regions between the long structure groups. Canyon effect can cause different conditions in terms of noise, heat, lighting or ventilation. This difference: It depends on the building-road relationship, traffic density, climatic conditions, building dimensions and geometry. Within the scope of this study: The road-structure height relationship of environmental noise specific to street canyons and the trade-housing relationship within the building were examined. Highway was preferred as the sound source. 12 separate operational models were created, and a total of 168 measurement results were obtained from 4 indoor and 10 outdoor measurement points in each model. The results showed the level of the canyon effect specific to different variables.
Thanks
We would like to thank for their support and contributions dear members of TÜBİTAK Marmara Research Center, Environment, Cleaner Production, Climate Change and Sustainability, Air Quality and Environmental Noise Technologies Research Group, Senior Principal Investigator Dr. Deniz SARI and scholarship holder Rümeysa ÖNEN.
References
- Allegrini, J. (2018). A wind tunnel study on three-dimensional buoyant flows in street canyons with different roof shapes and building lengths. Building and Environment 143:71–88. doi: 10.1016/j.buildenv.2018.06.056.
- Alwi, A., Mohd F. M., Naoki I., and Razak, A. A. (2023). Effect of protruding
eave on the turbulence buildings over two-dimensional Semi-Open
Street Canyon. Building and Environment 228:109921. doi:
10.1016/j.buildenv.2022.109921.
- Arpacıoğlu, Ü. (2006). Geçmişten Günümüze Kerpiç Malzeme Üretim
Teknikleri ve Güncel Kullanım Olanakları. Pp. 15–17 in Ulusal Yapı
Malzemesi Kongresi.
- Arpacıoğlu, Ü. (2012). Mekânsal kalite ve konfor ıçin önemli bir faktör:
Günışığı. Mimarlık 368.
- Babisch, W. (2008). Road traffic noise and cardiovascular risk. Noise
and Health 10(38):27. doi: 10.4103/1463-1741.39005.
- Babisch, W. (2014). Updated Exposure-response relationship between
road traffic noise and coronary heart diseases: A meta-analysis. Noise
and Health 16(68):1. doi: 10.4103/1463-1741.127847.
- Babisch, W., Bernd, B., Marianne, S., Norbert, K. & Ising, H. (2005). Traffic
noise and risk of myocardial ınfarction. Epidemiology 16(1):33–40. doi:
10.1097/01.ede.0000147104.84424.24.
- Badas, M. G., Simone, F., Michela, G. & Querzoli, G. (2017). On the effect of
gable roof on natural ventilation in two-dimensional urban canyons.”
Journal of Wind Engineering and Industrial Aerodynamics 162:24–34.
doi: 10.1016/j.jweia.2017.01.006.
- Balogun, A. A., Tomlin, A. S., Wood, C. R., Barlow, J. F., Belcher, S. E.,
Smalley, R. J., Lingard, J. J. N., Arnold, S. J., Dobre, A., Robins, A. G., Martin,
D. & Shallcross, D. E. (2010). In-street wind direction variability in the
vicinity of a busy ıntersection in Central London.” Boundary-Layer
Meteorology 136(3):489–513. doi: 10.1007/s10546-010-9515-y.
- Battista, G., Vollaro, E. L., Ocłoń, P. & Vallati, A., (2021). “Effect of mutual
radiative exchange between the surfaces of a street canyon on the
building thermal energy demand.” Energy 226:120346. doi:
10.1016/j.energy.2021.120346.
- Buccolieri, R., Salizzoni, P., Soulhac, L., Garbero, V. & Di Sabatino, S. (2015).
The breathability of compact cities. Urban Climate 13:73–93. doi:
10.1016/j.uclim.2015.06.002.
- Can, A., Fortin, N. & Picaut. J. (2015). Accounting for the effect of diffuse
reflections and fittings within street canyons, on the sound
propagation predicted by ray tracing codes. Applied Acoustics 96:83–
93. doi: 10.1016/j.apacoust.2015.03.013.
