Research Article
BibTex RIS Cite

Determination of unsaturated hydraulic conductivity at field conditions and mathematical modeling

Year 2020, , 291 - 298, 01.08.2020
https://doi.org/10.29136/mediterranean.686138

Abstract

The objective of this study was to determine the unsaturated soil hydraulic conductivity in the heavily structured Arıklı soil series with 37o00'53" N and 35o21'24" S coordinates and to compare the unsaturated soil hydraulic conductivity measured in the field and laboratory. Water applied to saturate soil plots, which were covered with PE film under free drainage. The soil plots of square shapes had 2×2 m-dimensions. Water content and matric suction of soil with time were monitored by TDR/tensiometer. Arıklı series hydraulic conductivity was calculated as 0.007-0.652 cm hr-1. The mathematical model of soil-water characteristics was developed and models were expressed by exponential functions. When the agreement between K (ϴ)obs observed in field conditions and estimated K (ψ)mod was tested; root mean square error (RMSE) with 0.081 cm hr-1 and mean absolute error (MAE) with 0.053 cm hr-1 was small but the mean relative error (MRE) value had a high error value of 16.5%. The results also revealed that the proposed approach was accurate for predicting K (ϴ)obs in the dry range of soil water content. However, good results were not obtained in saturation. If the soil-water dynamics studies will be carry out, on-site measurements should be made to determine soil hydraulic conductivity.

Supporting Institution

Çukurova University Scientific Research Project BAP

Project Number

(Project No.: ZF2009BAP16)

