Araştırma Makalesi
BibTex RIS Kaynak Göster

Yerfıstığında (Arachis hypogaea L.) su stresinin stoma özellikleri üzerine etkisi

Yıl 2016, Cilt: 29 Sayı: 2, 79 - 84, 11.08.2016

Öz

Su, kurak ve yarı kurak bölgelerde bitkisel büyüme ve verimi belirleyen en önemli çevresel faktördür. Bu araştırma, NC-7 yerfıstığı (Arachis hypogaea L.) çeşidinin stoma yoğunluğu, stoma eni, stoma boyu, epidermal hücre sayısı ve stoma indeksi parametreleri üzerine su stresinin etkisini belirlemek amacıyla yapılmıştır. Araştırmada su stresi konuları, buharlaşma kabından (Epan) ölçülen buharlaşmanın % 0’ı, % 25’i, % 50’si, % 75’i ve % 100’ü, alınarak oluşturulmuştur. Araştırma sonucunda su stresinin stoma eni hariç stoma yoğunluğu, stoma boyu, epidermal hücre sayısı ve stoma indeksi parametreleri üzerine istatistiksel olarak etki ettiği belirlenmiştir. Stoma yoğunluğu 295.3-222.7 adet mm-2, stoma eni 16.1-18.7 µm, stoma boyu 23.2-28.1 µm, epidermal hücre sayısı 471.9-625.0 adet mm-2 ve stoma indeksi % 30.1-33.1 arasında değişmiştir. Su stresi arttıkça stoma yoğunluğu, epidermal hücre sayısı ve stoma indeksi değerlerinin arttığı, stoma boyu ve eni değerlerinin ise azaldığı hesaplanmıştır.