- Carlo, O. S., Fellini, S., Palusci, O., Marro, M., Salizzoni, P. & Buccolieri, R.
(2024). Influence of obstacles on urban canyon ventilation and air
pollutant concentration: An experimental assessment. Building and
Environment 250:111143. doi: 10.1016/j.buildenv.2023.111143.
- Carpentieri, M., Salizzoni, P., Robins, A. & Soulhac, L. (2012). Evaluation of
a neighbourhood scale, street network dispersion model through
comparison with wind tunnel data. Environmental Modelling & Software
37:110–24. doi: 10.1016/j.envsoft.2012.03.009.
- Coceal, O., Thomas, T. G., Castro, I. P. & Belcher, S. E. (2006). Mean flow
and turbulence statistics over groups of urban-like cubical obstacles.”
Boundary-Layer Meteorology 121(3):491–519. doi: 10.1007/s10546-006-
9076-2.
- Colorlib, & Jekyll. (2021). Sound Absorption Coefficients. Retrieved
February 6, 2024 (http://heyizhou.net/notes/absorption-coefficients).
- Di Bernardino, A., Monti, P., Leuzzi, G. & Querzoli, G. (2018). Pollutant fluxes
in two-dimensional street canyons. Urban Climate 24:80–93. doi:
10.1016/j.uclim.2018.02.002.
- Du, H., Savory, E. &Perret, L. (2023). Effect of morphology and an
upstream tall building on the mean turbulence statistics of a street
canyon flow. Building and Environment 241:110428. doi:
10.1016/j.buildenv.2023.110428.
- Egan, M. D. (2007). Architectural Acoustics. New York.
- Eliasson, I., Offerle, B., Grimmond, C. S. B. & Lindqvist, S. (2006). Wind
Fields and Turbulence Statistics in an Urban Street Canyon.
Atmospheric Environment 40(1):1–16. doi: 10.1016/j.atmosenv.2005.03.031.
- Farrell, W. J., Cavellin, L. D., Weichenthal, S., Goldberg, M. & Hatzopoulou,
M. (2015). Capturing the urban canyon effect on particle number
concentrations across a large road network using spatial analysis
tools. Building and Environment 92:328–34. doi:
10.1016/j.buildenv.2015.05.004.
- Fatehi, H. & Nilsson, E. J. K. (2022). Effect of buoyancy on dispersion of
reactive pollutants in urban canyons. Atmospheric Pollution Research
13(8):101502. doi: 10.1016/j.apr.2022.101502.
- Fellini, S., Marro, M., Del Ponte, A. V., Barulli, M., Soulhac, L., Ridolfi, L. &
Salizzoni, P. (2022). High resolution wind-tunnel ınvestigation about the
effect of street trees on pollutant concentration and street canyon
ventilation. Building and Environment 226:109763. doi:
10.1016/j.buildenv.2022.109763.
- Gold, J. R. (1998). Creating the charter of Athens: CIAM and the
functional city, 1933-43. Town Planning Review 69(3):225. doi:
10.3828/tpr.69.3.2357285302gl032l.
- Goulart, E. V., Reis, N. C., Lavor, Ian. V. F., Castro, P., Santos, J. M. & Xie., Z. T. (2019). Local and non-local effects of building arrangements on
pollutant fluxes within the urban canopy. Building and Environment
147:23–34. doi: 10.1016/j.buildenv.2018.09.023.
- Gu, Z., Zhang, Y. Cheng, Y. & Lee, S. (2011). Effect of uneven building
layout on air flow and pollutant dispersion in non-uniform street
canyons. Building and Environment 46(12):2657–65. doi:
10.1016/j.buildenv.2011.06.028.
- Guillaume, G., Gauvreau, B. & P. L’Hermite. (2015). Numerical study of the
ımpact of vegetation coverings on sound levels and time decays in a
canyon street model. Science of The Total Environment 502:22–30. doi:
10.1016/j.scitotenv.2014.08.111.
- Kanda, M. (2006). Large-Eddy Simulations on the effects of surface
geometry of building arrays on turbulent organized buildings.