References

  • Ahmadi SH, Sepaskhah AR (2012) Prediction of saturated hydraulic conductivity of compacted soils using empirical scaling factors. Archives of Agronomy and Soil Science 58: 1303-1316.
  • Ahmadi SH, Sepaskhah AR, Fooladmand HR (2015) A simple approach to predicting unsaturated hydraulic conductivity based on empirically scaled microscopic characteristic length. Hydrological Sciences Journal 60(2): 326-335.
  • Ahuja LR, Naney JW, Nielsen DR (1991) Scaling soil water properties and infiltration modeling. Soil Science Society of America Journal 48: 970-973.
  • Al-Sulaiman M, Aboukarima A (2016) Prediction of unsaturated hydraulic conductivity of agricultural soils using artificial neural network and c#. Journal of Agriculture and Ecology Research International 5(4): 1-15.
  • Black CA (1965) Methods of soil analysis part-II. America Society of Agronomy-Inc., Publisher Madison, Wisconsin, USA, pp. 1372-1376.
  • Blake GR, Hartge KH (1986) in ed.: A. Klute, Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Agronomy. Monograph 9, American Society of Agronomy and Soil Science Society of America, Madison WI, pp. 363-375.
  • Bondarenko HF, Jukovsky EE, Muskın IG, Nerpin SV, Poluektov RA, Uskov IB (1982) Simulation of Agroecosystem Productivity, Russia.
  • Bouyoucos GJ (1951) A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal 43: 435-438.
  • Comegna V, Damiani P, Sommella A (2000) Scaling the saturated hydraulic conductivity of a vertic ustorthens soil under conventional and minimum tillage. Soil and Tillage Research 54: 1-9.
  • Cook FJ (1991) Calculation of hydraulic conductivity from suction permeameter measurements. Soil Science, pp. 321-325.
  • Danielson RE, Sutherland PL (1986) Porosity. Methods of Soil Analysis Part 1, Physical and Mineralogical Methods Second Edition, pp. 443-462.
  • Finsterle S, Faybishenko B (1999) Inverse modeling of a radial multistep outflow experiment for determining unsaturated hydraulic properties. Water Resources Research 2: 431-444.
  • Gemalmaz E (1992) Örneklenen toprak hacmi ile arazide ölçülen hidrolik iletkenlik değerlerinin varyansı arasındaki ilişki, IV. Ulusal Tarımsal Yapılar ve Sulama Kongresi Bildirileri, Atatürk Üniversitesi Ziraat Fakültesi Tanmsal Yapılar ve Sulama Bölümü. Erzurum.
  • Kırda C, Sarıyev A (2002) Toprak Fiziği. Çukurova Üniversitesi Ziraat Fakültesi Genel yayın No: 245, Ders Kitapları Yayın No: A-79, Adana.
  • Klute A (1986) Water Retention: Laboratory Methods. In: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. (Ed: A. Klute) Agronomy. Monograph. American Society of Agronomy and Soil Science Society of America, Madison WI. pp. 635-662.
  • Klute A, Dirksen C (1986) in ed.: A. Klute, Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Agronomy. Monograph. 9, American Society of Agronomy and Soil Science Society of America, Madison WI, pp. 687-734.
  • Kosugi K, Hopmans JW (1998) Scaling water retention curves for soils with lognormal pore-size distribution. Soil Science Society of America Journal 62: 1496-1505.
  • Lebeau M, Konrad JM (2010) A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 46: W12554 doi: 10.1029/2010WR009092.
  • Libardi PL, Reichardt K, Nielsen DR, Biggar JW (1980) Simple field methods for estimating soil hydraulic conductivity. Soil Science Society of America Journal 44: 3-7.
  • McLean EO (1982) Soil pH and lime requirement. In Page, A. L., R. H. Miller and D. R. Keeney (eds.) Methods of soil analysis. Part 2 - Chemical and microbiological properties. (2nd Ed.). Agronomy 9: 199-223.
  • Mermoud A, Xu D (2006) Comparative analysis of three methods to generate soil hydraulic functions. Soil Tillage Research 87: 89-100.
  • Mohammadi MH and Vanclooster M (2011) Predicting the soil moisture characteristic curve from particle size distribution with a simple conceptual model. Vadose Zone Journal 10: 594-602.
  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 12: 513-520.
  • Nandagiri L, Prasad R (1996) Field evaluation of unsaturated hydraulic conductivity models and parameter estimation from retention data. Journal of Hydrology 179: 197-205.
  • Nath A, Chattopadhyay PK (2007) Optimization of oven toasting for improving crispness and other quality attributes of ready to eat potato-soy snack using response surface methodology. Journal of Food Engineering 80(4): 1282-1292.
  • Özcan H, Akbulut C (2006) 1. Uzaktan Algılama-CBS Çalıştay ve Paneli-2006 (UZAL-CBS-2006), İstanbul Teknik Üniversitesi. http://uzalcbs.org/wpcontent/uploads/2016/11/2006_16.pdf.19/06/2019.
  • Öztekin T, Cemek B, Brown L (2007) Pedotransfer functions for the hydraulic properties of layered soils. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 24(2): 77-86.
  • Poluektov RA (1991) Simulation of Agroecosystem Dynamics, Gidrometoizadat, St.Petersburg, Russia, pp. 312.
  • Rahimi A, Sepaskhah AR, Ahmadi SH (2011) Evaluation of different methods for prediction of saturated hydraulic conductivity of tilled and untilled soils. Archives of Agronomy and Soil Science 57: 899-914.
  • Reichardt K, Portetan-Filho O, Libardi PL, Bacchi OS, Moraes SO, Oliveria JCM, Fallerios MC (1998) Critical analysis of the field determination of soil hydraulic conductivity functions using the flux-gradient approach. Soil Tillage Research 48: 81-89.
  • Rose CW, Stem WR, Drummond JE (1965) Determination of hydraulic conductivity as a function of depth and water content for soil in situ. Australian Journal of Soil Research 3: l-9.
  • Sadeghi M, Ghahraman B, Davary K, Hasheminia SM, Reichardt K (2011) Scaling to generalize a single solution of Richards’ equation for soil water redistribution. Scientia Agricola (Piracicaba, Brazil) 68: 582-591.
  • Sarıyev A, Polat V, Müjdecı M, Yusufova M, Akça E (2007) Mathematical modelling of soil hydraulic properties and numerical analyses of moisture dynamic. Asian Journal of Chemistry 19(4): 3125-3131.
  • Schlichting E, Blume HP (1966) Bodenkundliches praktikum. Verlag Paul Paney, Hamburg und Berlin, pp. 121-125.
  • Smedema LK, Rycroft DW (1988) Land Drainage. B T Batsford Ltd. London, ISBN 0-7134-6045-8.
  • Talsma T (1985) Prediction of hydraulic conductivity from soil water retention data. Soil Science 140: 184-188.
  • Tokunaga, TK (2011) Physicochemical controls on adsorbed water film thickness in unsaturated geological media. Water Resources Research 47: W08514, doi: 10.1029/2011WR010676.
  • Tyler SW, Wheatcraft SW (1989) Application of fractal mathematics to soil water retention estimation. Soil Science Society of America 53: 987-996.
  • United State Salinity Laboratory Staff (1954) Diagnosis and Improvement of Soil Saline and Alkaline Soils. Agricultural Handbook No: 60.
  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898. doi: 10.2136/ sssaj1980.03615995004400050002x.
  • Watson KK (1966) An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials. Water Resources Research 2: 709-715.
  • Yakupoğlu T, Şişman AÖ, Karagöktaş M, Demir ÖF (2013) Toprakların doygun koşullardaki hidrolik iletkenlik değerlerinin pedotransfer eşitlikler ile tahminlenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 8(1): 84-92.
  • Youngs EG (1987) Estimating hydraulic conductivity values from ring infiltrometer measurements. European Journal of Soil Science 38(4): 623-632.
  • Zhang ZF, Andy L, Gee GW (2003) Estimating soil hydraulic parameters of a field drainage experiment using inverse techniques. Vadose Zone Journal 2: 201-211.
  • Zhuang J, Nakayama K, Yu GR, Miyazaki T (2000) Scaling of saturated hydraulic conductivity: A comparison of models. Soil Science 165: 718-727. doi: 10.1097/00010694-200009000-00005.
  • Zhuang J, Nakayama K, Yu GR, Miyazaki T (2001) Predicting unsaturated hydraulic conductivity of soil based on some basic soil properties. Soil and Tillage Research 59: 143–154. doi: 10.1016/S0167-1987(01)00160-X.

