Research Article
BibTex RIS Cite

Kanyon Etkisi Özelinde Zemin Katı Ticari Fonksiyonlu Konut Binalarının Çevresel Gürültü Değerlendirmesi

Year 2024, Volume: 9 Issue: 2, 756 - 773, 26.12.2024
https://doi.org/10.30785/mbud.1471935

Abstract

Çevresel gürültü, insan sağlığını ve yaşam kalitesini olumsuz etkileyen önemli faktörlerin başında gelmektedir. Kanyon etkisi, uzun yapı grupları arasında kalan bölgelerde ortaya çıkar. Kanyon etkisi gürültü, ısı, aydınlatma veya havalandırma açısından farklı koşullara neden olabilir. Bu farklılık: Yapı-yol ilişkisine, trafik yoğunluğuna, iklim koşullarına, bina boyutlarına ve geometrisine bağlıdır. Bu çalışma kapsamında: Cadde (sokak) kanyonlarına özgü çevresel gürültünün yol-yapı yüksekliği ilişkisi ve yapı içindeki ticaret-konut ilişkisi incelenmiştir. Ses kaynağı olarak karayolu tercih edilmiştir. 12 ayrı operasyonel model oluşturulmuş ve her bir modelde 4 iç mekan ve 10 dış mekan ölçüm noktasından toplam 168 ölçüm sonucu elde edilmiştir. Sonuçlar farklı değişkenlere özgü kanyon etkisinin seviyesini göstermiştir.