Kaynakça

  • Abou Kheira AA (2009) Macro management of deficit-irrigated peanut with sprinkler irrigation. Agricultural Water Management 96(10): 1409-1420.
  • Akman Y (1985) Botanik. Palme Yayıncılık, 494 s., İstanbul.
  • Aktepe Tangu N (2012) Kısıtlı su uygulamalarının bazı standart zeytin çeşitlerinin gelişme durumları ve bitki-su ilişkileri üzerine etkilerinin belirlenmesi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper, No. 56, Rome.
  • Araus JL, Slafer GA, Royo T, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences 27(6): 377-412.
  • Aslantaş R, Karakurt H (2009) The effects of altitude on stomata number and some vegetative growth parameters of some apple cultivars. Journal of Agricultural and Biological Science 5(5): 853-857.
  • Baldwin JA, Harrison K (1989). Water use and relationships in peanut production. University of Georgia Cooperative Extension Bulletin SB23.
  • Bierhuizen JF, Bierhuizen JM, Martakis GFP (1984) The effect of light and CO2 on photosynthesis of various pot plants. Die Gartenbauwissenschaft 49(5-6): 251-257.
  • Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science 163(2): 375-379.
  • Buttery BR, Tan CS, Buzzell RI, Gaynor J.D, MacTavish DC (1993) Stomatal numbers of soybean and response to water stress. Plant and Soil 149(2): 283-288.
  • Cabrera LM, Diaz JC (2002) Stomatic characterization of three varieties of soya grown in soil under different low humidities. Ediciones Publicaciones Alimentarias SA 39(332): 79-82.
  • Çağlar S, Sütyemez M, Bayazıt S (2004) Seçilmiş bazı ceviz (Juglan sregia) tiplerinin stoma yoğunlukları. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 17(2): 169-174.
  • Cutler JM, Rains DW, Loomis RS (1977) The importance of cell size in the water relations of plants. Physiologia Plantarum 40(4): 255-260.
  • Dickison WC (2000) Integrative Plant Anatomy. Academic Press, ISBN: 0122151704, 533 p. San Diego.
  • Doorenbos J, Kassam AH (1979) Yield Response to Water. FAO Irrigation and Drainage 33, Rome.
  • During H, Scienza A (1980) Drought resistance of some vitis species and cultivars. 3rd International Symposium on Grape Breeding, Davis, USA, p. 179-180.
  • Düzenli S, Ağaoğlu YS (1992) Vitis vinifera L.'nin bazı çeşitlerinde stoma yoğunluğu üzerine yaprak yaşı ve yaprak pozisyonlarının etkisi. Turkish Journal of Agriculture and Forestry 16: 63-72.
  • Ennajeh M, Vadel AM, Cochard H, Khemira H (2010) Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. Journal of Horticultural Science & Biotechnology 85(4): 289-294.
  • Eriş A, Soylu A (1990) Stomatal density in various Turkish grape cultivars. Vitis Special Issue: 382-389.
  • Forlani M, Pasquarella C, Coppola V (1983) Relation between stomatal density and vigour of grapevine rootstocks. Rivista di Viticoltura e di Enologia Conegliano 36: 117-125.
  • Fu QS, Yang RC, Wang HS, Zhao B, Zhou CL, Ren SX, Guo YD (2013) Leaf morphological and ultra structural performance of eggplant (Solanum melongena L.) in response to water stress. Photosynthetica 51(1): 109-114.
  • Gan Y, Zhou L, Shen ZJ, Shen ZX, Zhang YQ, Wang GX (2010) Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Botanical Studies 51: 325-336.
  • Gokbayrak Z, Dardeniz A, Bal M (2008) Stomatal density adaptation of grapevine to windy conditions. Trakia Journal of Sciences 6(1): 18-22.
  • Gomez KA, Gomez AA (1984) Statistical procedures for agriculturalresearch. John Wiley and Sons, Inc. London.
  • Hassan SE, Kalig I, Khan AS (2008) Genetic mechanism of some physiological traits in spring wheat at two plant population regimes. Journal Agricultural Research 46(4): 315-323.
  • HtayHtay O, Takuya A, Fumitake K (2005) Effects of drought and flooding stresses on growth and photosynthetic activity of mungbean (Vigna radiata L.) wilczek, cultivars. Journal of the Faculty of Agriculture Kyushu University 50(2): 533-542.
  • Isodo A (2005) Adaptive responses of soybean and cotton to water stress: I. transpiration changes in relation to stomatal area and stomatal conductance. Plant Production Science 8(1): 16-26.
  • Kaiser H, Kappen L (2001) Stomatal oscillations at small apertures: Indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism. Journal of Experimental Botany 52(359): 1303-1313.
  • Karipçin MZ (2009) Yerli ve yabani karpuz genotiplerinde kuraklığa toleransın belirlenmesi. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN (2008) Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors inupland and lowland-adapted populations. Field Crops Research 107(3): 221-231.
  • Kuo CG, Shen BJ, Chen HMH, Chen C, Opena RT (1988) Associations between heat tolerance, water consumption, and morphological characters in Chinese cabbage. Euphytica 39(1): 65-73.
  • Laajimi NO, Boussadia O, Skhiri FH, Teixeira da Silva JA, Rezgui S, Hellali R (2011) Anatomical adaptations in vegetative structures of Apricot tree (Prunus armeniaca L.) cv. ‘Amor El Euch’ grown under water stress. Fruit Vegetable and Cereal Science Biotechnology 5(2): 46-51.