Boundary-Layer Meteorology 118(1):151–68. doi: 10.1007/s10546-005-
5294-2.
- Kang, J. (2000). Sound propagation in street canyons: comparison
between Diffusely and Geometrically Reflecting Boundaries. The
Journal of the Acoustical Society of America 107(3):1394–1404. doi:
10.1121/1.428580.
- Kang, J. (2005). Numerical modeling of the sound fields in urban
squares. The Journal of the Acoustical Society of America 117(6):3695–
3706. doi: 10.1121/1.1904483.
- Karra, S., Malki-Epshtein, L. & Neophytou, M. K. A. (2017). Air flow and pollution in a real, heterogeneous urban street canyon: A field and
laboratory study. Atmospheric Environment 165:370–84. doi:
10.1016/j.atmosenv.2017.06.035.
- Kim, J., Baik, J., Han, B., Lee, J., Jin, H., Park, K., Yang, H. & Park, S. (2022).
Tall-building effects on pedestrian-level flow and pollutant dispersion: large-eddy simulations. Atmospheric Pollution Research 13(8):101500.
doi: 10.1016/j.apr.2022.101500.
- Kim, J., Baik, J., Park, S. & Han, B. S. (2023). Impacts of building-height
variability on turbulent coherent buildings and pollutant dispersion:
Large-Eddy simulations. Atmospheric Pollution Research 14(5):101736.
doi: 10.1016/j.apr.2023.101736.
- Kluková, Z., Nosek, Š., Fuka, V., Jaňour, Z., Chaloupecká, H. & Ďoubalová, J. (2021). The combining effect of the roof shape, roof-height non-
uniformity and source position on the pollutant transport between a
street canyon and 3D urban array. Journal of Wind Engineering and Industrial Aerodynamics 208:104468. doi: 10.1016/j.jweia.2020.104468.
- Knabben, R. M., Trichês, G., Gerges, S. N. Y. & Vergara, E. F. (2016).
Evaluation of sound absorption capacity of asphalt mixtures.” Applied
Acoustics 114:266–74. doi:
http://dx.doi.org/10.1016/j.apacoust.2016.08.008.
- Lee, P. J., & Jeon, J. Y. (2011). Evaluation of speech transmission in open
public spaces affected by combined noises. The Journal of the
Acoustical Society of America 130(1):219–27. doi: 10.1121/1.3598455.
- Lee, P. J., & Kang, J. (2015). Effect of height-to-width ratio on the sound
propagation in urban streets. Acta Acustica United with Acustica
101(1):73–87. doi: 10.3813/AAA.918806.
- Li, Z., Xu, J., Ming, T., Peng, C., Huang, J. & Gong, T. (2017). Numerical
simulation on the effect of vehicle movement on pollutant dispersion in
urban street. Procedia Engineering 205:2303–10. doi:
10.1016/j.proeng.2017.10.104.
- Li, M., Renterghem, T. V., Kang, J., Verheyen, K. & Botteldooren, D. (2020).
Sound absorption by tree bark. Applied Acoustics 165. doi:
https://doi.org/10.1016/j.apacoust.2020.107328.
- Li, Z., Shi, T., Wu, Y., Zhang, H., Juan, Y., Ming, T. & Zhou, N. (2020). Effect of
traffic tidal flow on pollutant dispersion in various street canyons and
corresponding mitigation strategies. Energy and Built Environment
1(3):242–53. doi: 10.1016/j.enbenv.2020.02.002.
- Lo, K. W., & Ngan, K. (2015). Characterising the pollutant ventilation
characteristics of street canyons using the tracer age and age
spectrum. Atmospheric Environment 122:611–21. doi:
10.1016/j.atmosenv.2015.10.023.
- Lugten, M., Wuite, G., Peng, Z. & Tenpierik, M. (2024). Assessing the
ınfluence of street canyon shape on aircraft noise: results from
measurements in courtyards near Amsterdam Schiphol Airport.”
Building and Environment 255:111400. doi: 10.1016/j.buildenv.2024.111400.