References

  • Allegrini, J. (2018). A wind tunnel study on three-dimensional buoyant flows in street canyons with different roof shapes and building lengths. Building and Environment 143:71–88. doi: 10.1016/j.buildenv.2018.06.056.
  • Alwi, A., Mohd F. M., Naoki I., and Razak, A. A. (2023). Effect of protruding eave on the turbulence buildings over two-dimensional Semi-Open Street Canyon. Building and Environment 228:109921. doi: 10.1016/j.buildenv.2022.109921.
  • Arpacıoğlu, Ü. (2006). Geçmişten Günümüze Kerpiç Malzeme Üretim Teknikleri ve Güncel Kullanım Olanakları. Pp. 15–17 in Ulusal Yapı Malzemesi Kongresi.
  • Arpacıoğlu, Ü. (2012). Mekânsal kalite ve konfor ıçin önemli bir faktör: Günışığı. Mimarlık 368.
  • Babisch, W. (2008). Road traffic noise and cardiovascular risk. Noise and Health 10(38):27. doi: 10.4103/1463-1741.39005.
  • Babisch, W. (2014). Updated Exposure-response relationship between road traffic noise and coronary heart diseases: A meta-analysis. Noise and Health 16(68):1. doi: 10.4103/1463-1741.127847.
  • Babisch, W., Bernd, B., Marianne, S., Norbert, K. & Ising, H. (2005). Traffic noise and risk of myocardial ınfarction. Epidemiology 16(1):33–40. doi: 10.1097/01.ede.0000147104.84424.24.
  • Badas, M. G., Simone, F., Michela, G. & Querzoli, G. (2017). On the effect of gable roof on natural ventilation in two-dimensional urban canyons.” Journal of Wind Engineering and Industrial Aerodynamics 162:24–34. doi: 10.1016/j.jweia.2017.01.006.
  • Balogun, A. A., Tomlin, A. S., Wood, C. R., Barlow, J. F., Belcher, S. E., Smalley, R. J., Lingard, J. J. N., Arnold, S. J., Dobre, A., Robins, A. G., Martin, D. & Shallcross, D. E. (2010). In-street wind direction variability in the vicinity of a busy ıntersection in Central London.” Boundary-Layer Meteorology 136(3):489–513. doi: 10.1007/s10546-010-9515-y.
  • Battista, G., Vollaro, E. L., Ocłoń, P. & Vallati, A., (2021). “Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand.” Energy 226:120346. doi: 10.1016/j.energy.2021.120346.
  • Buccolieri, R., Salizzoni, P., Soulhac, L., Garbero, V. & Di Sabatino, S. (2015). The breathability of compact cities. Urban Climate 13:73–93. doi: 10.1016/j.uclim.2015.06.002.
  • Can, A., Fortin, N. & Picaut. J. (2015). Accounting for the effect of diffuse reflections and fittings within street canyons, on the sound propagation predicted by ray tracing codes. Applied Acoustics 96:83– 93. doi: 10.1016/j.apacoust.2015.03.013.
  • Carlo, O. S., Fellini, S., Palusci, O., Marro, M., Salizzoni, P. & Buccolieri, R. (2024). Influence of obstacles on urban canyon ventilation and air pollutant concentration: An experimental assessment. Building and Environment 250:111143. doi: 10.1016/j.buildenv.2023.111143.
  • Carpentieri, M., Salizzoni, P., Robins, A. & Soulhac, L. (2012). Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data. Environmental Modelling & Software 37:110–24. doi: 10.1016/j.envsoft.2012.03.009.
  • Coceal, O., Thomas, T. G., Castro, I. P. & Belcher, S. E. (2006). Mean flow and turbulence statistics over groups of urban-like cubical obstacles.” Boundary-Layer Meteorology 121(3):491–519. doi: 10.1007/s10546-006- 9076-2.
  • Colorlib, & Jekyll. (2021). Sound Absorption Coefficients. Retrieved February 6, 2024 (http://heyizhou.net/notes/absorption-coefficients).
  • Di Bernardino, A., Monti, P., Leuzzi, G. & Querzoli, G. (2018). Pollutant fluxes in two-dimensional street canyons. Urban Climate 24:80–93. doi: 10.1016/j.uclim.2018.02.002.
  • Du, H., Savory, E. &Perret, L. (2023). Effect of morphology and an upstream tall building on the mean turbulence statistics of a street canyon flow. Building and Environment 241:110428. doi: 10.1016/j.buildenv.2023.110428.
  • Egan, M. D. (2007). Architectural Acoustics. New York.
  • Eliasson, I., Offerle, B., Grimmond, C. S. B. & Lindqvist, S. (2006). Wind Fields and Turbulence Statistics in an Urban Street Canyon. Atmospheric Environment 40(1):1–16. doi: 10.1016/j.atmosenv.2005.03.031.
  • Farrell, W. J., Cavellin, L. D., Weichenthal, S., Goldberg, M. & Hatzopoulou, M. (2015). Capturing the urban canyon effect on particle number concentrations across a large road network using spatial analysis tools. Building and Environment 92:328–34. doi: 10.1016/j.buildenv.2015.05.004.
  • Fatehi, H. & Nilsson, E. J. K. (2022). Effect of buoyancy on dispersion of reactive pollutants in urban canyons. Atmospheric Pollution Research 13(8):101502. doi: 10.1016/j.apr.2022.101502.
  • Fellini, S., Marro, M., Del Ponte, A. V., Barulli, M., Soulhac, L., Ridolfi, L. & Salizzoni, P. (2022). High resolution wind-tunnel ınvestigation about the effect of street trees on pollutant concentration and street canyon ventilation. Building and Environment 226:109763. doi: 10.1016/j.buildenv.2022.109763.
  • Gold, J. R. (1998). Creating the charter of Athens: CIAM and the functional city, 1933-43. Town Planning Review 69(3):225. doi: 10.3828/tpr.69.3.2357285302gl032l.
  • Goulart, E. V., Reis, N. C., Lavor, Ian. V. F., Castro, P., Santos, J. M. & Xie., Z. T. (2019). Local and non-local effects of building arrangements on pollutant fluxes within the urban canopy. Building and Environment 147:23–34. doi: 10.1016/j.buildenv.2018.09.023.