Tarla koşullarında doymamış toprak hidrolik iletkenliğinin belirlenmesi ve matematiksel modellenmesi

Year 2020, , 291 - 298, 01.08.2020
https://doi.org/10.29136/mediterranean.686138

Abstract

Bu çalışmada, 37o00'53'' K ve 35o21'24'' D koordinatlarına sahip ağır bünyeli Arıklı toprak serisinde doygun olmayan toprak hidrolik iletkenliğin belirlenmesi ve arazide yerinde ölçülen ile laboratuvarda ölçülen toprak hidrolik iletkenlik değerlerinin karşılaştırılması amaçlanmıştır. Serbest drenaj altında üzeri PE film ile kapatılmış toprak parsellerinin doygun hale getirilmesi için su uygulanmıştır. Toprak parselleri yaklaşık olarak 2×2 m boyutlarında oluşturulmuştur. Toprak su içeriği ve matriks emişin zamanla değişimi TDR ve tansiyometre ile izlenmiştir. Arıklı toprak serisine ilişkin hidrolik iletkenlik değeri 0.007-0.652 cm sa-1 arasında hesaplanmıştır. Toprak-su karakteristiğine ilişkin matematiksel model geliştirilmiş ve model üstel bir fonksiyon ile ifade edilmiştir. Genel olarak, tarla koşullarında gözlemlenen hidrolik iletkenlik K (ϴ)göz ile tahminlenen hidrolik iletkenlik K (ψ)mod arasındaki uyum test edildiğinde; kök ortalama kare hatası (RMSE) 0.081 cm sa-1 ve ortalama mutlak hata (MAE) 0.053 cm sa-1 ile küçük olmakla beraber ortalama göreceli hata (MRE) değeri %16.5 ile yüksek bir hata değerine sahip olmuştur. Sonuçlar ayrıca, önerilen yaklaşımın kuru toprak suyu içeriğindeki K (ϴ)göz tahminlemesinde doğru olduğunu ortaya koymuştur. Ancak, doygun koşullarda iyi sonuç vermediği gözlemlenmiştir. Sonuç olarak toprak su dinamiği çalışmalarında çalışma yapılacaksa, toprak hidrolik iletkenliğinin belirlenmesinde arazide yerinde ölçümlerin yapılması gerekmektedir.

