Klinik Araştırma
BibTex RIS Kaynak Göster

Farklı Frez Türlerinin Kullanımında Açığa Çıkan Sıcaklık Değerlerinin Değerlendirilmesi

Yıl 2023, Cilt: 5 Sayı: 2, 342 - 8, 15.05.2023
https://doi.org/10.37990/medr.1249118

Öz

Amaç: Çalışmamızda, ağız içinden otojen kemik alınırken sıklıkla tercih edilen mandibula ramus bölgesini simüle etmesi amacıyla kullanılan sentetik kemik bloklarına rond, fissür ve lindeman frezler kullanılarak yapılan osteotomileri termal kamera ile kaydederek açığa çıkan sıcaklık miktarlarını ölçmeyi amaçladık.
Materyal ve Metod: Çalışmamızda kullanılan frezler 10000 rpm ve 15000 rpm dönme hızlarında ve 60 mm/dak ve 90 mm/dak ilerleme hızlarında kullanılmış ve her osteotomi uygulanan kuvveti standardize etmek amacı ile CNC freze cihazı ile yapılmıştır.
Bulgular: Çalışmamızdan çıkan sonuçlara göre en yüksek sıcaklıklar fissür frez gruplarında izlenmiş, rond frez ve lindeman frez grupları birbirlerine benzer sonuçlar vermiştir. Ayrıca sabit rotasyon hızında tüm gruplarda ilerleme hızı 60 mm/dak’dan 90 mm/dak’ya artırıldığında açığa çıkan ısı anlamlı ölçüde artmaktadır. Gruplar kendi içinde değerlendirildiğinde ise; rond frez kullanılan gruplarda 15000 rpm ve 60 mm/dak ilerleme hızında gözlenen sıcaklık değerleri 10000 rpm ve 60 mm/dak ilerleme hızında gözlenen gruptan anlamlı ölçüde düşük bulunmuş (p=0,028), fissür frez gruplarında ise 10000 rpm ve 60 mm/dak ilerleme hızında gözlenen sıcaklık değerleri 15000 rpm ve 60 mm/dak ilerleme hızında gözlenen değerlerden anlamlı ölçüde düşük çıkmıştır (p=0,028). Lindeman frez 60 mm/dak ilerleme hızında 10000 rpm ve 15000 rpm gruplarının ısı değişim ortalamaları arasında istatistiksel olarak anlamlı farklılık gözlenmemiştir (p=0,182).
Sonuç: Bu çalışma frez hızları arttırıldığında kemikte oluşan ısının artması düşünülürken, frez dizaynlarına göre oluşan ısının azalabildiğini ve tercih edilen frezin karakteristik özelliklerine göre davranmak gerektiği sonucunu göstermiştir.