  • Gu, Z., Zhang, Y. Cheng, Y. & Lee, S. (2011). Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Building and Environment 46(12):2657–65. doi: 10.1016/j.buildenv.2011.06.028.
  • Guillaume, G., Gauvreau, B. & P. L’Hermite. (2015). Numerical study of the ımpact of vegetation coverings on sound levels and time decays in a canyon street model. Science of The Total Environment 502:22–30. doi: 10.1016/j.scitotenv.2014.08.111.
  • Kanda, M. (2006). Large-Eddy Simulations on the effects of surface geometry of building arrays on turbulent organized buildings. Boundary-Layer Meteorology 118(1):151–68. doi: 10.1007/s10546-005- 5294-2.
  • Kang, J. (2000). Sound propagation in street canyons: comparison between Diffusely and Geometrically Reflecting Boundaries. The Journal of the Acoustical Society of America 107(3):1394–1404. doi: 10.1121/1.428580.
  • Kang, J. (2005). Numerical modeling of the sound fields in urban squares. The Journal of the Acoustical Society of America 117(6):3695– 3706. doi: 10.1121/1.1904483.
  • Karra, S., Malki-Epshtein, L. & Neophytou, M. K. A. (2017). Air flow and pollution in a real, heterogeneous urban street canyon: A field and laboratory study. Atmospheric Environment 165:370–84. doi: 10.1016/j.atmosenv.2017.06.035.
  • Kim, J., Baik, J., Han, B., Lee, J., Jin, H., Park, K., Yang, H. & Park, S. (2022). Tall-building effects on pedestrian-level flow and pollutant dispersion: large-eddy simulations. Atmospheric Pollution Research 13(8):101500. doi: 10.1016/j.apr.2022.101500.
  • Kim, J., Baik, J., Park, S. & Han, B. S. (2023). Impacts of building-height variability on turbulent coherent buildings and pollutant dispersion: Large-Eddy simulations. Atmospheric Pollution Research 14(5):101736. doi: 10.1016/j.apr.2023.101736.
  • Kluková, Z., Nosek, Š., Fuka, V., Jaňour, Z., Chaloupecká, H. & Ďoubalová, J. (2021). The combining effect of the roof shape, roof-height non- uniformity and source position on the pollutant transport between a street canyon and 3D urban array. Journal of Wind Engineering and Industrial Aerodynamics 208:104468. doi: 10.1016/j.jweia.2020.104468.
  • Knabben, R. M., Trichês, G., Gerges, S. N. Y. & Vergara, E. F. (2016). Evaluation of sound absorption capacity of asphalt mixtures.” Applied Acoustics 114:266–74. doi: http://dx.doi.org/10.1016/j.apacoust.2016.08.008.
  • Lee, P. J., & Jeon, J. Y. (2011). Evaluation of speech transmission in open public spaces affected by combined noises. The Journal of the Acoustical Society of America 130(1):219–27. doi: 10.1121/1.3598455.
  • Lee, P. J., & Kang, J. (2015). Effect of height-to-width ratio on the sound propagation in urban streets. Acta Acustica United with Acustica 101(1):73–87. doi: 10.3813/AAA.918806.
  • Li, Z., Xu, J., Ming, T., Peng, C., Huang, J. & Gong, T. (2017). Numerical simulation on the effect of vehicle movement on pollutant dispersion in urban street. Procedia Engineering 205:2303–10. doi: 10.1016/j.proeng.2017.10.104.
  • Li, M., Renterghem, T. V., Kang, J., Verheyen, K. & Botteldooren, D. (2020). Sound absorption by tree bark. Applied Acoustics 165. doi: https://doi.org/10.1016/j.apacoust.2020.107328.
  • Li, Z., Shi, T., Wu, Y., Zhang, H., Juan, Y., Ming, T. & Zhou, N. (2020). Effect of traffic tidal flow on pollutant dispersion in various street canyons and corresponding mitigation strategies. Energy and Built Environment 1(3):242–53. doi: 10.1016/j.enbenv.2020.02.002.
  • Lo, K. W., & Ngan, K. (2015). Characterising the pollutant ventilation characteristics of street canyons using the tracer age and age spectrum. Atmospheric Environment 122:611–21. doi: 10.1016/j.atmosenv.2015.10.023.
  • Lugten, M., Wuite, G., Peng, Z. & Tenpierik, M. (2024). Assessing the ınfluence of street canyon shape on aircraft noise: results from measurements in courtyards near Amsterdam Schiphol Airport.” Building and Environment 255:111400. doi: 10.1016/j.buildenv.2024.111400.
  • Marini, S., Buonanno, G., Stabile, L. & Avino, P. (2015). A benchmark for numerical scheme validation of airborne particle exposure in street canyons. Environmental Science and Pollution Research 22(3):2051–63. doi: 10.1007/s11356-014-3491-6.
  • McMullan, W. A. &Angelino, M. (2022). The effect of tree planting on traffic pollutant dispersion in an urban street canyon using large eddy simulation with a recycling and rescaling ınflow generation method. Journal of Wind Engineering and Industrial Aerodynamics 221:104877. doi: 10.1016/j.jweia.2021.104877.
  • Michioka, T., Takimoto, H. and Sato, A. (2014). “Large-Eddy Simulation of Pollutant Removal from a Three-Dimensional Street Canyon.” Boundary-Layer Meteorology 150(2):259–75. doi: 10.1007/s10546-013- 9870-6.
  • Mumford, E. (1992). CIAM urbanism after the Athens charter. Planning Perspectives 7(4):391–417. doi: 10.1080/02665439208725757.
  • Murena, F., Di Benedetto, A., D’Onofrio, M. & Vitiello, G. (2011). Mass transfer velocity and momentum vertical exchange in simulated deep street canyons. Boundary-Layer Meteorology 140(1):125–42. doi: 10.1007/s10546-011-9602-8.