  • Larbi A, Dung DO, Olorunju PE, Smith JW, Tanko RJ, Muhammed IR, Adekunle IO (1999) Groundnut (Arachis hypogaea) for food and fodder in crop-livestock systems: forage and seed yields, chemical composition and rumen degradation of leaf andstem fractions of 38 cultivars. Animal Feed Science and Technology 77(1-2): 33-47.
  • Maghsoudi K, Maghsoudi A (2008) Analysis of the effects of stomatal frequency and size on transpiration and yield of wheat (Triticum aestivum L.). American Eurasian Journal of Agriculture and Environmental Sciences 3(6): 865-872.
  • Malone SR, Mayeux HS, Johnson HB, Polley HW (1993) Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient. American Journal of Botany 80(12): 1413-1418.
  • McCree KJ, Davis SD (1974) Effect of water stress and temperature on leaf size and number of epidermal cells in grain sorghum. Crop Science 14(5): 751-755.
  • Mehri N, Fotovat R, Saba J, Jabbari F (2009) Variation of stomata dimensions and densities in tolerant and susceptible wheat cultivars under drought stress. Journal of Food Agriculture & Environment 7(1): 167-170.
  • Meidner H, Mansfield TA (1969) Physiology of Stomata. McGraw-Hill, London.
  • Meng L, Li L, Chen W, Xu Z, Liu L (1999) Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves. Journal of Shenyang Agricultural University 30(5): 477-480.
  • Mısırlı A, Aksoy U (1994) A study on the leaf and stomatal properties of Sarilop fig variety. Ege Üniversitesi Ziraat Fakültesi Dergisi 31(2-3): 57-63.
  • Michael AM (2008) Irrigation: Theory and Practice. Vikas Publishing House Pvt Ltd. New Delhi.
  • Naveen P, Daniel KV, Subramanian P, Kumar PS (1992) Response of irrigated groundnut (Arachis hypogaea L) to moisture stress and its management. Indian Journal of Agronomy 37(1): 82-85.
  • Ozyigit II, Akinci S (2009) Effects of some stress factors (aluminum, cadmium and drought) on stomata of roman nettle (Urtica pilulifera L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(1): 108-115.
  • Özyurt İK (2011) Kuraklığa dayanıklı mahlep (Prunus mahaleb L.) klon anacı seçimi. Doktora Tezi, Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, Tokat.
  • Pallas JE (1982) Photosynthetic traits of selected peanut genotypes. Peanut Science 9(1): 14-17.
  • Prasad PVV, Kakani VG, Upadhyaya HD (2010) Growth and Production of Groundnut. In: Soils, Plant Growth and Crop Production. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Oxford UK, pp. 1-26.
  • Quarrie SA, Jones HG (1977) Effects of abscisic acid and water stress on development and morphology of wheat. Journal of Experimental Botany 28(1): 192-203.
  • Rao RCN, Singh S, Sivakumar, MVK, Srivastava KL, Williams JH (1985) Effect of water deficit at different growth phases of peanut. I. Yield responses. Agronomy Journal 77(5): 782-786.
  • Reddy TY, Reddy VR, Anbumozhi V (2003) Physiological responses of peanut (Arachis hypogaea L.) to droughtstress and its amelioration: a critical review. Plant Growth Regulation 41(1): 75-88.
  • Sam O, Jeréz E, Dell'Amico J, Ruiz Sánchez MC (2000) Water stress induced changes in anatomy of tomato leaf epidermis. Biologia Plantarum 43(2): 275-277.
  • Sarker BC, Hara M (2011) Effects of elevated CO2 and water stress on the adaptation of stomata and gas exchange in leaves of eggplants (Solanum melongena L.). Bangladesh Journal of Botany 40(1): 1-8.
  • Scienza A, Boselli M (1981) Frequency and biometrical characteristics of stomata in different stock-vine varieties. Vitis 20: 281-292.
  • Sharma DP, Sharma YD, Rana HS (1982) Stomatal and tree growth characteristics of some crab apples. Scientia Horticulturae 17(4): 327-331.
  • Slack EM (1974) Studies of stomatal distribution on the leaves of four apple varieties. Journal of Horticultural Science 49(1): 95-103.
  • Songsri P, Jogloy S, Junjittakarn J, Kesmala T, Vorasoot N, Holbrook JC, Patanothai A (2013) Association of stomatal conductance and root distribution with water use efficiency of peanut under different soil water regimes. Australian Journal of Crop Science 7(7): 948-955.
  • Spence RD, Wu H, Sharpe PJH, Clark KG (1986) Water stress effects on guard cell anatomy and the mechanical advantage ofthe epidermal cells. Plant, Cell and Environment 9(3): 197-202.
  • Verona C, Calcagno F (1991) Study of stomatal parameters for selection of drought resistant varieties in Triticum durum DESF. Euphytica 57(3): 275-283.
  • Xu ZZ, Zhou GS (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany 59(12): 3317-3325.
  • Yang HM, Wang GX (2001) Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment. Acta Phytoecologica Sinica 25(3): 312-316.
  • Yentür S (1995) Bitki Anatomisi. İstanbul Üniversitesi Yayınları, Yayın No: 3808, İstanbul.
  • Zhang YP, Wang ZM, Wu YC, Zhang X (2006) Stomatal characteristics of different green organs in wheat under different irrigation regimes. Acta Agronomica Sinica 32(1): 70-75.
  • Zhou J, Hirata Y, Nou I, Shiotani H, Ito T (2002) Interactions between different genotypic tissues in citrus graft chimeras. Euphytica 126(3): 355-364.