Project Number

(Project No.: ZF2009BAP16)

References

  • Ahmadi SH, Sepaskhah AR (2012) Prediction of saturated hydraulic conductivity of compacted soils using empirical scaling factors. Archives of Agronomy and Soil Science 58: 1303-1316.
  • Ahmadi SH, Sepaskhah AR, Fooladmand HR (2015) A simple approach to predicting unsaturated hydraulic conductivity based on empirically scaled microscopic characteristic length. Hydrological Sciences Journal 60(2): 326-335.
  • Ahuja LR, Naney JW, Nielsen DR (1991) Scaling soil water properties and infiltration modeling. Soil Science Society of America Journal 48: 970-973.
  • Al-Sulaiman M, Aboukarima A (2016) Prediction of unsaturated hydraulic conductivity of agricultural soils using artificial neural network and c#. Journal of Agriculture and Ecology Research International 5(4): 1-15.
  • Black CA (1965) Methods of soil analysis part-II. America Society of Agronomy-Inc., Publisher Madison, Wisconsin, USA, pp. 1372-1376.
  • Blake GR, Hartge KH (1986) in ed.: A. Klute, Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Agronomy. Monograph 9, American Society of Agronomy and Soil Science Society of America, Madison WI, pp. 363-375.
  • Bondarenko HF, Jukovsky EE, Muskın IG, Nerpin SV, Poluektov RA, Uskov IB (1982) Simulation of Agroecosystem Productivity, Russia.
  • Bouyoucos GJ (1951) A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal 43: 435-438.
  • Comegna V, Damiani P, Sommella A (2000) Scaling the saturated hydraulic conductivity of a vertic ustorthens soil under conventional and minimum tillage. Soil and Tillage Research 54: 1-9.
  • Cook FJ (1991) Calculation of hydraulic conductivity from suction permeameter measurements. Soil Science, pp. 321-325.
  • Danielson RE, Sutherland PL (1986) Porosity. Methods of Soil Analysis Part 1, Physical and Mineralogical Methods Second Edition, pp. 443-462.
  • Finsterle S, Faybishenko B (1999) Inverse modeling of a radial multistep outflow experiment for determining unsaturated hydraulic properties. Water Resources Research 2: 431-444.
  • Gemalmaz E (1992) Örneklenen toprak hacmi ile arazide ölçülen hidrolik iletkenlik değerlerinin varyansı arasındaki ilişki, IV. Ulusal Tarımsal Yapılar ve Sulama Kongresi Bildirileri, Atatürk Üniversitesi Ziraat Fakültesi Tanmsal Yapılar ve Sulama Bölümü. Erzurum.
  • Kırda C, Sarıyev A (2002) Toprak Fiziği. Çukurova Üniversitesi Ziraat Fakültesi Genel yayın No: 245, Ders Kitapları Yayın No: A-79, Adana.
  • Klute A (1986) Water Retention: Laboratory Methods. In: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. (Ed: A. Klute) Agronomy. Monograph. American Society of Agronomy and Soil Science Society of America, Madison WI. pp. 635-662.
  • Klute A, Dirksen C (1986) in ed.: A. Klute, Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Agronomy. Monograph. 9, American Society of Agronomy and Soil Science Society of America, Madison WI, pp. 687-734.
  • Kosugi K, Hopmans JW (1998) Scaling water retention curves for soils with lognormal pore-size distribution. Soil Science Society of America Journal 62: 1496-1505.
  • Lebeau M, Konrad JM (2010) A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 46: W12554 doi: 10.1029/2010WR009092.
  • Libardi PL, Reichardt K, Nielsen DR, Biggar JW (1980) Simple field methods for estimating soil hydraulic conductivity. Soil Science Society of America Journal 44: 3-7.
  • McLean EO (1982) Soil pH and lime requirement. In Page, A. L., R. H. Miller and D. R. Keeney (eds.) Methods of soil analysis. Part 2 - Chemical and microbiological properties. (2nd Ed.). Agronomy 9: 199-223.
  • Mermoud A, Xu D (2006) Comparative analysis of three methods to generate soil hydraulic functions. Soil Tillage Research 87: 89-100.
  • Mohammadi MH and Vanclooster M (2011) Predicting the soil moisture characteristic curve from particle size distribution with a simple conceptual model. Vadose Zone Journal 10: 594-602.
  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 12: 513-520.