Kaynakça

  • Szalma J, Lovasz BV, Vajta L, et al. The influence of the chosen in vitro bone simulation model on intraosseous temperatures and drilling times. Sci Rep. 2019;9:11817.
  • Crowninshield RD, Pope MH. The response of compact bone in tension at various strain rates. Ann Biomed Eng. 1974;2:217–25.
  • Feldmann A, Wili P, Maquer G, Zysset P. The thermal conductivity of cortical and cancellous bone. Eur Cells Mater. 2018;35:25–33.
  • Soriano J, Garay A, Aristimuno P, Arrazola PJ. Study and improvement of surgical drill bit geometry for implant site preparation. Int J Adv Manuf Technol. 2014;74:615–27.
  • Davidson SR, James DF. Measurement of thermal conductivity of bovine cortical bone. Med Eng Phys. 2000;22:741–7.
  • Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101–7.
  • Augustin G, Zigman T, Davila S, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech Bristol Avon. 2012;27:313–25.
  • Pandey RK, Panda SS. Drilling of bone: a comprehensive review. J Clin Orthop Trauma. 2013;4:15–30.
  • Berman AT, Reid JS, Yanicko Jr DR, et al. Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clin Orthop Relat Res. 1984;186:284–92.
  • Chiapasco M, Abati S, Romeo E, Vogel G. Clinical outcome of autogenous bone blocks or guided bone regeneration with e-PTFE membranes for the reconstruction of narrow edentulous ridges. Clin Oral Implants Res. 1999;10:278-88.
  • Saruhan N, Ertaş Ü. Atrofik alveolar kretlerin ogmentasyonunda ekstraoral otojen kemik grefti uygulamaları. Turkiye Klinikleri J Dental Sci-Special Topics. 2012;3:18-28.
  • Toksvig-Larsen S, Ryd L, Lindstrand A. On the problem of heat generation in bone cutting. Studies on the effects on liquid cooling. J Bone Joint Surg Br. 1991;3:13-5.
  • Hall PB, Landsman A, Banks AS, Dalmia L. Thermal properties of first metatarsal osteotomies. J Foot Ankle Surg. 2009;48:432-8.
  • Singh RP, Pandey PM, Behera C, Mridha AR. Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones. Proc Inst Mech Eng H. 2020;234:829-42.
  • Augustin G, Davila S, Mihoci K, et al. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. 2008;128:71-7.
  • Strbac GD, Giannis K, Unger E, et al. A novel standardized bone model for thermal evaluation of bone osteotomies with various irrigation methods. Clin Oral Implants Res. 2014;25:622-31.
  • Harder S, Egert C, Freitag-Wolf S, et al. Intraosseous temperature changes during implant site preparation: in vitro comparison of thermocouples and infrared thermography. Int J Oral Maxillofac Implants. 2018;33:72-8.
  • Arif R, Fromentin G, Rossi F, Marcon B. Mechanical analysis of local cutting forces and transient state when drilling of heat-resistant austenitic stainless steel. Int J Adv Manuf Technol. 2019;104:2247-58.
  • Li P, Chang Z. Accurate modeling of working normal rake angles and working inclination angles of active cutting edges and application in cutting force prediction. Micromachines. 2021;12:1207.

Evaluation of the Temperature Values in the Use of Different Types of Burs

Yıl 2023, Cilt: 5 Sayı: 2, 342 - 8, 15.05.2023
https://doi.org/10.37990/medr.1249118

Öz

Aim: In our study, we aimed to measure the amount of released head by recording it with a thermal camera during the osteotomies made utilizing round, fissure and lindemann burs to the synthetic bone blocks to simulate the mandible ramus region which is often preferred when obtaining autogenous bone from the mouth.
Material and Methods: The burs in our study were used at rotational speeds of 10000 rpm and 15000 rpm and feed rates of 60 mm/min and 90 mm/min, and each osteotomy was made with a CNC milling machine in order to standardize the applied force.
Results: According to the results of our study, the highest temperatures were observed in the fissure bur groups, and the round bur and lindemann bur groups gave similar results. In addition, when the feed rate is increased from 60 mm/min to 90 mm/min in all groups at constant rotational speed, the heat released increases significantly. When the groups are evaluated within themselves; the temperature values observed at 15000 rpm and 60 mm/min feed rate in the groups using round bur were found to be significantly lower than the group observed at 10000 rpm and 60 mm/min feed rates (p=0.028), in fissure bur groups, the temperature values observed at 10000 rpm and 60 mm/min feed rate were significantly lower than the values observed at 15000 rpm and 60 mm/min feed rates (p=0.028). No statistically significant difference was observed between the heat exchange averages of the 10000 rpm and 15000 rpm groups at a Lindemann bur 60 mm/min feed rate (p=0.182).
Conclusion: This study has shown that while the generated heat in the bone is thought to increase when the bur speeds are increased, the head generated according to bur designs can decrease and it is necessary to operate according to the characteristic features of the preferred bur.