Effects of water stress on stomatal characteristics of peanut (Arachis hypogaea L.)

Yıl 2016, Cilt: 29 Sayı: 2, 79 - 84, 11.08.2016

Öz

Water is the most important environmental factors that determined plant growth and yield in arid and semi-arid regions. This study was carried out to determine the effect of water stress on stomatal density, stomata width, stomata length, epidermal cells number and stomata index parameters of the NC-7 peanut (Arachis hypogaea L.) variety. Water stress applications were 0 %, 25 %, 50 %, 75 %, and 100 % based on cumulative evaporation (Epan) from class A pan. It was found that except for stomata width, stomatal density, stomata length, epidermal cells number, and stomata index effected statistically significant. Stomatal density, stomata width, stomata length, epidermal cells number, and stomata index were ranged from 295.3-222.7 unit.mm-2, 16.1-18.7 µm, 23.2-28.1 µm, 471.9-625.0 unit mm-2, and 30.1-33.1 %, respectively. It was observed that, when water stress increased stomata density, epidermal cells number and stomata index increased, when the stomata length and width decreased.

Kaynakça

  • Abou Kheira AA (2009) Macro management of deficit-irrigated peanut with sprinkler irrigation. Agricultural Water Management 96(10): 1409-1420.
  • Akman Y (1985) Botanik. Palme Yayıncılık, 494 s., İstanbul.
  • Aktepe Tangu N (2012) Kısıtlı su uygulamalarının bazı standart zeytin çeşitlerinin gelişme durumları ve bitki-su ilişkileri üzerine etkilerinin belirlenmesi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper, No. 56, Rome.
  • Araus JL, Slafer GA, Royo T, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences 27(6): 377-412.
  • Aslantaş R, Karakurt H (2009) The effects of altitude on stomata number and some vegetative growth parameters of some apple cultivars. Journal of Agricultural and Biological Science 5(5): 853-857.
  • Baldwin JA, Harrison K (1989). Water use and relationships in peanut production. University of Georgia Cooperative Extension Bulletin SB23.
  • Bierhuizen JF, Bierhuizen JM, Martakis GFP (1984) The effect of light and CO2 on photosynthesis of various pot plants. Die Gartenbauwissenschaft 49(5-6): 251-257.
  • Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science 163(2): 375-379.
  • Buttery BR, Tan CS, Buzzell RI, Gaynor J.D, MacTavish DC (1993) Stomatal numbers of soybean and response to water stress. Plant and Soil 149(2): 283-288.
  • Cabrera LM, Diaz JC (2002) Stomatic characterization of three varieties of soya grown in soil under different low humidities. Ediciones Publicaciones Alimentarias SA 39(332): 79-82.
  • Çağlar S, Sütyemez M, Bayazıt S (2004) Seçilmiş bazı ceviz (Juglan sregia) tiplerinin stoma yoğunlukları. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 17(2): 169-174.
  • Cutler JM, Rains DW, Loomis RS (1977) The importance of cell size in the water relations of plants. Physiologia Plantarum 40(4): 255-260.
  • Dickison WC (2000) Integrative Plant Anatomy. Academic Press, ISBN: 0122151704, 533 p. San Diego.
  • Doorenbos J, Kassam AH (1979) Yield Response to Water. FAO Irrigation and Drainage 33, Rome.
  • During H, Scienza A (1980) Drought resistance of some vitis species and cultivars. 3rd International Symposium on Grape Breeding, Davis, USA, p. 179-180.
  • Düzenli S, Ağaoğlu YS (1992) Vitis vinifera L.'nin bazı çeşitlerinde stoma yoğunluğu üzerine yaprak yaşı ve yaprak pozisyonlarının etkisi. Turkish Journal of Agriculture and Forestry 16: 63-72.
  • Ennajeh M, Vadel AM, Cochard H, Khemira H (2010) Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. Journal of Horticultural Science & Biotechnology 85(4): 289-294.
  • Eriş A, Soylu A (1990) Stomatal density in various Turkish grape cultivars. Vitis Special Issue: 382-389.