- Marini, S., Buonanno, G., Stabile, L. & Avino, P. (2015). A benchmark for
numerical scheme validation of airborne particle exposure in street
canyons. Environmental Science and Pollution Research 22(3):2051–63.
doi: 10.1007/s11356-014-3491-6.
- McMullan, W. A. &Angelino, M. (2022). The effect of tree planting on
traffic pollutant dispersion in an urban street canyon using large eddy
simulation with a recycling and rescaling ınflow generation method.
Journal of Wind Engineering and Industrial Aerodynamics 221:104877.
doi: 10.1016/j.jweia.2021.104877.
- Michioka, T., Takimoto, H. and Sato, A. (2014). “Large-Eddy Simulation of
Pollutant Removal from a Three-Dimensional Street Canyon.”
Boundary-Layer Meteorology 150(2):259–75. doi: 10.1007/s10546-013-
9870-6.
- Mumford, E. (1992). CIAM urbanism after the Athens charter. Planning
Perspectives 7(4):391–417. doi: 10.1080/02665439208725757.
- Murena, F., Di Benedetto, A., D’Onofrio, M. & Vitiello, G. (2011). Mass
transfer velocity and momentum vertical exchange in simulated deep
street canyons. Boundary-Layer Meteorology 140(1):125–42. doi:
10.1007/s10546-011-9602-8.
- Murena, F. & Mele, B. (2016). Effect of balconies on air quality in deep
street canyons.” Atmospheric Pollution Research 7(6):1004–12. doi:
10.1016/j.apr.2016.06.005.
- Murena, F. & Favale, G. (2007). Continuous monitoring of carbon
monoxide in a deep street canyon.” Atmospheric Environment
41(12):2620–29. doi: 10.1016/j.atmosenv.2006.11.017.
- Nasrollahi, N., Namazi, Y. & Taleghani, M. (2021). The effect of urban
shading and canyon geometry on outdoor thermal comfort in hot
climates: A case study of Ahvaz, Iran.” Sustainable Cities and Society
65:102638. doi: 10.1016/j.scs.2020.102638.
- Nosek, Š., Fuka, V., Kukačka, L., Kluková, Z. & Jaňour, Z. (2018). Street-
canyon pollution with respect to urban-array complexity: The role of
lateral and mean pollution fluxes.” Building and Environment 138:221–
34. doi: 10.1016/j.buildenv.2018.04.036.
Nosek, Š., Kluková, Z., Jakubcová, M. & Jaňour, Z. (2022). the effect of
courtyard buildings on the ventilation of street canyons: A wind-tunnel
study.” Journal of Wind Engineering and Industrial Aerodynamics
220:104885. doi: 10.1016/j.jweia.2021.104885.
- Pouya, S. (2022). İdeal ses peyzajın planlaması ve tasarımı.” Mimarlık
Bilimleri ve Uygulamaları Dergisi (MBUD) 7(2):919–34. doi:
10.30785/mbud.1166229.
- Sayın, T. (2022). A research on facade configuration through
transparency in architectural design. Mimarlık Bilimleri ve Uygulamaları
Dergisi (MBUD) 119–31. doi: 10.30785/mbud.1030583.
- Schiff, M., Maarten H. & Forssén, J. (2010). Excess attenuation for sound
propagation over an urban canyon. Applied Acoustics 71(6):510–17. doi:
10.1016/j.apacoust.2010.01.005.
- Shen, J., Gao, Z. , Ding, W. & Ying Yu. (2017). An ınvestigation on the effect
of street morphology to ambient air quality using six real-world cases.
Atmospheric Environment 164:85–101. doi:
10.1016/j.atmosenv.2017.05.047.
- Šprah, N., Potočnik, J. & Košir, M. (2024). The ınfluence of façade colour,
glazing area and geometric configuration of urban canyon on the
spectral characteristics of daylight. Building and Environment 251:111214.
doi: 10.1016/j.buildenv.2024.111214.