  • Murena, F. & Mele, B. (2016). Effect of balconies on air quality in deep street canyons.” Atmospheric Pollution Research 7(6):1004–12. doi: 10.1016/j.apr.2016.06.005.
  • Murena, F. & Favale, G. (2007). Continuous monitoring of carbon monoxide in a deep street canyon.” Atmospheric Environment 41(12):2620–29. doi: 10.1016/j.atmosenv.2006.11.017.
  • Nasrollahi, N., Namazi, Y. & Taleghani, M. (2021). The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran.” Sustainable Cities and Society 65:102638. doi: 10.1016/j.scs.2020.102638.
  • Nosek, Š., Fuka, V., Kukačka, L., Kluková, Z. & Jaňour, Z. (2018). Street- canyon pollution with respect to urban-array complexity: The role of lateral and mean pollution fluxes.” Building and Environment 138:221– 34. doi: 10.1016/j.buildenv.2018.04.036. Nosek, Š., Kluková, Z., Jakubcová, M. & Jaňour, Z. (2022). the effect of courtyard buildings on the ventilation of street canyons: A wind-tunnel study.” Journal of Wind Engineering and Industrial Aerodynamics 220:104885. doi: 10.1016/j.jweia.2021.104885.
  • Pouya, S. (2022). İdeal ses peyzajın planlaması ve tasarımı.” Mimarlık Bilimleri ve Uygulamaları Dergisi (MBUD) 7(2):919–34. doi: 10.30785/mbud.1166229.
  • Sayın, T. (2022). A research on facade configuration through transparency in architectural design. Mimarlık Bilimleri ve Uygulamaları Dergisi (MBUD) 119–31. doi: 10.30785/mbud.1030583.
  • Schiff, M., Maarten H. & Forssén, J. (2010). Excess attenuation for sound propagation over an urban canyon. Applied Acoustics 71(6):510–17. doi: 10.1016/j.apacoust.2010.01.005.
  • Shen, J., Gao, Z. , Ding, W. & Ying Yu. (2017). An ınvestigation on the effect of street morphology to ambient air quality using six real-world cases. Atmospheric Environment 164:85–101. doi: 10.1016/j.atmosenv.2017.05.047.
  • Šprah, N., Potočnik, J. & Košir, M. (2024). The ınfluence of façade colour, glazing area and geometric configuration of urban canyon on the spectral characteristics of daylight. Building and Environment 251:111214. doi: 10.1016/j.buildenv.2024.111214.
  • Şimşek, O. & Özçevik Bilen, A. (2021). Yapı cephe özellikleri ve yol genişliğinin çevresel gürültü düzeyine etkisinin kentsel yol kesitleri üzerinden incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University 37:3. doi: 10.17341/gazimmfd.919498
  • Thaker, P. & Gokhale, S. (2016). The ımpact of traffic-flow patterns on air quality in urban street canyons. Environmental Pollution 208:161–69. doi: 10.1016/j.envpol.2015.09.004.
  • Toy, S. & Esringü, A. (2021). Erzurum’da kent kanyonlarının gelişimi ve peyzaj mimarlığı açısından alınabilecek tedbirler. ATA Planlama ve Tasarım Dergisi. doi: 10.54864/ataplanlamavetasarim.1038118.
  • Ünal Çilek, M. (2022). The ınfluence of urban canyon geometry on land surface temperature: Kurtuluş Neighborhood.” Turkish Journal of Remote Sensing and GIS. doi: 10.48123/rsgis.1095619.
  • Van Renterghem, T. & Botteldooren, D. (2008). Numerical evaluation of sound propagating over green roofs. Journal of Sound and Vibration 317(3–5):781–99. doi: 10.1016/j.jsv.2008.03.025.
  • Van Renterghem, T. & Botteldooren, D. (2010). The ımportance of roof shape for road traffic noise shielding in the urban environment. Journal of Sound and Vibration 329(9):1422–34. doi: 10.1016/j.jsv.2009.11.011.
  • Vardoulakis, S., Gonzalez-Flesca, N. & Fisher, B. E. A. (2002). Assessment of traffic-related air pollution in two street canyons in Paris: Implications for exposure studies. Atmospheric Environment 36(6):1025–39. doi: 10.1016/S1352-2310(01)00288-6.
  • Vardoulakis, S., Bernard, Fisher, E. A., Koulis, P. & Gonzalez-Flesca, G. (2003). Modelling air quality in street canyons: A review. Atmospheric Environment 37(2):155–82. doi: 10.1016/S1352-2310(02)00857-9. WHO, C. (2018). Ambient (Outdoor) Air Pollution. p. 15–25 in air quality guidelines% 22 estimate, related deaths by around.
  • Wikipedia. (2024). Canyon.
  • Yagi, A., Atsushi, I., Manabu, K., Chusei, F, & Fujiyoshi, Y. (2017). Nature of streaky buildings observed with a doppler lidar. Boundary-Layer Meteorology 163(1):19–40. doi: 10.1007/s10546-016-0213-2.
  • Yılmaz, N. G., Pyoung-Jik L., Muhammad I. & Jeong, J. (2023). Role of sounds in perception of enclosure in urban street canyons. Sustainable Cities and Society 90:104394. doi: 10.1016/j.scs.2023.104394.
  • Yılmaz Bakır, N. (2020). Replacing ‘mixed use’ with ‘all mixed up’ concepts; a critical review of Turkey Metropolitan City Centers. Land Use Policy 97:104905. doi: 10.1016/j.landusepol.2020.104905.
  • Yuan, C., Edward, N., & Norford, L. K. (2014). Improving air quality in high- density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Building and Environment 71:245– 58. doi: 10.1016/j.buildenv.2013.10.008.
  • Yüğrük Akdağ, N. (2003). Kent planlamada gürültü haritalarının önemi: Barbaros Bulvarı çevresi örneği. Mimarlık Dergisi.
  • Yüğrük Akdağ, N. (2024). Gürültü Denetimi 2 - Gürültünün Açık Havada Yayılmasında Önem Taşıyan Etkenler. İstanbul.
  • Zorer, H., and Öztürk, Y. (2021). “Masiro Kanyonu’nun (Pervari) Flüvyo- Karstik Gelişimi ve Yakın Çevresinin Jeomorfik Özellikleri.” Journal of Geography 0(42). doi: 10.26650/JGEOG2021-825470.

