Tez Özeti
BibTex RIS Kaynak Göster

The Evaluation of Protein Oxidation in The Rats Which Induced Diabetes by Streptozotocin

Yıl 2021, Cilt: 3 Sayı: 3, 254 - 258, 01.09.2021
https://doi.org/10.37990/medr.983276

Öz

Aim: Diabetes mellitus (DM) is a chronic disorder and characterized by the development of long-term complications. Methylglyoxal (MGO), a precursor of advanced glycation endproducts (AGE), is detoxified in the organism by Glyoxalase through Glyoxalese I (GLO I) and GLO II.This study was aimed to investigate AGE formation in a diabetic rat model induced by streptozotocin (STZ) and the possible role of melatonin MEL which is a powerful antioxidant in this mechanism.
Materials and Methods:Four study groups, each containing ten Sprague Dawley rats, were defined as control, MEL, STZ and STZ-MEL. STZ and STZ-MEL groups were given a single 50 mg/kg dose of STZ to induce diabetes. MEL, 25 mg/kg was given intraperitoneally to MEL and STZ-MEL groups on a daily basis for 42 days. At the end of study, the levels of MGO, GLO I and GLO II enzymes were also determined in only tissue samples.
Results: Blood and urine glucose levels were found to be high in rats (p<0.05). STZ group had been shown to have higher tissue MGO levels and lower GLO I and GLO II activities (p<0.05). MEL treatment had suppressed high levels of MGO and increased enzymatic activities in STZ-MEL group.
Conclusion: In this study, we have shown that reducing MGO tissue levels in chronic diabetes to almost normal level and that the GLO system suppressed in diabetic rats are preserved with MEL,GLO I and GLO II activities increased. It has been shown that STZ induced diabetic rats had high MGO levels and the supression of GLO detoxification system indicates that AGE formation in diabetes is inevitable. Therefore, the usage of antioxidants such as MEL may be suggested to prevent diabetic complications.

Destekleyen Kurum

This research was supported by the Scientific Research Projects Unit of Erciyes Üniversity