  • Nandagiri L, Prasad R (1996) Field evaluation of unsaturated hydraulic conductivity models and parameter estimation from retention data. Journal of Hydrology 179: 197-205.
  • Nath A, Chattopadhyay PK (2007) Optimization of oven toasting for improving crispness and other quality attributes of ready to eat potato-soy snack using response surface methodology. Journal of Food Engineering 80(4): 1282-1292.
  • Özcan H, Akbulut C (2006) 1. Uzaktan Algılama-CBS Çalıştay ve Paneli-2006 (UZAL-CBS-2006), İstanbul Teknik Üniversitesi. http://uzalcbs.org/wpcontent/uploads/2016/11/2006_16.pdf.19/06/2019.
  • Öztekin T, Cemek B, Brown L (2007) Pedotransfer functions for the hydraulic properties of layered soils. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 24(2): 77-86.
  • Poluektov RA (1991) Simulation of Agroecosystem Dynamics, Gidrometoizadat, St.Petersburg, Russia, pp. 312.
  • Rahimi A, Sepaskhah AR, Ahmadi SH (2011) Evaluation of different methods for prediction of saturated hydraulic conductivity of tilled and untilled soils. Archives of Agronomy and Soil Science 57: 899-914.
  • Reichardt K, Portetan-Filho O, Libardi PL, Bacchi OS, Moraes SO, Oliveria JCM, Fallerios MC (1998) Critical analysis of the field determination of soil hydraulic conductivity functions using the flux-gradient approach. Soil Tillage Research 48: 81-89.
  • Rose CW, Stem WR, Drummond JE (1965) Determination of hydraulic conductivity as a function of depth and water content for soil in situ. Australian Journal of Soil Research 3: l-9.
  • Sadeghi M, Ghahraman B, Davary K, Hasheminia SM, Reichardt K (2011) Scaling to generalize a single solution of Richards’ equation for soil water redistribution. Scientia Agricola (Piracicaba, Brazil) 68: 582-591.
  • Sarıyev A, Polat V, Müjdecı M, Yusufova M, Akça E (2007) Mathematical modelling of soil hydraulic properties and numerical analyses of moisture dynamic. Asian Journal of Chemistry 19(4): 3125-3131.
  • Schlichting E, Blume HP (1966) Bodenkundliches praktikum. Verlag Paul Paney, Hamburg und Berlin, pp. 121-125.
  • Smedema LK, Rycroft DW (1988) Land Drainage. B T Batsford Ltd. London, ISBN 0-7134-6045-8.
  • Talsma T (1985) Prediction of hydraulic conductivity from soil water retention data. Soil Science 140: 184-188.
  • Tokunaga, TK (2011) Physicochemical controls on adsorbed water film thickness in unsaturated geological media. Water Resources Research 47: W08514, doi: 10.1029/2011WR010676.
  • Tyler SW, Wheatcraft SW (1989) Application of fractal mathematics to soil water retention estimation. Soil Science Society of America 53: 987-996.
  • United State Salinity Laboratory Staff (1954) Diagnosis and Improvement of Soil Saline and Alkaline Soils. Agricultural Handbook No: 60.
  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898. doi: 10.2136/ sssaj1980.03615995004400050002x.
  • Watson KK (1966) An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials. Water Resources Research 2: 709-715.
  • Yakupoğlu T, Şişman AÖ, Karagöktaş M, Demir ÖF (2013) Toprakların doygun koşullardaki hidrolik iletkenlik değerlerinin pedotransfer eşitlikler ile tahminlenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 8(1): 84-92.
  • Youngs EG (1987) Estimating hydraulic conductivity values from ring infiltrometer measurements. European Journal of Soil Science 38(4): 623-632.
  • Zhang ZF, Andy L, Gee GW (2003) Estimating soil hydraulic parameters of a field drainage experiment using inverse techniques. Vadose Zone Journal 2: 201-211.
  • Zhuang J, Nakayama K, Yu GR, Miyazaki T (2000) Scaling of saturated hydraulic conductivity: A comparison of models. Soil Science 165: 718-727. doi: 10.1097/00010694-200009000-00005.
  • Zhuang J, Nakayama K, Yu GR, Miyazaki T (2001) Predicting unsaturated hydraulic conductivity of soil based on some basic soil properties. Soil and Tillage Research 59: 143–154. doi: 10.1016/S0167-1987(01)00160-X.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Alhan Sarıyev This is me