Environmental Noise Assessment of Residential Buildings with Ground Floor Commercial Function Specific to the Canyon Effect

Year 2024, Volume: 9 Issue: 2, 756 - 773, 26.12.2024
https://doi.org/10.30785/mbud.1471935

Abstract

Environmental noise is one of the primary important factors that negatively affect human health and quality of life. The canyon effect occurs in the regions between the long structure groups. Canyon effect can cause different conditions in terms of noise, heat, lighting or ventilation. This difference: It depends on the building-road relationship, traffic density, climatic conditions, building dimensions and geometry. Within the scope of this study: The road-structure height relationship of environmental noise specific to street canyons and the trade-housing relationship within the building were examined. Highway was preferred as the sound source. 12 separate operational models were created, and a total of 168 measurement results were obtained from 4 indoor and 10 outdoor measurement points in each model. The results showed the level of the canyon effect specific to different variables.

Thanks

We would like to thank for their support and contributions dear members of TÜBİTAK Marmara Research Center, Environment, Cleaner Production, Climate Change and Sustainability, Air Quality and Environmental Noise Technologies Research Group, Senior Principal Investigator Dr. Deniz SARI and scholarship holder Rümeysa ÖNEN.

References

  • Allegrini, J. (2018). A wind tunnel study on three-dimensional buoyant flows in street canyons with different roof shapes and building lengths. Building and Environment 143:71–88. doi: 10.1016/j.buildenv.2018.06.056.
  • Alwi, A., Mohd F. M., Naoki I., and Razak, A. A. (2023). Effect of protruding eave on the turbulence buildings over two-dimensional Semi-Open Street Canyon. Building and Environment 228:109921. doi: 10.1016/j.buildenv.2022.109921.
  • Arpacıoğlu, Ü. (2006). Geçmişten Günümüze Kerpiç Malzeme Üretim Teknikleri ve Güncel Kullanım Olanakları. Pp. 15–17 in Ulusal Yapı Malzemesi Kongresi.
  • Arpacıoğlu, Ü. (2012). Mekânsal kalite ve konfor ıçin önemli bir faktör: Günışığı. Mimarlık 368.
  • Babisch, W. (2008). Road traffic noise and cardiovascular risk. Noise and Health 10(38):27. doi: 10.4103/1463-1741.39005.
  • Babisch, W. (2014). Updated Exposure-response relationship between road traffic noise and coronary heart diseases: A meta-analysis. Noise and Health 16(68):1. doi: 10.4103/1463-1741.127847.
  • Babisch, W., Bernd, B., Marianne, S., Norbert, K. & Ising, H. (2005). Traffic noise and risk of myocardial ınfarction. Epidemiology 16(1):33–40. doi: 10.1097/01.ede.0000147104.84424.24.
  • Badas, M. G., Simone, F., Michela, G. & Querzoli, G. (2017). On the effect of gable roof on natural ventilation in two-dimensional urban canyons.” Journal of Wind Engineering and Industrial Aerodynamics 162:24–34. doi: 10.1016/j.jweia.2017.01.006.
  • Balogun, A. A., Tomlin, A. S., Wood, C. R., Barlow, J. F., Belcher, S. E., Smalley, R. J., Lingard, J. J. N., Arnold, S. J., Dobre, A., Robins, A. G., Martin, D. & Shallcross, D. E. (2010). In-street wind direction variability in the vicinity of a busy ıntersection in Central London.” Boundary-Layer Meteorology 136(3):489–513. doi: 10.1007/s10546-010-9515-y.
  • Battista, G., Vollaro, E. L., Ocłoń, P. & Vallati, A., (2021). “Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand.” Energy 226:120346. doi: 10.1016/j.energy.2021.120346.
  • Buccolieri, R., Salizzoni, P., Soulhac, L., Garbero, V. & Di Sabatino, S. (2015). The breathability of compact cities. Urban Climate 13:73–93. doi: 10.1016/j.uclim.2015.06.002.
  • Can, A., Fortin, N. & Picaut. J. (2015). Accounting for the effect of diffuse reflections and fittings within street canyons, on the sound propagation predicted by ray tracing codes. Applied Acoustics 96:83– 93. doi: 10.1016/j.apacoust.2015.03.013.
  • Carlo, O. S., Fellini, S., Palusci, O., Marro, M., Salizzoni, P. & Buccolieri, R. (2024). Influence of obstacles on urban canyon ventilation and air pollutant concentration: An experimental assessment. Building and Environment 250:111143. doi: 10.1016/j.buildenv.2023.111143.
  • Carpentieri, M., Salizzoni, P., Robins, A. & Soulhac, L. (2012). Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data. Environmental Modelling & Software 37:110–24. doi: 10.1016/j.envsoft.2012.03.009.