Proje Numarası

TT-03-07;03/32

Kaynakça

  • Sherwin RS. Diabetes mellitus. In: Goldman L, Bennet J (eds), Cecil Textbook of Medicine (21sted). WB Saunders Company, Philedelphia. 2000,pp.1263-85.
  • Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants. 2021;10(2):253. doi:10.3390/antiox10020253.
  • Feillet–Coudray C, Rock E, Coudray C, et al. Lipid peroxidation and antioxidant status in experimental diabetes. Clin Chim Acta. 1999;284:31-43.
  • Friedman EA. Advanced glycosylated end products and hyperglycemia in the pathogenesis of diabetic complications Diabetes Care. 1999;22:65–71.
  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014;37:81-90 https://doi.org/10.2337/dc14-S081
  • Carvalho EN, Carvalho NAS, Ferreiro LM. Experimental model of induction of diabetes mellitus rats. Acta Cir Bros. 2003;18: 60-64.
  • Islas S, Monsalve CR, Pena JE, et al. STZ and alloxan experimental diabetes: comparison of the two models in rats. Acta Histochem Cytochem. 2000;33:201-8
  • Szkudelski T. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 2001;50:536-46.
  • Sies H. oxidative Stress: oxidants And Antioxidants. Exp Physiol 1997;82: 291-95.
  • Schalkwijk C. G. and. Stehouwer C.D.A. Methylglyoxal, A highly reactive dicarbonyl compound, in diabetes, its vascular complications and other age-related diseases. Physiol Rev. 2020;100(1):407-461. doi:10.1152/physrev.00001.2019.
  • Kalapos MP. Methylglyoxal In Living Organisms. Chemistry, Biochemistry, Toxicology And Biological Implications. Toxicol Lett. 1999;110: 145-175.
  • Sousa Silva M, Gomes R. A, Ferreira A. E. N et al. The glyoxalase pathway: the first hundred years… and beyond. Biochem J. 2013;453(1):1–15. doi:10.1042/bj20121743
  • Hardeland R, Reiter RJ, Poeggeler B. et al. The significance of the metabolism of the neurohormone melatonin: Antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev. 1993;17:347-57.
  • Maritim AC, Moore BH, Sanders RA. et al. Effect of melatonin on oxidative stress in streptozotocin-induced diabetic rats. Int J Toxicol. 1999;18:161-6.
  • Cooper RA. Methylglyoxal Synthase. Methods Enzymol. 1975;41:502-508
  • Mannervick B,Ridderstrom M:Catalytic and molecular properties glyoxalase I. Biochem Soc Trans. 1993;21:515 –17
  • Racker E. The mechanisms of action of glyoxalase. J Biol Chem. 1951;190:685-96.
  • Chunguang C, Christian M.C, Julia S. et al. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017; 6(9): 943–957. doi: 10.1016/j.molmet.2017.06.019
  • Groener J, Oikonomou, D. Cheko, R. et al. Methylglyoxal and Advanced Glycation End Products in Patients with Diabetes – What We Know so Far and the Missing Links. Exp Clin Endocrinol Diabetes. 2019;127(8):497-504. doi:10.1055/s-0043-106443
  • Sena CM, Matafome P, Crisostomo J et al. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res. 2012;65:497-506
  • Yamada H, Miyata S, Igaki N et al. Increase in 3 deoxyglucosone levels in diabetic rat plasma. Specific in vivo determination of intermediate in advanced Maillard reaction. J Biol Chem. 1994;269: 20275-20280
  • Nigro C, Leone, A, Raciti, G. L. et al. Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage. Int J Mol Sci. 2017;18(1):188–. doi:10.3390/ijms18010188
  • Nemet I, Turk Z, Dunjakd L et al. Humoral methylglyoxal level reflects gylicemic fluctuation. Clin Biochem. 2005;38:379-83.
  • Phillips SA, Mirrlees D, Thornalley PJ. Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor statil. Biochem Pharmacol. 1993;46:805
  • Ohmori S, Mori M, Kawase M. et al. Determination of methylglyoxal as 2-methylquinoxaline by high-performance liquid chromatography and its application to biological samples. J Chromatogr. 1987;414:149-55.
  • Brouwers, O, Niessen, P. M, Ferreira, I. et al. Overexpression of Glyoxalase-I Reduces Hyperglycemia-induced Levels of Advanced Glycation End Products and Oxidative Stress in Diabetic Rats. J Biol Chem. 2011;286(2):1374–1380. doi:10.1074/jbc.M110.144097
  • Mey, J. T., & Haus, J. M. Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. Front Cardiovasc Med. 2018;5:117 doi:10.3389/fcvm.2018.00117
  • Raju J, Gupta D, Rao AR. et al. Effect of antidiabetic compounds on glyoxalase I activity in experimental diabetic rat liver. Indian J Exp Biol. 1999;37(2):193-5
  • Cianfruglia, L, Morresi, C, Bacchetti T. et al. Protection of Polyphenols against Glyco-Oxidative Stress: Involvement of Glyoxalase Pathway. Antioxidants. 2020;9(10):1006. doi:10.3390/antiox9101006
  • Stadtman ER, Berlett BS. Reactive oxygen-mediated Protein oxidation In Aging And Disease. Chem Res Toxicol. 1997;10:485-494.
  • Lyons TJ. Glycation, Carbonyl Stress, Eagles, And The Vascular Complications of Diabetes. Semin Vasc Med. 2002;2:175-189.
  • Hollenbach, M. The Role of Glyoxalase-I (Glo-I), Advanced Glycation Endproducts (AGEs), and Their Receptor (RAGE) in Chronic Liver Disease and Hepatocellular Carcinoma (HCC). Int J Mol Sci. 2017;18(11):2466. doi:10.3390/ijms18112466
  • Singh M, Jadhav HR. Melatonin: Functions and Ligands. Drug Discov Today. 2014;19:1410–8 Montilla PL, Vargas JF, Tunez IF, et al. Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res. 1998;25:94-100.
  • Montilla PL, Vargas JF, Tunez IF, et al. Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res. 1998;25:94-100.
  • Yavuz O, Cam M, Bukan N. et al. Protective effect of melatonin on beta-cell damage in streptozotocin-induced diabetes in rats. Acta Histochem.2003;105:261-266.

Streptozotosin Diyabeti Oluşturulan Ratlarda Protein Oksidasyonunun Değerlendirilmesi

Yıl 2021, Cilt: 3 Sayı: 3, 254 - 258, 01.09.2021
https://doi.org/10.37990/medr.983276