  • Forlani M, Pasquarella C, Coppola V (1983) Relation between stomatal density and vigour of grapevine rootstocks. Rivista di Viticoltura e di Enologia Conegliano 36: 117-125.
  • Fu QS, Yang RC, Wang HS, Zhao B, Zhou CL, Ren SX, Guo YD (2013) Leaf morphological and ultra structural performance of eggplant (Solanum melongena L.) in response to water stress. Photosynthetica 51(1): 109-114.
  • Gan Y, Zhou L, Shen ZJ, Shen ZX, Zhang YQ, Wang GX (2010) Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Botanical Studies 51: 325-336.
  • Gokbayrak Z, Dardeniz A, Bal M (2008) Stomatal density adaptation of grapevine to windy conditions. Trakia Journal of Sciences 6(1): 18-22.
  • Gomez KA, Gomez AA (1984) Statistical procedures for agriculturalresearch. John Wiley and Sons, Inc. London.
  • Hassan SE, Kalig I, Khan AS (2008) Genetic mechanism of some physiological traits in spring wheat at two plant population regimes. Journal Agricultural Research 46(4): 315-323.
  • HtayHtay O, Takuya A, Fumitake K (2005) Effects of drought and flooding stresses on growth and photosynthetic activity of mungbean (Vigna radiata L.) wilczek, cultivars. Journal of the Faculty of Agriculture Kyushu University 50(2): 533-542.
  • Isodo A (2005) Adaptive responses of soybean and cotton to water stress: I. transpiration changes in relation to stomatal area and stomatal conductance. Plant Production Science 8(1): 16-26.
  • Kaiser H, Kappen L (2001) Stomatal oscillations at small apertures: Indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism. Journal of Experimental Botany 52(359): 1303-1313.
  • Karipçin MZ (2009) Yerli ve yabani karpuz genotiplerinde kuraklığa toleransın belirlenmesi. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN (2008) Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors inupland and lowland-adapted populations. Field Crops Research 107(3): 221-231.
  • Kuo CG, Shen BJ, Chen HMH, Chen C, Opena RT (1988) Associations between heat tolerance, water consumption, and morphological characters in Chinese cabbage. Euphytica 39(1): 65-73.
  • Laajimi NO, Boussadia O, Skhiri FH, Teixeira da Silva JA, Rezgui S, Hellali R (2011) Anatomical adaptations in vegetative structures of Apricot tree (Prunus armeniaca L.) cv. ‘Amor El Euch’ grown under water stress. Fruit Vegetable and Cereal Science Biotechnology 5(2): 46-51.
  • Larbi A, Dung DO, Olorunju PE, Smith JW, Tanko RJ, Muhammed IR, Adekunle IO (1999) Groundnut (Arachis hypogaea) for food and fodder in crop-livestock systems: forage and seed yields, chemical composition and rumen degradation of leaf andstem fractions of 38 cultivars. Animal Feed Science and Technology 77(1-2): 33-47.
  • Maghsoudi K, Maghsoudi A (2008) Analysis of the effects of stomatal frequency and size on transpiration and yield of wheat (Triticum aestivum L.). American Eurasian Journal of Agriculture and Environmental Sciences 3(6): 865-872.
  • Malone SR, Mayeux HS, Johnson HB, Polley HW (1993) Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient. American Journal of Botany 80(12): 1413-1418.
  • McCree KJ, Davis SD (1974) Effect of water stress and temperature on leaf size and number of epidermal cells in grain sorghum. Crop Science 14(5): 751-755.
  • Mehri N, Fotovat R, Saba J, Jabbari F (2009) Variation of stomata dimensions and densities in tolerant and susceptible wheat cultivars under drought stress. Journal of Food Agriculture & Environment 7(1): 167-170.
  • Meidner H, Mansfield TA (1969) Physiology of Stomata. McGraw-Hill, London.
  • Meng L, Li L, Chen W, Xu Z, Liu L (1999) Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves. Journal of Shenyang Agricultural University 30(5): 477-480.