  • Coceal, O., Thomas, T. G., Castro, I. P. & Belcher, S. E. (2006). Mean flow and turbulence statistics over groups of urban-like cubical obstacles.” Boundary-Layer Meteorology 121(3):491–519. doi: 10.1007/s10546-006- 9076-2.
  • Colorlib, & Jekyll. (2021). Sound Absorption Coefficients. Retrieved February 6, 2024 (http://heyizhou.net/notes/absorption-coefficients).
  • Di Bernardino, A., Monti, P., Leuzzi, G. & Querzoli, G. (2018). Pollutant fluxes in two-dimensional street canyons. Urban Climate 24:80–93. doi: 10.1016/j.uclim.2018.02.002.
  • Du, H., Savory, E. &Perret, L. (2023). Effect of morphology and an upstream tall building on the mean turbulence statistics of a street canyon flow. Building and Environment 241:110428. doi: 10.1016/j.buildenv.2023.110428.
  • Egan, M. D. (2007). Architectural Acoustics. New York.
  • Eliasson, I., Offerle, B., Grimmond, C. S. B. & Lindqvist, S. (2006). Wind Fields and Turbulence Statistics in an Urban Street Canyon. Atmospheric Environment 40(1):1–16. doi: 10.1016/j.atmosenv.2005.03.031.
  • Farrell, W. J., Cavellin, L. D., Weichenthal, S., Goldberg, M. & Hatzopoulou, M. (2015). Capturing the urban canyon effect on particle number concentrations across a large road network using spatial analysis tools. Building and Environment 92:328–34. doi: 10.1016/j.buildenv.2015.05.004.
  • Fatehi, H. & Nilsson, E. J. K. (2022). Effect of buoyancy on dispersion of reactive pollutants in urban canyons. Atmospheric Pollution Research 13(8):101502. doi: 10.1016/j.apr.2022.101502.
  • Fellini, S., Marro, M., Del Ponte, A. V., Barulli, M., Soulhac, L., Ridolfi, L. & Salizzoni, P. (2022). High resolution wind-tunnel ınvestigation about the effect of street trees on pollutant concentration and street canyon ventilation. Building and Environment 226:109763. doi: 10.1016/j.buildenv.2022.109763.
  • Gold, J. R. (1998). Creating the charter of Athens: CIAM and the functional city, 1933-43. Town Planning Review 69(3):225. doi: 10.3828/tpr.69.3.2357285302gl032l.
  • Goulart, E. V., Reis, N. C., Lavor, Ian. V. F., Castro, P., Santos, J. M. & Xie., Z. T. (2019). Local and non-local effects of building arrangements on pollutant fluxes within the urban canopy. Building and Environment 147:23–34. doi: 10.1016/j.buildenv.2018.09.023.
  • Gu, Z., Zhang, Y. Cheng, Y. & Lee, S. (2011). Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Building and Environment 46(12):2657–65. doi: 10.1016/j.buildenv.2011.06.028.
  • Guillaume, G., Gauvreau, B. & P. L’Hermite. (2015). Numerical study of the ımpact of vegetation coverings on sound levels and time decays in a canyon street model. Science of The Total Environment 502:22–30. doi: 10.1016/j.scitotenv.2014.08.111.
  • Kanda, M. (2006). Large-Eddy Simulations on the effects of surface geometry of building arrays on turbulent organized buildings. Boundary-Layer Meteorology 118(1):151–68. doi: 10.1007/s10546-005- 5294-2.
  • Kang, J. (2000). Sound propagation in street canyons: comparison between Diffusely and Geometrically Reflecting Boundaries. The Journal of the Acoustical Society of America 107(3):1394–1404. doi: 10.1121/1.428580.
  • Kang, J. (2005). Numerical modeling of the sound fields in urban squares. The Journal of the Acoustical Society of America 117(6):3695– 3706. doi: 10.1121/1.1904483.
  • Karra, S., Malki-Epshtein, L. & Neophytou, M. K. A. (2017). Air flow and pollution in a real, heterogeneous urban street canyon: A field and laboratory study. Atmospheric Environment 165:370–84. doi: 10.1016/j.atmosenv.2017.06.035.
  • Kim, J., Baik, J., Han, B., Lee, J., Jin, H., Park, K., Yang, H. & Park, S. (2022). Tall-building effects on pedestrian-level flow and pollutant dispersion: large-eddy simulations. Atmospheric Pollution Research 13(8):101500. doi: 10.1016/j.apr.2022.101500.
  • Kim, J., Baik, J., Park, S. & Han, B. S. (2023). Impacts of building-height variability on turbulent coherent buildings and pollutant dispersion: Large-Eddy simulations. Atmospheric Pollution Research 14(5):101736. doi: 10.1016/j.apr.2023.101736.
  • Kluková, Z., Nosek, Š., Fuka, V., Jaňour, Z., Chaloupecká, H. & Ďoubalová, J. (2021). The combining effect of the roof shape, roof-height non- uniformity and source position on the pollutant transport between a street canyon and 3D urban array. Journal of Wind Engineering and Industrial Aerodynamics 208:104468. doi: 10.1016/j.jweia.2020.104468.