Kaynakça

  • Szalma J, Lovasz BV, Vajta L, et al. The influence of the chosen in vitro bone simulation model on intraosseous temperatures and drilling times. Sci Rep. 2019;9:11817.
  • Crowninshield RD, Pope MH. The response of compact bone in tension at various strain rates. Ann Biomed Eng. 1974;2:217–25.
  • Feldmann A, Wili P, Maquer G, Zysset P. The thermal conductivity of cortical and cancellous bone. Eur Cells Mater. 2018;35:25–33.
  • Soriano J, Garay A, Aristimuno P, Arrazola PJ. Study and improvement of surgical drill bit geometry for implant site preparation. Int J Adv Manuf Technol. 2014;74:615–27.
  • Davidson SR, James DF. Measurement of thermal conductivity of bovine cortical bone. Med Eng Phys. 2000;22:741–7.
  • Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101–7.
  • Augustin G, Zigman T, Davila S, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech Bristol Avon. 2012;27:313–25.
  • Pandey RK, Panda SS. Drilling of bone: a comprehensive review. J Clin Orthop Trauma. 2013;4:15–30.
  • Berman AT, Reid JS, Yanicko Jr DR, et al. Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clin Orthop Relat Res. 1984;186:284–92.
  • Chiapasco M, Abati S, Romeo E, Vogel G. Clinical outcome of autogenous bone blocks or guided bone regeneration with e-PTFE membranes for the reconstruction of narrow edentulous ridges. Clin Oral Implants Res. 1999;10:278-88.
  • Saruhan N, Ertaş Ü. Atrofik alveolar kretlerin ogmentasyonunda ekstraoral otojen kemik grefti uygulamaları. Turkiye Klinikleri J Dental Sci-Special Topics. 2012;3:18-28.
  • Toksvig-Larsen S, Ryd L, Lindstrand A. On the problem of heat generation in bone cutting. Studies on the effects on liquid cooling. J Bone Joint Surg Br. 1991;3:13-5.
  • Hall PB, Landsman A, Banks AS, Dalmia L. Thermal properties of first metatarsal osteotomies. J Foot Ankle Surg. 2009;48:432-8.
  • Singh RP, Pandey PM, Behera C, Mridha AR. Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones. Proc Inst Mech Eng H. 2020;234:829-42.
  • Augustin G, Davila S, Mihoci K, et al. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. 2008;128:71-7.
  • Strbac GD, Giannis K, Unger E, et al. A novel standardized bone model for thermal evaluation of bone osteotomies with various irrigation methods. Clin Oral Implants Res. 2014;25:622-31.
  • Harder S, Egert C, Freitag-Wolf S, et al. Intraosseous temperature changes during implant site preparation: in vitro comparison of thermocouples and infrared thermography. Int J Oral Maxillofac Implants. 2018;33:72-8.
  • Arif R, Fromentin G, Rossi F, Marcon B. Mechanical analysis of local cutting forces and transient state when drilling of heat-resistant austenitic stainless steel. Int J Adv Manuf Technol. 2019;104:2247-58.
  • Li P, Chang Z. Accurate modeling of working normal rake angles and working inclination angles of active cutting edges and application in cutting force prediction. Micromachines. 2021;12:1207.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cerrahi
Bölüm Özgün Makaleler
Yazarlar

Mustafa Ayhan 0000-0001-5532-9514

Erken Görünüm Tarihi 15 Mayıs 2023
Yayımlanma Tarihi 15 Mayıs 2023
Kabul Tarihi 13 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: 2

Kaynak Göster

AMA Ayhan M. Evaluation of the Temperature Values in the Use of Different Types of Burs. Med Records. Mayıs 2023;5(2):342-8. doi:10.37990/medr.1249118

 Chief Editors

Assoc. Prof. Zülal Öner
Address: İzmir Bakırçay University, Department of Anatomy, İzmir, Turkey

Assoc. Prof. Deniz Şenol
Address: Düzce University, Department of Anatomy, Düzce, Turkey

E-mail: medrecsjournal@gmail.com

Publisher:
Medical Records Association (Tıbbi Kayıtlar Derneği)
Address: Orhangazi Neighborhood, 440th Street,
Green Life Complex, Block B, Floor 3, No. 69
Düzce, Türkiye
Web: www.tibbikayitlar.org.tr

Publication Support: 

Effect Publishing & Agency
Phone: + 90 (540) 035 44 35
E-mail: info@effectpublishing.com
Address: Akdeniz Neighborhood, Şehit Fethi Bey Street,
No: 66/B, Ground floor, 35210 Konak/İzmir, Türkiye
web: www.effectpublishing.com