  • Mısırlı A, Aksoy U (1994) A study on the leaf and stomatal properties of Sarilop fig variety. Ege Üniversitesi Ziraat Fakültesi Dergisi 31(2-3): 57-63.
  • Michael AM (2008) Irrigation: Theory and Practice. Vikas Publishing House Pvt Ltd. New Delhi.
  • Naveen P, Daniel KV, Subramanian P, Kumar PS (1992) Response of irrigated groundnut (Arachis hypogaea L) to moisture stress and its management. Indian Journal of Agronomy 37(1): 82-85.
  • Ozyigit II, Akinci S (2009) Effects of some stress factors (aluminum, cadmium and drought) on stomata of roman nettle (Urtica pilulifera L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(1): 108-115.
  • Özyurt İK (2011) Kuraklığa dayanıklı mahlep (Prunus mahaleb L.) klon anacı seçimi. Doktora Tezi, Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, Tokat.
  • Pallas JE (1982) Photosynthetic traits of selected peanut genotypes. Peanut Science 9(1): 14-17.
  • Prasad PVV, Kakani VG, Upadhyaya HD (2010) Growth and Production of Groundnut. In: Soils, Plant Growth and Crop Production. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Oxford UK, pp. 1-26.
  • Quarrie SA, Jones HG (1977) Effects of abscisic acid and water stress on development and morphology of wheat. Journal of Experimental Botany 28(1): 192-203.
  • Rao RCN, Singh S, Sivakumar, MVK, Srivastava KL, Williams JH (1985) Effect of water deficit at different growth phases of peanut. I. Yield responses. Agronomy Journal 77(5): 782-786.
  • Reddy TY, Reddy VR, Anbumozhi V (2003) Physiological responses of peanut (Arachis hypogaea L.) to droughtstress and its amelioration: a critical review. Plant Growth Regulation 41(1): 75-88.
  • Sam O, Jeréz E, Dell'Amico J, Ruiz Sánchez MC (2000) Water stress induced changes in anatomy of tomato leaf epidermis. Biologia Plantarum 43(2): 275-277.
  • Sarker BC, Hara M (2011) Effects of elevated CO2 and water stress on the adaptation of stomata and gas exchange in leaves of eggplants (Solanum melongena L.). Bangladesh Journal of Botany 40(1): 1-8.
  • Scienza A, Boselli M (1981) Frequency and biometrical characteristics of stomata in different stock-vine varieties. Vitis 20: 281-292.
  • Sharma DP, Sharma YD, Rana HS (1982) Stomatal and tree growth characteristics of some crab apples. Scientia Horticulturae 17(4): 327-331.
  • Slack EM (1974) Studies of stomatal distribution on the leaves of four apple varieties. Journal of Horticultural Science 49(1): 95-103.
  • Songsri P, Jogloy S, Junjittakarn J, Kesmala T, Vorasoot N, Holbrook JC, Patanothai A (2013) Association of stomatal conductance and root distribution with water use efficiency of peanut under different soil water regimes. Australian Journal of Crop Science 7(7): 948-955.
  • Spence RD, Wu H, Sharpe PJH, Clark KG (1986) Water stress effects on guard cell anatomy and the mechanical advantage ofthe epidermal cells. Plant, Cell and Environment 9(3): 197-202.
  • Verona C, Calcagno F (1991) Study of stomatal parameters for selection of drought resistant varieties in Triticum durum DESF. Euphytica 57(3): 275-283.
  • Xu ZZ, Zhou GS (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany 59(12): 3317-3325.
  • Yang HM, Wang GX (2001) Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment. Acta Phytoecologica Sinica 25(3): 312-316.
  • Yentür S (1995) Bitki Anatomisi. İstanbul Üniversitesi Yayınları, Yayın No: 3808, İstanbul.
  • Zhang YP, Wang ZM, Wu YC, Zhang X (2006) Stomatal characteristics of different green organs in wheat under different irrigation regimes. Acta Agronomica Sinica 32(1): 70-75.
  • Zhou J, Hirata Y, Nou I, Shiotani H, Ito T (2002) Interactions between different genotypic tissues in citrus graft chimeras. Euphytica 126(3): 355-364.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Nurtaç Çınar Bu kişi benim