  • Knabben, R. M., Trichês, G., Gerges, S. N. Y. & Vergara, E. F. (2016). Evaluation of sound absorption capacity of asphalt mixtures.” Applied Acoustics 114:266–74. doi: http://dx.doi.org/10.1016/j.apacoust.2016.08.008.
  • Lee, P. J., & Jeon, J. Y. (2011). Evaluation of speech transmission in open public spaces affected by combined noises. The Journal of the Acoustical Society of America 130(1):219–27. doi: 10.1121/1.3598455.
  • Lee, P. J., & Kang, J. (2015). Effect of height-to-width ratio on the sound propagation in urban streets. Acta Acustica United with Acustica 101(1):73–87. doi: 10.3813/AAA.918806.
  • Li, Z., Xu, J., Ming, T., Peng, C., Huang, J. & Gong, T. (2017). Numerical simulation on the effect of vehicle movement on pollutant dispersion in urban street. Procedia Engineering 205:2303–10. doi: 10.1016/j.proeng.2017.10.104.
  • Li, M., Renterghem, T. V., Kang, J., Verheyen, K. & Botteldooren, D. (2020). Sound absorption by tree bark. Applied Acoustics 165. doi: https://doi.org/10.1016/j.apacoust.2020.107328.
  • Li, Z., Shi, T., Wu, Y., Zhang, H., Juan, Y., Ming, T. & Zhou, N. (2020). Effect of traffic tidal flow on pollutant dispersion in various street canyons and corresponding mitigation strategies. Energy and Built Environment 1(3):242–53. doi: 10.1016/j.enbenv.2020.02.002.
  • Lo, K. W., & Ngan, K. (2015). Characterising the pollutant ventilation characteristics of street canyons using the tracer age and age spectrum. Atmospheric Environment 122:611–21. doi: 10.1016/j.atmosenv.2015.10.023.
  • Lugten, M., Wuite, G., Peng, Z. & Tenpierik, M. (2024). Assessing the ınfluence of street canyon shape on aircraft noise: results from measurements in courtyards near Amsterdam Schiphol Airport.” Building and Environment 255:111400. doi: 10.1016/j.buildenv.2024.111400.
  • Marini, S., Buonanno, G., Stabile, L. & Avino, P. (2015). A benchmark for numerical scheme validation of airborne particle exposure in street canyons. Environmental Science and Pollution Research 22(3):2051–63. doi: 10.1007/s11356-014-3491-6.
  • McMullan, W. A. &Angelino, M. (2022). The effect of tree planting on traffic pollutant dispersion in an urban street canyon using large eddy simulation with a recycling and rescaling ınflow generation method. Journal of Wind Engineering and Industrial Aerodynamics 221:104877. doi: 10.1016/j.jweia.2021.104877.
  • Michioka, T., Takimoto, H. and Sato, A. (2014). “Large-Eddy Simulation of Pollutant Removal from a Three-Dimensional Street Canyon.” Boundary-Layer Meteorology 150(2):259–75. doi: 10.1007/s10546-013- 9870-6.
  • Mumford, E. (1992). CIAM urbanism after the Athens charter. Planning Perspectives 7(4):391–417. doi: 10.1080/02665439208725757.
  • Murena, F., Di Benedetto, A., D’Onofrio, M. & Vitiello, G. (2011). Mass transfer velocity and momentum vertical exchange in simulated deep street canyons. Boundary-Layer Meteorology 140(1):125–42. doi: 10.1007/s10546-011-9602-8.
  • Murena, F. & Mele, B. (2016). Effect of balconies on air quality in deep street canyons.” Atmospheric Pollution Research 7(6):1004–12. doi: 10.1016/j.apr.2016.06.005.
  • Murena, F. & Favale, G. (2007). Continuous monitoring of carbon monoxide in a deep street canyon.” Atmospheric Environment 41(12):2620–29. doi: 10.1016/j.atmosenv.2006.11.017.
  • Nasrollahi, N., Namazi, Y. & Taleghani, M. (2021). The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran.” Sustainable Cities and Society 65:102638. doi: 10.1016/j.scs.2020.102638.
  • Nosek, Š., Fuka, V., Kukačka, L., Kluková, Z. & Jaňour, Z. (2018). Street- canyon pollution with respect to urban-array complexity: The role of lateral and mean pollution fluxes.” Building and Environment 138:221– 34. doi: 10.1016/j.buildenv.2018.04.036. Nosek, Š., Kluková, Z., Jakubcová, M. & Jaňour, Z. (2022). the effect of courtyard buildings on the ventilation of street canyons: A wind-tunnel study.” Journal of Wind Engineering and Industrial Aerodynamics 220:104885. doi: 10.1016/j.jweia.2021.104885.
  • Pouya, S. (2022). İdeal ses peyzajın planlaması ve tasarımı.” Mimarlık Bilimleri ve Uygulamaları Dergisi (MBUD) 7(2):919–34. doi: 10.30785/mbud.1166229.
  • Sayın, T. (2022). A research on facade configuration through transparency in architectural design. Mimarlık Bilimleri ve Uygulamaları Dergisi (MBUD) 119–31. doi: 10.30785/mbud.1030583.