Öz

Amaç: Diabetes mellitus (DM) uzun süreli komplikasyonların gelişmesi ile karakterize kronik bir hastalıktır. İleri glikasyon son ürünleri (AGE) öncüsü olan metilglikoksal (MGO) Glioksalaz 1 (GLO 1) ve GLO 2 ile Glioksalaz tarafından organizmada detoksifiye edilmektedir. Bu çalışmada amaç streptozotosin (STZ) ile indüklenen diyabetik rat modelinde AGE oluşumunu araştırmak ve güçlü bir antioksidan olan melatonin (MEL)’in bu mekanizmadaki güçlü antioksidan rolünü araştırmaktır.
Materyal ve Metot: Her biri on adet Sprague Dawley ratları içeren dört çalışma grubu kontrol, MEL, STZ ve STZ-MEL olarak tanımlandı. STZ ve STZ-MEL gruplarına diyabeti indüklemek için tek doz 50 mg / kg STZ verildi. 25 mg / kg MEL, 42 gün boyunca MEL ve STZ-MEL gruplarına günlük intraperitoneal olarak verildi. Çalışmanın sonunda sadece doku örneklerinde MGO, GLO 1 ve GLO 2 enzimlerinin düzeyleri tespit edildi.
Bulgular: Ratlarda kan ve idrar glikoz düzeyleri yüksek bulundu (p<0.05). STZ grubunun daha yüksek doku MGO düzeylerine ve daha düşük GLO I ve GLO II aktivitelerine sahip olduğu (p<0.05) gösterilse de MEL tedavisi, yüksek MGO düzeylerini ve STZ-MEL grubunda artmış enzim aktivitelerini baskıladı.
Sonuç: Bu çalışmada, kronik diyabetteki MGO doku düzeylerinin neredeyse normale düştüğünü ve diyabetik sıçanlarda GLO sisteminin baskılanmasının MEL, GLO 1 ve GLO 2 aktiviteleri ile korunduğunu gösterdik. STZ kaynaklı diyabetik sıçanların yüksek MGO seviyelerine sahip olduğu ve GLO detoksifikasyon sisteminin baskılanmasının diyabet hastalığında AGE oluşumunun kaçınılmaz olduğu gösterilmiştir. Bu nedenle, MEL gibi antioksidanların kullanımı, diyabetik komplikasyonları önlemek için önerilebilir.