Köksal Aydinşakir

Nazmi Dinç Bu kişi benim

Dursun Büyüktaş Bu kişi benim

Mesut Işık Bu kişi benim

Yayımlanma Tarihi 11 Ağustos 2016
Gönderilme Tarihi 25 Ağustos 2015
Yayımlandığı Sayı Yıl 2016 Cilt: 29 Sayı: 2

Kaynak Göster

APA Çınar, N., Aydinşakir, K., Dinç, N., Büyüktaş, D., vd. (2016). Yerfıstığında (Arachis hypogaea L.) su stresinin stoma özellikleri üzerine etkisi. Mediterranean Agricultural Sciences, 29(2), 79-84.
AMA Çınar N, Aydinşakir K, Dinç N, Büyüktaş D, Işık M. Yerfıstığında (Arachis hypogaea L.) su stresinin stoma özellikleri üzerine etkisi. Mediterranean Agricultural Sciences. Ağustos 2016;29(2):79-84.
Chicago Çınar, Nurtaç, Köksal Aydinşakir, Nazmi Dinç, Dursun Büyüktaş, ve Mesut Işık. “Yerfıstığında (Arachis Hypogaea L.) Su Stresinin Stoma özellikleri üzerine Etkisi”. Mediterranean Agricultural Sciences 29, sy. 2 (Ağustos 2016): 79-84.
EndNote Çınar N, Aydinşakir K, Dinç N, Büyüktaş D, Işık M (01 Ağustos 2016) Yerfıstığında (Arachis hypogaea L.) su stresinin stoma özellikleri üzerine etkisi. Mediterranean Agricultural Sciences 29 2 79–84.
IEEE N. Çınar, K. Aydinşakir, N. Dinç, D. Büyüktaş, ve M. Işık, “Yerfıstığında (Arachis hypogaea L.) su stresinin stoma özellikleri üzerine etkisi”, Mediterranean Agricultural Sciences, c. 29, sy. 2, ss. 79–84, 2016.
ISNAD Çınar, Nurtaç vd. “Yerfıstığında (Arachis Hypogaea L.) Su Stresinin Stoma özellikleri üzerine Etkisi”. Mediterranean Agricultural Sciences 29/2 (Ağustos 2016), 79-84.
JAMA Çınar N, Aydinşakir K, Dinç N, Büyüktaş D, Işık M. Yerfıstığında (Arachis hypogaea L.) su stresinin stoma özellikleri üzerine etkisi. Mediterranean Agricultural Sciences. 2016;29:79–84.
MLA Çınar, Nurtaç vd. “Yerfıstığında (Arachis Hypogaea L.) Su Stresinin Stoma özellikleri üzerine Etkisi”. Mediterranean Agricultural Sciences, c. 29, sy. 2, 2016, ss. 79-84.
Vancouver Çınar N, Aydinşakir K, Dinç N, Büyüktaş D, Işık M. Yerfıstığında (Arachis hypogaea L.) su stresinin stoma özellikleri üzerine etkisi. Mediterranean Agricultural Sciences. 2016;29(2):79-84.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.