- Şimşek, O. & Özçevik Bilen, A. (2021). Yapı cephe özellikleri ve yol
genişliğinin çevresel gürültü düzeyine etkisinin kentsel yol kesitleri
üzerinden incelenmesi. Journal of the Faculty of Engineering and
Architecture of Gazi University 37:3. doi: 10.17341/gazimmfd.919498
- Thaker, P. & Gokhale, S. (2016). The ımpact of traffic-flow patterns on air
quality in urban street canyons. Environmental Pollution 208:161–69. doi:
10.1016/j.envpol.2015.09.004.
- Toy, S. & Esringü, A. (2021). Erzurum’da kent kanyonlarının gelişimi ve
peyzaj mimarlığı açısından alınabilecek tedbirler. ATA Planlama ve
Tasarım Dergisi. doi: 10.54864/ataplanlamavetasarim.1038118.
- Ünal Çilek, M. (2022). The ınfluence of urban canyon geometry on land
surface temperature: Kurtuluş Neighborhood.” Turkish Journal of Remote Sensing and GIS. doi: 10.48123/rsgis.1095619.
- Van Renterghem, T. & Botteldooren, D. (2008). Numerical evaluation of
sound propagating over green roofs. Journal of Sound and Vibration
317(3–5):781–99. doi: 10.1016/j.jsv.2008.03.025.
- Van Renterghem, T. & Botteldooren, D. (2010). The ımportance of roof
shape for road traffic noise shielding in the urban environment. Journal
of Sound and Vibration 329(9):1422–34. doi: 10.1016/j.jsv.2009.11.011.
- Vardoulakis, S., Gonzalez-Flesca, N. & Fisher, B. E. A. (2002). Assessment
of traffic-related air pollution in two street canyons in Paris: Implications for exposure studies. Atmospheric Environment
36(6):1025–39. doi: 10.1016/S1352-2310(01)00288-6.
- Vardoulakis, S., Bernard, Fisher, E. A., Koulis, P. & Gonzalez-Flesca, G.
(2003). Modelling air quality in street canyons: A review. Atmospheric
Environment 37(2):155–82. doi: 10.1016/S1352-2310(02)00857-9.
WHO, C. (2018). Ambient (Outdoor) Air Pollution. p. 15–25 in air quality
guidelines% 22 estimate, related deaths by around.
- Wikipedia. (2024). Canyon.
- Yagi, A., Atsushi, I., Manabu, K., Chusei, F, & Fujiyoshi, Y. (2017). Nature of
streaky buildings observed with a doppler lidar. Boundary-Layer
Meteorology 163(1):19–40. doi: 10.1007/s10546-016-0213-2.
- Yılmaz, N. G., Pyoung-Jik L., Muhammad I. & Jeong, J. (2023). Role of
sounds in perception of enclosure in urban street canyons. Sustainable
Cities and Society 90:104394. doi: 10.1016/j.scs.2023.104394.
- Yılmaz Bakır, N. (2020). Replacing ‘mixed use’ with ‘all mixed up’
concepts; a critical review of Turkey Metropolitan City Centers. Land
Use Policy 97:104905. doi: 10.1016/j.landusepol.2020.104905.
- Yuan, C., Edward, N., & Norford, L. K. (2014). Improving air quality in high-
density cities by understanding the relationship between air pollutant
dispersion and urban morphologies. Building and Environment 71:245–
58. doi: 10.1016/j.buildenv.2013.10.008.
- Yüğrük Akdağ, N. (2003). Kent planlamada gürültü haritalarının önemi:
Barbaros Bulvarı çevresi örneği. Mimarlık Dergisi.
- Yüğrük Akdağ, N. (2024). Gürültü Denetimi 2 - Gürültünün Açık Havada
Yayılmasında Önem Taşıyan Etkenler. İstanbul.
- Zorer, H., and Öztürk, Y. (2021). “Masiro Kanyonu’nun (Pervari) Flüvyo-
Karstik Gelişimi ve Yakın Çevresinin Jeomorfik Özellikleri.” Journal of
Geography 0(42). doi: 10.26650/JGEOG2021-825470.