Proje Numarası

TT-03-07;03/32

Kaynakça

  • Sherwin RS. Diabetes mellitus. In: Goldman L, Bennet J (eds), Cecil Textbook of Medicine (21sted). WB Saunders Company, Philedelphia. 2000,pp.1263-85.
  • Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants. 2021;10(2):253. doi:10.3390/antiox10020253.
  • Feillet–Coudray C, Rock E, Coudray C, et al. Lipid peroxidation and antioxidant status in experimental diabetes. Clin Chim Acta. 1999;284:31-43.
  • Friedman EA. Advanced glycosylated end products and hyperglycemia in the pathogenesis of diabetic complications Diabetes Care. 1999;22:65–71.
  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014;37:81-90 https://doi.org/10.2337/dc14-S081
  • Carvalho EN, Carvalho NAS, Ferreiro LM. Experimental model of induction of diabetes mellitus rats. Acta Cir Bros. 2003;18: 60-64.
  • Islas S, Monsalve CR, Pena JE, et al. STZ and alloxan experimental diabetes: comparison of the two models in rats. Acta Histochem Cytochem. 2000;33:201-8
  • Szkudelski T. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 2001;50:536-46.
  • Sies H. oxidative Stress: oxidants And Antioxidants. Exp Physiol 1997;82: 291-95.
  • Schalkwijk C. G. and. Stehouwer C.D.A. Methylglyoxal, A highly reactive dicarbonyl compound, in diabetes, its vascular complications and other age-related diseases. Physiol Rev. 2020;100(1):407-461. doi:10.1152/physrev.00001.2019.
  • Kalapos MP. Methylglyoxal In Living Organisms. Chemistry, Biochemistry, Toxicology And Biological Implications. Toxicol Lett. 1999;110: 145-175.
  • Sousa Silva M, Gomes R. A, Ferreira A. E. N et al. The glyoxalase pathway: the first hundred years… and beyond. Biochem J. 2013;453(1):1–15. doi:10.1042/bj20121743
  • Hardeland R, Reiter RJ, Poeggeler B. et al. The significance of the metabolism of the neurohormone melatonin: Antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev. 1993;17:347-57.
  • Maritim AC, Moore BH, Sanders RA. et al. Effect of melatonin on oxidative stress in streptozotocin-induced diabetic rats. Int J Toxicol. 1999;18:161-6.
  • Cooper RA. Methylglyoxal Synthase. Methods Enzymol. 1975;41:502-508
  • Mannervick B,Ridderstrom M:Catalytic and molecular properties glyoxalase I. Biochem Soc Trans. 1993;21:515 –17
  • Racker E. The mechanisms of action of glyoxalase. J Biol Chem. 1951;190:685-96.
  • Chunguang C, Christian M.C, Julia S. et al. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017; 6(9): 943–957. doi: 10.1016/j.molmet.2017.06.019
  • Groener J, Oikonomou, D. Cheko, R. et al. Methylglyoxal and Advanced Glycation End Products in Patients with Diabetes – What We Know so Far and the Missing Links. Exp Clin Endocrinol Diabetes. 2019;127(8):497-504. doi:10.1055/s-0043-106443
  • Sena CM, Matafome P, Crisostomo J et al. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res. 2012;65:497-506
  • Yamada H, Miyata S, Igaki N et al. Increase in 3 deoxyglucosone levels in diabetic rat plasma. Specific in vivo determination of intermediate in advanced Maillard reaction. J Biol Chem. 1994;269: 20275-20280
  • Nigro C, Leone, A, Raciti, G. L. et al. Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage. Int J Mol Sci. 2017;18(1):188–. doi:10.3390/ijms18010188
  • Nemet I, Turk Z, Dunjakd L et al. Humoral methylglyoxal level reflects gylicemic fluctuation. Clin Biochem. 2005;38:379-83.
  • Phillips SA, Mirrlees D, Thornalley PJ. Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor statil. Biochem Pharmacol. 1993;46:805
  • Ohmori S, Mori M, Kawase M. et al. Determination of methylglyoxal as 2-methylquinoxaline by high-performance liquid chromatography and its application to biological samples. J Chromatogr. 1987;414:149-55.
  • Brouwers, O, Niessen, P. M, Ferreira, I. et al. Overexpression of Glyoxalase-I Reduces Hyperglycemia-induced Levels of Advanced Glycation End Products and Oxidative Stress in Diabetic Rats. J Biol Chem. 2011;286(2):1374–1380. doi:10.1074/jbc.M110.144097
  • Mey, J. T., & Haus, J. M. Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. Front Cardiovasc Med. 2018;5:117 doi:10.3389/fcvm.2018.00117
  • Raju J, Gupta D, Rao AR. et al. Effect of antidiabetic compounds on glyoxalase I activity in experimental diabetic rat liver. Indian J Exp Biol. 1999;37(2):193-5
  • Cianfruglia, L, Morresi, C, Bacchetti T. et al. Protection of Polyphenols against Glyco-Oxidative Stress: Involvement of Glyoxalase Pathway. Antioxidants. 2020;9(10):1006. doi:10.3390/antiox9101006
  • Stadtman ER, Berlett BS. Reactive oxygen-mediated Protein oxidation In Aging And Disease. Chem Res Toxicol. 1997;10:485-494.
  • Lyons TJ. Glycation, Carbonyl Stress, Eagles, And The Vascular Complications of Diabetes. Semin Vasc Med. 2002;2:175-189.
  • Hollenbach, M. The Role of Glyoxalase-I (Glo-I), Advanced Glycation Endproducts (AGEs), and Their Receptor (RAGE) in Chronic Liver Disease and Hepatocellular Carcinoma (HCC). Int J Mol Sci. 2017;18(11):2466. doi:10.3390/ijms18112466
  • Singh M, Jadhav HR. Melatonin: Functions and Ligands. Drug Discov Today. 2014;19:1410–8 Montilla PL, Vargas JF, Tunez IF, et al. Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res. 1998;25:94-100.
  • Montilla PL, Vargas JF, Tunez IF, et al. Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res. 1998;25:94-100.
  • Yavuz O, Cam M, Bukan N. et al. Protective effect of melatonin on beta-cell damage in streptozotocin-induced diabetes in rats. Acta Histochem.2003;105:261-266.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Özgün Makaleler
Yazarlar

Meltem Demır 0000-0002-0836-8585

Kader Köse 0000-0002-1693-1155

Cevat Yazıcı 0000-0003-0625-9542

Proje Numarası TT-03-07;03/32
Yayımlanma Tarihi 1 Eylül 2021
Kabul Tarihi 25 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 3

Kaynak Göster

AMA Demır M, Köse K, Yazıcı C. The Evaluation of Protein Oxidation in The Rats Which Induced Diabetes by Streptozotocin. Med Records. Eylül 2021;3(3):254-258. doi:10.37990/medr.983276

 Chief Editors

Assoc. Prof. Zülal Öner
Address: İzmir Bakırçay University, Department of Anatomy, İzmir, Turkey

Assoc. Prof. Deniz Şenol
Address: Düzce University, Department of Anatomy, Düzce, Turkey

E-mail: medrecsjournal@gmail.com

Publisher:
Medical Records Association (Tıbbi Kayıtlar Derneği)
Address: Orhangazi Neighborhood, 440th Street,
Green Life Complex, Block B, Floor 3, No. 69
Düzce, Türkiye
Web: www.tibbikayitlar.org.tr

Publication Support: 

Effect Publishing & Agency
Phone: + 90 (540) 035 44 35
E-mail: info@effectpublishing.com
Address: Akdeniz Neighborhood, Şehit Fethi Bey Street,
No: 66/B, Ground floor, 35210 Konak/İzmir, Türkiye
web: www.effectpublishing.com