  • Schiff, M., Maarten H. & Forssén, J. (2010). Excess attenuation for sound propagation over an urban canyon. Applied Acoustics 71(6):510–17. doi: 10.1016/j.apacoust.2010.01.005.
  • Shen, J., Gao, Z. , Ding, W. & Ying Yu. (2017). An ınvestigation on the effect of street morphology to ambient air quality using six real-world cases. Atmospheric Environment 164:85–101. doi: 10.1016/j.atmosenv.2017.05.047.
  • Šprah, N., Potočnik, J. & Košir, M. (2024). The ınfluence of façade colour, glazing area and geometric configuration of urban canyon on the spectral characteristics of daylight. Building and Environment 251:111214. doi: 10.1016/j.buildenv.2024.111214.
  • Şimşek, O. & Özçevik Bilen, A. (2021). Yapı cephe özellikleri ve yol genişliğinin çevresel gürültü düzeyine etkisinin kentsel yol kesitleri üzerinden incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University 37:3. doi: 10.17341/gazimmfd.919498
  • Thaker, P. & Gokhale, S. (2016). The ımpact of traffic-flow patterns on air quality in urban street canyons. Environmental Pollution 208:161–69. doi: 10.1016/j.envpol.2015.09.004.
  • Toy, S. & Esringü, A. (2021). Erzurum’da kent kanyonlarının gelişimi ve peyzaj mimarlığı açısından alınabilecek tedbirler. ATA Planlama ve Tasarım Dergisi. doi: 10.54864/ataplanlamavetasarim.1038118.
  • Ünal Çilek, M. (2022). The ınfluence of urban canyon geometry on land surface temperature: Kurtuluş Neighborhood.” Turkish Journal of Remote Sensing and GIS. doi: 10.48123/rsgis.1095619.
  • Van Renterghem, T. & Botteldooren, D. (2008). Numerical evaluation of sound propagating over green roofs. Journal of Sound and Vibration 317(3–5):781–99. doi: 10.1016/j.jsv.2008.03.025.
  • Van Renterghem, T. & Botteldooren, D. (2010). The ımportance of roof shape for road traffic noise shielding in the urban environment. Journal of Sound and Vibration 329(9):1422–34. doi: 10.1016/j.jsv.2009.11.011.
  • Vardoulakis, S., Gonzalez-Flesca, N. & Fisher, B. E. A. (2002). Assessment of traffic-related air pollution in two street canyons in Paris: Implications for exposure studies. Atmospheric Environment 36(6):1025–39. doi: 10.1016/S1352-2310(01)00288-6.
  • Vardoulakis, S., Bernard, Fisher, E. A., Koulis, P. & Gonzalez-Flesca, G. (2003). Modelling air quality in street canyons: A review. Atmospheric Environment 37(2):155–82. doi: 10.1016/S1352-2310(02)00857-9. WHO, C. (2018). Ambient (Outdoor) Air Pollution. p. 15–25 in air quality guidelines% 22 estimate, related deaths by around.
  • Wikipedia. (2024). Canyon.
  • Yagi, A., Atsushi, I., Manabu, K., Chusei, F, & Fujiyoshi, Y. (2017). Nature of streaky buildings observed with a doppler lidar. Boundary-Layer Meteorology 163(1):19–40. doi: 10.1007/s10546-016-0213-2.
  • Yılmaz, N. G., Pyoung-Jik L., Muhammad I. & Jeong, J. (2023). Role of sounds in perception of enclosure in urban street canyons. Sustainable Cities and Society 90:104394. doi: 10.1016/j.scs.2023.104394.
  • Yılmaz Bakır, N. (2020). Replacing ‘mixed use’ with ‘all mixed up’ concepts; a critical review of Turkey Metropolitan City Centers. Land Use Policy 97:104905. doi: 10.1016/j.landusepol.2020.104905.
  • Yuan, C., Edward, N., & Norford, L. K. (2014). Improving air quality in high- density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Building and Environment 71:245– 58. doi: 10.1016/j.buildenv.2013.10.008.
  • Yüğrük Akdağ, N. (2003). Kent planlamada gürültü haritalarının önemi: Barbaros Bulvarı çevresi örneği. Mimarlık Dergisi.
  • Yüğrük Akdağ, N. (2024). Gürültü Denetimi 2 - Gürültünün Açık Havada Yayılmasında Önem Taşıyan Etkenler. İstanbul.
  • Zorer, H., and Öztürk, Y. (2021). “Masiro Kanyonu’nun (Pervari) Flüvyo- Karstik Gelişimi ve Yakın Çevresinin Jeomorfik Özellikleri.” Journal of Geography 0(42). doi: 10.26650/JGEOG2021-825470.
There are 72 citations in total.

Details

Primary Language English
Subjects Environmental Management (Other), Architecture (Other), Quality Management in Construction and Environment
Journal Section Research Articles
Authors

Derin Hilal Bilmez 0000-0002-3318-1982

Cüneyt Diri 0000-0003-4217-6381

Publication Date December 26, 2024
Submission Date April 22, 2024
Acceptance Date October 4, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Bilmez, D. H., & Diri, C. (2024). Environmental Noise Assessment of Residential Buildings with Ground Floor Commercial Function Specific to the Canyon Effect. Journal of Architectural Sciences and Applications, 9(2), 756-773. https://doi.org/10.30785/mbud.1471935