Sertan Sesveren 0000-0002-5163-7066

Yusuf Tülün This is me

Harun Kaman

Mert Acar This is me

Project Number (Project No.: ZF2009BAP16)
Publication Date August 1, 2020
Submission Date February 7, 2020
Published in Issue Year 2020

Cite

APA Sarıyev, A., Sesveren, S., Tülün, Y., Kaman, H., et al. (2020). Tarla koşullarında doymamış toprak hidrolik iletkenliğinin belirlenmesi ve matematiksel modellenmesi. Mediterranean Agricultural Sciences, 33(2), 291-298. https://doi.org/10.29136/mediterranean.686138
AMA Sarıyev A, Sesveren S, Tülün Y, Kaman H, Acar M. Tarla koşullarında doymamış toprak hidrolik iletkenliğinin belirlenmesi ve matematiksel modellenmesi. Mediterranean Agricultural Sciences. August 2020;33(2):291-298. doi:10.29136/mediterranean.686138
Chicago Sarıyev, Alhan, Sertan Sesveren, Yusuf Tülün, Harun Kaman, and Mert Acar. “Tarla koşullarında doymamış Toprak Hidrolik iletkenliğinin Belirlenmesi Ve Matematiksel Modellenmesi”. Mediterranean Agricultural Sciences 33, no. 2 (August 2020): 291-98. https://doi.org/10.29136/mediterranean.686138.
EndNote Sarıyev A, Sesveren S, Tülün Y, Kaman H, Acar M (August 1, 2020) Tarla koşullarında doymamış toprak hidrolik iletkenliğinin belirlenmesi ve matematiksel modellenmesi. Mediterranean Agricultural Sciences 33 2 291–298.
IEEE A. Sarıyev, S. Sesveren, Y. Tülün, H. Kaman, and M. Acar, “Tarla koşullarında doymamış toprak hidrolik iletkenliğinin belirlenmesi ve matematiksel modellenmesi”, Mediterranean Agricultural Sciences, vol. 33, no. 2, pp. 291–298, 2020, doi: 10.29136/mediterranean.686138.
ISNAD Sarıyev, Alhan et al. “Tarla koşullarında doymamış Toprak Hidrolik iletkenliğinin Belirlenmesi Ve Matematiksel Modellenmesi”. Mediterranean Agricultural Sciences 33/2 (August 2020), 291-298. https://doi.org/10.29136/mediterranean.686138.
JAMA Sarıyev A, Sesveren S, Tülün Y, Kaman H, Acar M. Tarla koşullarında doymamış toprak hidrolik iletkenliğinin belirlenmesi ve matematiksel modellenmesi. Mediterranean Agricultural Sciences. 2020;33:291–298.
MLA Sarıyev, Alhan et al. “Tarla koşullarında doymamış Toprak Hidrolik iletkenliğinin Belirlenmesi Ve Matematiksel Modellenmesi”. Mediterranean Agricultural Sciences, vol. 33, no. 2, 2020, pp. 291-8, doi:10.29136/mediterranean.686138.
Vancouver Sarıyev A, Sesveren S, Tülün Y, Kaman H, Acar M. Tarla koşullarında doymamış toprak hidrolik iletkenliğinin belirlenmesi ve matematiksel modellenmesi. Mediterranean Agricultural Sciences. 2020;33(2):291-8.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.